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Abstract- In this paper few strategic approaches for short term
load forecasting has been investigated based on the data
collected from the meter dumps of concerned Electrical
Substations. The traditional methods of Load Forecasting has
been exploited to different sorts of algorithms to perform the
forecasting of an existing 11kV Feeder at every fifteen minutes
time interval based on the past meter dump data that was
made available by the MRT division of the concerned Utility.
Three types of the Algorithms namely, the traditional ARIMA
Model as Algorithm 1, An Independent Load Frequency Model
as Algorithm 2 and an Environment Dependent Independent
Load Frequency Model as Algorithm 3 are investigated with
equal number of samples from each. Finally based on the
obtained errors from these Algorithms a Generalized
Conclusion has been drawn.
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1. INTRODUCTION
The load is a non stationary process which is affected by
two main factors: time of the day and weather conditions[1].
The initial works on Short Term Load Forecasting are
recorded in 1971. The author, W.R. Christiaanse modeled
the Short Term Load as follows in equation-1.
X(t) =af(t) +e(t) (1)
Where a is a local constant, e(t) is the error and f(t) is
considered as the fitting function[2]. The weekly variations
in hourly loads are described as a cyclic function of time
with a period of one week. It was decided that a Fourier
series would be the most appropriate model which meets the
requirements for the fitting functions[2]. In 1989,
temperature is considered as the dependent variable for the
Prediction of Load[3]. The attempt of modeling the
behavior of Load temperature variation as a linear
relationship in Box Jenkins method can be eliminated and
replaced with the ARIMA model for better results[3]. A
nonlinear Hammerstein structure for modeling the load-
temperature relationship was introduced by Q. C. Lu, W. M.
Grady, M. M. Crawford, G. M. Anderson. The paper also
models a Linear Transfer Function and Noise Filter[3].
Introduction to a Smoothing Function was evolved which
came into picture after being multiplied with a Coefficient
Matrix for better prediction of Load[4].
Besides the mathematical modeling, the Research Area of
Load Forecasting has also witnessed a drastic change
towards implementation of intelligence. The introduction to
the intelligent approach steps into the research arena by
consideration of several seasonal factors and other consumer

behaviors. In 1990 the Paper published by E.H. Barakat,
M.A. Qayyum, M.N. Hamed, S.A. Al Rashed which is
based on Saudi Consolidated Electric Company considers
the effect of Ramadan month as a separate Load Model[5].
The holiday modeling is based on the initial assumption that
Loads in the Holidays are generally lower than other loads
[6]. The author in the paper [8] has segregated different type
of days to different type of data type. It has been
experimentally observed that Highest and Lowest
Temperature data are more sensitive than the Highest &
Lowest Humidity data in the concerned Load Domain. That
is the reason why only Temperature data is considered to be
the weather data. A Linear Regression based Curve fitting
Technigque has been adopted to estimate the effect of Load
on the Temperature variation. The feature of this Paper [8] is
that it has implemented a Knowledge based System. The
author have used PROLOG Program for the implementation
of the Algorithm which is made flexible with addition of a
flow chart that distinguishes the type of data and the type of
Analysis to be performed. It distinguishes whether day is a
special day, whether Typoon is present in that day or not,
whether it’s a new day, holiday etc. A Temperature
Humidity Index (THI) has been mentioned in the paper [9]
that describes human comfort as a function of warm
temperatures and relative humidity.

A formation of the regression model based on the paper [12]
uses updating linear polynomial, where the coefficients are
estimated by the least squares method with historical
exponential weight. The coefficients are updated every day.
An optimal structure of the simplified fuzzy inference that
minimizes model errors and the number of the membership
functions to grasp nonlinear behavior of power system
short-term loads has been proposed in [13].

The first glimpse of implementation of Neural Network in
the form of Reccurrent Neural Network to the Prediction
and Model of Short term Load has been presented by E.C.
Botha et. al. in [14]. The inputs to the recurrent neural
network can be the weather inputs like the temperature,
humidity and wind speed variation