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Abstract  

This paper presents the inverse velocity and 

acceleration analyses of a three DOF Delta linear 

parallel manipulators mainly focusing on screw 

algebra. First the generalized Jacobian of the 

Delta parallel manipulator is derived using 

reciprocal screws technique. Geometrical 

observation method is employed to determine the 

reciprocal screw systems. This generalized 

Jacobian will be used to formulate the acceleration 

of the platform. For the acceleration analysis a 

new Hessian matrix of serial kinematic chains (or 

limbs) is developed in an explicit and compact form 

using Lie brackets. This idea is then extended to 

cover parallel manipulators. 

 

 1. Introduction  
 A parallel manipulator is a mechanical system that 

uses several computer-controlled serial chains to 

support a single platform, or end-effector. Perhaps, 

the best known parallel manipulator is formed from 

six linear actuators that support a movable base for 

devices such as flight simulators. This device is 

called a Stewart platform or the Gough-Stewart 

platform in recognition of the engineers who first 

designed and used them [1].  

     Parallel manipulators have a kinematic structure 

that has some advantages over serial manipulators 

such as rigidity, precision, velocity and 

acceleration. Nowadays, these characteristics are 

highly demanded in the manufacturing of 

aeronautical components and for the automotive 

industry. Parallel manipulators have found a place 

in applications such as flight simulators or pointing 

devices, but they have not jumped into industrial 

production yet. one of the basic reason is the 

kinematic, stiffness, singularity and dynamics 

analysis of a parallel manipulators is not an easy 

task.  

 Velocity, accuracy stiffness and dynamics are the 

important performance factors that should 

essentially be considered in design of parallel 

manipulators, particularly in the many 

circumstances where high speed, high precision 

and high rigidity are basic requirements. The 

common manipulation required for velocity, 

accuracy, stiffness modelling is to formulate a 

specific linear map between two vector spaces at a 

given configuration. Huang [2] has recently 

developed a mathematical framework to unify all 

these three. He propose a general approach for 

Jacobian analysis of lower mobility manipulators 

by simultaneously taking into account both 

instantaneous permitted and restricted motions of 

the end-effector. This Jacobian is known as 

generalized Jacobian, unlike an overall Jacobian it 

incorporate restricted motions of the end-effector.  

     Jacobian analysis has been a focus of research 

area for many years as far as parallel manipulators 

are concerned. For this reason there are so many 

research works available on the subject. Jacobian 

analysis for different parallel manipulators has been 

conducted using different approaches. Among these 

approaches are direct differentiation method, the 

kinematic influence coefficient method  and screw-

based method. A Jacobian analysis of 6-DOF 

parallel manipulator was presented using a screw-

based method [1] [3]. Screw-based method is more 

powerful and easily gives deep insight into the 

topological structure of robotic system and this 

approach is well outlined by Tian Huang [2]. A 

paper on inverse, direct, and intermediate Jacobians 

of a delta robot was published by Lopez using a 

direct differentiation method [4].  

     In relation to acceleration analysis, screw theory 

based approaches  could potentially be the most 

powerful method for acceleration analysis. In order 

to overcome the difficulty of expressing the twist 

derivatives in a screw form, a novel term named the 

“accelerator” or “acceleration motor” was proposed 

and employed for the acceleration analysis of serial 

and parallel kinematic chains [5] . However, the 

terms associated with the second derivatives in the 

acceleration equations can only be written in a 

lengthy form of Lie brackets rather than in a 

compact form of the Hessian matrix [5] [6]. 

2. Delta robot     

   
The delta robot is a parallel robot, i.e. it consists of 

multiple kinematic chains interconnecting the base 

with the end-effector. The key concept of the delta 

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T



robot is the use of parallelograms. These 

parallelograms restrict the movement of the end 

platform to pure translation. mostly the robot's base 

is mounted above the workspace and all 

the actuators are located on it. From the base, three 

middle jointed arms extend. The ends of these arms 

are connected to a small triangular platform. This 

type of configuration is widely applicable as a 

sorting and collating in various types of packaging 

and food industry [7]. Actuation of the input links 

will move the triangular platform along the X, Y or 

Z direction. Actuation can be done with linear or 

rotational actuators, with or without reductions.  

Nowadays linearly actuated delta robots are used in 

the manufacturing industry for high-speed 

machining centres.  

 

3. Position Equation 

 
A delta robot employs three parallelograms to 

completely restrain the orientation of the moving 

platform with only three purely translational 

degrees of freedom. The  description of the 

kinematics chain is shown in figure 1. A reference 

coordinate system O xyz is attached to the centre 

of the base platform with X and Y axes lying on the 

fixed plane and Z axis pointing up vertically.  

Figure 1. Description of the kinematic chain 

Another coordinate system i i i iA x y z is attached to 

the fixed base at point iA , such that ix axis is in 

line with line OA  and iz  axis is parallel to z axis. 

the constant angle iφ is measured from the x axis 

to ix . some variables associated with the 
thi  limb 

are defined in Figure 1. 

Therefore the loop-closure equation of each limb 

can be written as;  

' 'i i i i i iOA A B B C Oo o C
    

                             (1) 

since the i iA B


is the vector along the actuated joint, 

then 

' 'i i i i i iA B Oo o C OA B C
    

                             (2) 

Where all the vectors in Eq. (2) are expressed in the 

reference coordinate system O xyz . 

 

4. Screw and reciprocal screw 

 
      The concept of screw and reciprocal screws 

was first studied by Ball [8]. The instantaneous 

motion of a rigid body can be represented by a six-

component vector called twist, t$ . Similarly, all 

the forces acting on a rigid body can be described 

by another six-component vector called wrench, 

w$ . In this regard, the first three components of a 

twist represent the angular velocity and the last 

three components represent the linear velocity of a 

point in the rigid body which is instantaneously 

coincident with the origin of the reference frame. 

On the other hand, the first three components of a 

wrench represent the resultant force and the last 

three  components represent the resultant moment 

about the origin of the reference frame.  

     Although twist and wrench have different 

physical meanings, they have the same 

mathematical representation called screws. A unit 

screw $̂  is defined by a pair of vectors: 

    0

1 2 3 4 5 6

ˆ

, , , , ,
T

s

s s λs

S S S S S S

$ =
                            (3) 

where s   is a unit vector along the direction of the 

screw axis, 0s  is the position vector of any point 

on the screw axis with respect to a reference frame, 

and is called the pitch [1]. A screw of intensity 

ρ  can be written as ˆρ$   $ . Two screws 1$ and 

2$  are said to be reciprocal to each other if their 

orthogonal product equals to zero. 

  01 2  $   $                                                 (4) 

If one screw is twist and the other is wrench, the 

physical meaning for reciprocity between these two 

screws is that the instantaneous work for the 

wrench along the twist is zero.  

      A screw system is a span of ik  ( 6ik ) 

linearly independent screws, and is often called a 

ik  system. For this screw system, any ik  linearly 

independent screws can be a basis of the system. 

The reciprocal screw system for the given one is a 

6 ik  system in which any one screw is reciprocal 

to all the screws in the given system. Similarly, any 

6 ik  linearly independent screws form a basis of 

the reciprocal system. Hence we only need to find 
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6 ik  convenient linearly independent screws to 

represent the reciprocal system. 

As described above the twist space form a 6-

dimensional vector space, which is composed of a 

pair of complementary subspaces called The twist 

subspace of permissions and The twist subspace of 

restrictions. The twist subspace of permissions is a 

ik -dimensional subspace of  the twist space 

spanned by the twists permitted by the system 

constraints with ta$  being its element. The twist 

subspace of restrictions is a 6 ik  dimensional 

subspace of the twist space spanned by the twists 

restricted by the system constraints with tc$  being 

its element [4]. 

The wrenche space also form a 6-dimensional 

vector space, which is composed of a pair of 

complementary subspaces called The wrenche 

subspace of actuations and The wrenche subspace 

of constraints. The wrenche subspace of actuations 

is a ik -dimensional subspace of  the wrenche space 

spanned by the wrenches of actuations generated 

by ik  independent actuation forces and/or 

moments with wa$  being its element. The wrench 

subspace of constraints is a 6 ik  dimensional 

subspace of the wrenche space spanned by the 

wrenches of constraints generated by 6 ik  

independent joint reaction forces and/or moments 

with wc$  being its element. 

From the above definitions we can see that:  

    0ta wc  $   $  and 

    0tc wa  $   $                                          (5) 

Hence if a screw system of twists represents the 

degrees of freedom (DOF) of a rigid body, the 

reciprocal system of wrenches is the constraint 

forces acting on it. The dual proposition also holds: 

When a screw system of wrenches act on a rigid 

body, then the reciprocal system of twists is the 

DOF of the body. Therefore, the reciprocity 

property makes it possible to obtain motion 

information from the corresponding constraint 

counterpart and vice versa. 

 

5. Determination of the basis Elements 

of the   Four Subspaces 

 
This section employ geometrical observation 

method to determine the reciprocal screw systems 

of linearly actuated delta robot. we only needs to 

implement three simple observations to fully 

determine the basis of a reciprocal screws of a 

screw system [9]. Simply by inspecting the joint 

axes and applying these observations, one can 

easily obtain a basis of the reciprocal screw system. 

Relative motion between two rigid bodies can be 

achieved by mechanical joints.  

Figure.2 Schematic representation of a 
single limb of linearly actuated delta robot. 

For example, rotation and translation can be 

obtained by revolute and prismatic joints 

respectively. In robot manipulator design, revolute 

and prismatic joints are widely used. In fact, most 

of the other joints can be conceived as the 

combination of several revolute and prismatic 

joints. For example, a universal joint can be 

substituted by two revolute joints whose axis 

intersects with each other perpendicularly and a 

spherical joint can be represented by three mutually 

perpendicular revolute joints with the axes of the 

joints passing through the center of the sphere.  

At the same time, common constraints in statics are 

pure force or moment.  For both the motion and 

constraint, the screw associated with rotation or a 

pure force is a zero pitch screw( =0) which we 

call a line vector, while the screw associated with 

translation or a pure moment is an infinite pitch  

screw which we call a couple vector.  

 

5.1. The three basic observations 

The following three basic observations will help us 

to find the basis of the reciprocal screws of a screw 

system. The proofs for the observations are 

discussed by Jianguo [9].  

Observation 1:  Two line vectors are reciprocal to 

each other if and only if they are coplanar. 

Observation 2:  Two couple vectors are always 

reciprocal to each other. 
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Observation 3:  A line vector is reciprocal to a 

couple vector if and only if they are perpendicular 

to each other. 

 

5.2. The basis Elements of the Four 

Subspaces 

 
      A single limb of linearly actuated Delta robot 

with 3-DOF translational motion capabilities is 

shown in figure 2. It consists of a base, a platform 

and three identical limbs made of prismatic-

revolute-parallelogram-revolute(PRPaR) joints. In 

each limb, the axis of the prismatic joint is parallel 

to the z-axis of the base plate, the axes of two 

revolute joints are parallel to each other, and the 

axes of the revolute joints in the parallelogram joint 

are normal to the parallelogram
i

DEFG , Since 

the parallelogram joint can be visualized as a 1-

DOF compound joint [2]. We have 4-screw system 

single limb i.e. 4ik .  The joint axes are arranged 

such that, 2,i is s , and ˆ
i ibs . 

        Hence, the unit screws of permissions,

, ,$ ( 1,2,3,4)ta ja i aj
  in the thi limb( 1,2,3i ) can 

be generated as follows: 

Since a prismatic joint is a couple vector  

                 1
,1,$

0
i

ta i
s                                  (6) 

Note that except the actuated joint the rest three 

joints are revolute joints (i.e. line vector) therefore 

the unit screws about a reference point o'  due to 

the two vectors 2,is  will give us  

        2,
,2,

2,

ˆ( )
$ ii i

ta i
i

c bb s

s
                      (7) 

  and  2,
,4,

2,
$ i i

ta i
i

c s

s
 .                           (8) 

,3,$ta i
  is a unit screw of permissions of a 1-DOF 

parallelogram joint.  it will be the resultant unit 

screw of permissions associated with the revolute 

joints of the 
thi  limb at iD , iE , iF , and iG     

               
2,

,

ˆ
ˆ i i i i

ta D

i

t bb

i
$

c s s

s
 ,                    (9)         

                 
2,

,

ˆ
ˆ i i i i

ta E

i

t bb

i
$

c s s

s
 ,                  (10)          

                 
2,

,
ˆ i i i

ta F

i

t

i
$

c s s

s
 ,                         (11)         

               
2,

,
ˆ i i i

ta G

i

t

i
$

c s s

s
                            (12) 

where is  is coincident with the axis of the revolute 

joint, and is also the normal vector of parallelogram

i
DEFG . Within the scope of velocity analysis, 

the instantaneous twist of the platform due only to 

the twist of the parallelogram joint can be given as 

,3, 3, , 3, ,
ˆ ˆ

ta i i ta D i ta Gθ θ
i i

$ $ $   

          3, , 3, ,
ˆ ˆ

i ta E i ta Fθ θ
i i

$ $                               (13) 

where 3,iθ  represents the angular velocity of the 

revolute joint. Substituting Eq.(9) through Eq.(12)  

into Eq.  (13) gives  

       ,3, 3, ,3, 3,
ˆ i

ta i i ta i i

e
θ b θ b$ $

0
                      (14) 

Hence the unit screw becomes,                      

                      ,3,
ˆ

0

i
ta i

e
$                                    (15)  

where ˆ
i i ie bs . Therefore, ,3,

ˆ
ta i$  can be 

considered to be the unit screw of permissions 

associated with the 1-DOF parallelogram joint of 

limb i. 

Next the two unit wrench of constraints, ,cwc k i$ ,
ˆ  

( 1,2ck ), which are orthogonal to all ,ata j i$ ,
ˆ  , can 

then be identified using the above observations:  

 

Since the unit screw of permissions are 

composed of one couple vector and three line 

vectors we can take two linearly independent 

couple vectors which are perpendicular to 2is . 

Note that by observation 2 any couple vector is a 

reciprocal of any other couple vector. So 

                   ,1,
ˆ

wc i
i

0
$

s
,                        (16) 

             ,2,
2

ˆ
wc i

i is s

0
$                       (17) 

Locking sequentially the thak  ( 1,2, ,4ak  ) 

joint, the unit wrench , ,
ˆ

awa k i$ , which is orthogonal 

to ,ata j i$ ,
ˆ  ( 1,2, ,4aj  , a aj k ) and dual to 

,ata k i$ ,
ˆ , can be identified as by the three basic 

observations mentioned above, take a line vector 

along a vector ˆ
ib , from observation 3 this line 

vector is not perpendicular to the couple vector 1is  

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T



that means it will be a dual to 1is . from observation 

2 it will be a reciprocal to any coplanar line vector. 

From observation 3 this same line vector is 

perpendicular to ie .  Hence  ,1,

ˆ
ˆ

ˆ

i
wa i

i i

b

b
$

c
 will 

be a dual to ,1,$ta i
  and orthogonal  to ,2,$ta i

 , ,3,$ta i
 , 

and ,4,$ta i
 . Like wise  

          
3,

,2,
3,

ˆ i

wa i
i i

$
e

c e
,                       (18)              

             
2,

,3,
2,

ˆ i

wa i
i i

$
s

c s
,                     (19) 

       
4,

,4,
4,

ˆ i

wa i
i i ib

$
e

c b e
                (20) 

where 3,ie  is a unit vector which is perpendicular 

to both 1,is and ie  passing through point iC and 

4,ie  is a unit vector which is perpendicular to both 

1,is and ie passing through point iB  . Hence 

3, 4, 1,i i i ie e s e . 

Finally, with the thck  ( 1,2ck ) constraints 

provided by , ,
ˆ

cwc k i$  being sequentially released, 

the unit screw of restrictions, , ,
ˆ

ctc j i$  ( 1,2cj ), 

which is orthogonal to , ,
ˆ

awa k i$  ( 1,2, ,4ak  ) and 

,cwc k i,$̂  ( 1,2ck , c ck j ) except for , ,
ˆ

cwc j i$ , can 

be identified as 

,1,
ˆ i i

tc i
i

$
c s

s
,  ,2,

ˆ i i
tc i

i

$
c b

b
 

6. Jacobian Analyses  

 
Jacobian analysis relates the linear map between 

actuator rates and velocity twist of the end-

effector.. The Jacobian matrix ( J ) relates the two 

by: 

                            tJ$ q                                   (21) 

where t$ is the twist of the platform and q is the 

actuated joints rate. According Huang [2] for 

parallel manipulators the twist, t$ , of the platform 

to can be expressed as a linear combination of the 

basis elements of the twist space associated with 

the 
thi  limb, for 1,2,3i                                                 

, ,t ta tc ta i tc i$ $ $ $ $    

    

6

, , , , , , , ,

1 1

ˆ ˆ
k ki i

a j i ta j i c j i tc j ia a c c
j ja c

δρ δρ$ $     (22) 

where , ,
ˆ

ta j ia
$  and , ,

ˆ
tc j ic

$  are unit screw of thaj  

elements of the twist subspace of permissions and 

thcj  elements of the twist subspace of  restrictions 

respectively. , ,a j ia
δρ  and , ,cc j iδρ  are their 

respective intensity within the thi  limb.  

since ,1,
ˆ

wa i$  is the unit wrench of actuations 

associated with the actuated joint, labelled

1aj , in the thi  ( 1,2,3i ) limb. Note that 

,1,
ˆ

wa i$  is dual to ,1,
ˆ

ta i$  but orthogonal to , ,
ˆ

ta j ia
$  

( 1,2, ,4aj  , 1aj ) and , ,
ˆ

tc j ic
$  ( 1,2cj  ). 

Similarly, let , ,
ˆ

wc k ic
$  be the thck  unit wrench 

of constraints in the thi   limb. Also, note that 

, ,
ˆ

wc k ic
$  is orthogonal to , ,

ˆ
ta j ia

$  ( 1,2, ,4aj  ) 

and , ,
ˆ

tc j ic
$  ( 1,2cj , c cj k ) and dual to 

, ,
ˆ

tc k ic
$ . Thus, Taking inner products on both sides 

of equation (22) with ,1,$wa i
 and , ,$wc kc i

 , 

respectively gives 

T T
,1, ,1, ,1, ,1,

ˆ ˆ ˆ ˆ
wa i t a i wa i ta iδρ$ $ $ $ , 1,2,3i          (23) 

 T T
, , , , , , , ,

ˆ ˆ ˆ ˆ
wc k i t c k i wc k i tc k ic c c c

δρ$ $ $ $ , 1,2ck ,     (24) 

Therefore Eq.(21) and Eq.(22)  can be written as 

                    x t ρδ$J J ρ                                 (25)         

      xa
x

xc

J
J

J
, a

c

J 0
J

0 J
                     

The overall Jacobian matrix will be 

                 x
-1

J J J                                            (26)  

Hence  tJ$ q   

Where, ( )aq q 0
T T   1,1 1,2 1,3qa a a aq q q

T
         

Therefore substituting all the screws components of 

the generalized Jacobian for a linearly delta robot 

will be; 

1
1

2 2

3
3

1

2

3

ˆ
ˆ

ˆ ˆ

ˆ
ˆ

T

T

T

xa

c b
b

b c b

b
c b

J

T

T

T

,
1

2

3

1,1

1,2

1,3

ˆ 0
ˆ

ˆ0

a

b s

b s

b s

J

T

T

T
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3 1 3 1 3 1 3 1 3 1 3 1

1 1 21 2 2 22 3 3 23

0 0 0 0 0 0
xc s s s s s s s s s

J
T

     
1 21

2 22

3 23

1 0

1

1
0

c

s s

s s

s s

J  

From Eq. (26) we can see that the generalized 

Jacobian  matrix of a linearly actuated 3-DOF delta 

parallel manipulator will be a 9x6 matrix.   

7. Acceleration Analysis 

7.1. Acceleration analysis of a limb 

The formulae for expressing the angular 

acceleration, and the acceleration of an arbitrary 

point of the end effector of a serial chain have been 

developed by Rico and Duffy [6] [8]. Those 

formulae contained the direction and moment parts 

of the screws representing the kinematic pairs that 

join the end effector with the body, or link, 

employed as reference system. Here, the coordinate 

system must have the arbitrary point chosen as the 

origin. That same paper shows that if the angular 

velocity of the end effector, with respect to the 

reference system, vanishes, then the acceleration of 

an arbitrary point in the end effector can be 

expressed in a simpler form. In fact, the 

acceleration state of the rigid body can be written 

in terms of the screws, representing the kinematic 

pairs which join the end effector to the reference 

frame, together with their Lie products. 

As outlined in a recent work by Liu and Huang [5] 

acceleration analysis of a parallel manipulator can 

be best performed by the concept of a Lie bracket. 

Taking the variation of Eq. (22) and expressing the 

derivatives of screws in the form of Lie brackets 

yields 

     
2 $ , 1,2,3i i Li iA J                          (27) 

Where
2 2A r r

T
T

T
, 

        2 2 2
, ,i a i c i

T
T

T
 

T
2 2 2 2

, ,1, ,2, , ,ia i a i a i a n iδ δ ρ δ ρ δ ρρ   

T
2 2 2 2

, ,1, ,2, ,6 ,ic i c i c i c n iδ δ ρ δ ρ δ ρρ   

,1, ,1, ,2, ,2, ,6 , ,6 ,

,2, ,2, ,3, ,3, ,6 , ,6 ,

,5 , ,5 , ,6 , ,6 ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

i i

i i

i i i i

Li a i ta i a i ta i c n i tc n i

a i ta i a i ta i c n i tc n i

c n i tc n i c n i tc n i

δρ δρ δρ

δρ δρ δρ

δρ δρ

$ $ $ $

$ $ $

$ $







2δ r , 2δ α , 2
, ,aa j iδ ρ , and 2

, ,cc j iδ ρ  denote, 

respectively, the variation of δr , δα , , ,aa j iδρ , and 

, ,cc j iδρ . The bracket  in Li$  denotes the Lie 

product. From the properties of the Lie product, 

Li$  can also be written as  

              , , ,a i ac i c iLi$ $ $ $                           (28) 

where 

,1, ,2,, ,1, ,2,

,1, , ,,1, , ,

,2, ,3,,2, ,3,

,2, , ,,2, , ,

, 1, , ,, 1, , ,

$ $ $ ...

$ $

$ $ ...

$ $ ...

$ $

ii

ii

i ii i

ta i ta ia i a i a i

ta i ta k ia i a k i

ta i ta ia i a i

ta i ta k ia i a k i

ta k i ta k ia k i a k i

 

 

 

 

 

 

,1, ,1,, ,1, ,1,

,1, ,6 ,,1, ,6 ,

,2, ,1,,2, ,1,

,2, ,6 ,,2, ,6 ,

, , ,1,1,, ,

$ $ $

... $ $

$ $ ...

$ $ ...

$ $

ii

ii

ii

ta i tc iac i a i c i

ta i tc k ia i c k i

ta i tc ia i c i

ta i tc k ia i c k i

ta k i tcc ia k i

 

 

 

 

 
,

, , ,6 ,, , ,6 ,

...

$ $
i ii i

i

ta k i tc k ia k i c k i
 

 

,1, ,2,, ,1, ,2,

,1, ,6 ,,1, ,6 ,

,2, ,3,,2, ,3,

,2, ,6 ,,2, ,6 ,

,5 ,,5 , ,6 ,

$ $ $ ...

$ $

$ $ ...

$ $ ...

$

ii

ii

ii i

tc i tc ic i c i c i

tc i tc k ic i c k i

tc i tc ic i c i

tc i tc k ic i c k i

tc k ic k i c k i

 

 

 

 


,6 ,$

itc k i


 

Then equation (27) can be written as                  

   
2 , 1,2,3i i i i iA iJ H

T
               (29) 

Where , ,

,

a i ac i
i

c i

H H
H

0 H
, 
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,1, ,2, ,1, ,3, ,1, , ,

,2, ,3, ,2, , ,

,

, 1, , ,

0 $ $ $ $ $ $

0 0 $ $ $ $

0 0 0 $ $

0 0 0 0

i

i

i i

ta i ta i ta i ta i ta i ta k i

ta i ta i ta i ta k i

a i

ta k i ta k i

H

     

   

    
 



 

,1, ,2, ,1, ,3, ,1, ,6 ,

,2, ,3, ,2, ,6 ,

,

,5 , ,6 ,

0 $ $ $ $ $ $

0 0 $ $ $ $

0 0 0 $ $

0 0 0 0

i

i

i i

tc i tc i tc i tc i tc i tc k i

tc i tc i tc i tc k i

c i

tc k i tc k i

H

     

   

    
 



 

,1, ,2, ,1, ,6 ,

,

, , ,1, , , ,6 ,

$ $ $ $

$ $ $ $

i

i i i

ta i ta i ta i tc k i

ac i

ta k i tc i ta k i tc k i

H

   

  
   

 

iH is known as the Hessian matrix of the i
th

 limb. It 

is a three-dimensional matrix having six layers, 

each containing a upper triangular matrix 

where [* *] represent the Lie product between two 

elements of the Lie algebra e(3). The constituent 

parts of iH , 6
,

i i
k k

a i RH , 
6 6

,
i ik k

ac i RH  

and
6 6 6

,
i ik k

c i RH , are also three-

dimensional matrices having six layers.  

In acceleration analysis where only ideal motions 

of the platform are considered, replacements can be 

made in Eq. (29) such that 

T T
, , ,i a i c i i a iδ δ δ 0

T T
T T ρ ρ ρ θ θ , 

2 2 2
, , ,ii a i c i a iδ δ δ 0

T
T T T

T ρ ρ ρ θ θ  

2 2δ δ δ δ

TT
TT T T A r α r α A v ω v ω

Thus 

i i i i iJ H
T  A θ θ θ  ( 1,2,3)i                (30) 

and A becomes the accelerator of an DOFik limb 

with v and ω being the linear acceleration of the 

reference point and the angular acceleration of the 

platform respectively.  

7.2. Acceleration analysis of a parallel 

manipulator 

Following the same approach, the acceleration 

equation of a parallel manipulator is obtained by 

taking inner products on both sides of Eq. (30) with

,1,
ˆ

wa i$ and , ,
ˆ

cwc k i$  respectively [3], to give 

            J H
T  A q q q                                    (31) 

Where a= 0
T

T q q , ,1,1 ,1,2 ,1,3a a a aq q q
T

   q ,

,1,a iq is the acceleration of the actuated joint 

numbered 1 in the
thi limb. N N NRH (

1
( 6 )

f
ii

N f k is known as the Hessian 

matrix of an f-DOF parallel manipulator. It is a 

three dimensional matrix composed of

f N N
a RH and 1

6 i
f
i

k N N
c RH . The 

expression of th
( )a cU layer of ( )a cH  is given as 

follow: the th
aU  layer of aH ( 1,2,... )aU f ) and 

the th
cU  layer of cH  ( 1,2, ,6 ,ic kU   

1
, 6

f

ii
k )       

1

1 1 1

1 1

2

1

,

,1, ,2, ,1, ,3, ,1, ,6 ,

,2, ,3, ,2, ,6 ,

,5 , ,6 ,

*

0 $ $ $ $ $ $

0 0 $ $ $ $

0 0 0 $ $

0 0 0 0

n i

ta i ta i ta i ta i ta i ta ki i

ta i ta i ta i ta ki i

ta ki i ta ki i

m m m

m m

m

H

     

   

    
 



1

2

1

2

,1,

,1,

, ,

, ,

$
,

$
where

$
,

$
c

c

wa i

ta i

wc k i

tc k i

m
n a

m

m
n c

m









1

1 2

i

T

LP

m m

J
T

  2 i
LP

=J  

where,     
1 ,

,

J
J J J J

J
i

L
LP a i

i L
c i

,  

,1, ,1, ,1,

,

, , , , , ,

$ $ $

$ $ $
i i i

T T
wa i wa i ta i

L
a i

T T
wa k i wa k i ta k i

J

  


  

,  

,1, ,1, ,1,

,

,6 , ,6 , ,6 ,

$ $ $

$ $ $
i i

T T
wc i wc i tc i

L
c i

T T
wc k i wc ni i tc k i

J

  


  

 

Where,
+

J is the pseudo-inverse of J and the 

superscript L simply identifies that the matrix 

applies to a single limb.  

6 6
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Hence the inverse acceleration equation of a 

parallel manipulator will be derived from Eq. (31) 

        t t
T T

J $ J HJ$q A                                 (32) 

where ,a i 0 q q
T

T
1,1 1,2 1,3a a a   

T
q q q q  

The Hessian matrix, H , of the manipulator can 

be found by substituting the expressions just found 

for ,ata j i,$̂  ( 1,2, ,4aj  ), 1, 2,tc i tc iand$ $, ,
ˆ ˆ  and 

Jacobians 
LP
iJ  and J  into the expressions given 

above and then into Eq.(32) to give layers of H as 

follows 

Where  ,

1,

,

ˆa i

i

LP LP
i a i iJ L J

H
bi s
T

T

, 1,2,3i  

6 6

1,
,

2,

a i
a i

a i

M 0
L

0 M
,  

1, 2, 1, 2,

2 4

1,

0 0

0 0 0

i ii i i i

i i

a i

b b

b b b
M

 



s s s s
T T

T  

4 2

2,

0
0 0
0 0
0 0

i i i

a i

b e s

M

T

 

1, 1,i
LP LP
i ic c i

T

H J L J ,    1,2,3i  

2,

2,

1 21

c i

c i T
i

LP LP
i i

s s b

J L J
H



T

    1,2,3i  

1, 1,c i c iL 0 0 0 0 0 M  

2, 2,c i c iL 0 0 0 0 M 0  

2, 2,1,
ˆ ˆ0 0 0 0M i ii i i ic i b b b bs s

T T
T

 

2, 0 0 0 0T T
c i η η η ηM

T

 

   where, 2,i iη s s  

,a iH  ( 1, 2,&c i c iH H ) represents the thaK  ( thcK ) 

layer of aH  ( cH ). 

Numerical Example  

Let’s take the following numeric values for the 

dimensions of a linearly actuated delta robot, where 

c=0.2m, b=0.5m, t=0.05m, a=0.4m

1 20, 2 3, 3 4 3 , and the 

platform is assumed to have the following velocity 

and acceleration behaviour; 

x maxa =a cos( 2 t T ) y maxa =a sin( 2 t T ) ,  

maxa 1m s , z =1v m s ,  za =0 , T 5s ,  

x maxv =Ta sin( 2 t T )/2

y maxv =Ta cos( 2 t T )/2 .  

When the platform of the manipulator moves 

according to the preceding rules, in Fig. 3 and Fig. 

4 the  velocity and the acceleration of the actuated 

joints versus time can be evaluated using the 

proposed approach. These results are shown in Fig. 

5 and Fig. 6.  

 

Figure 3. Velocity of the moving platform    

 

Figure 4. Acceleration of the moving 
platform    
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Figure 5. Velocity of the three actuated 
joints 

 

Figure 6. Acceleration of the three actuated 
joints    

8. Conclusions 

This paper presents the inverse velocity and 

acceleration analyses of a linear delta parallel 

manipulators using a general and systematic 

approach based on screw theory. With this 

approach, the process of acceleration modelling is 

much simplified with help of the generalized 

Jacobian. It results in a new Hessian matrix for a 

linearly actuated delta parallel manipulator being 

developed in a general and compact form.  
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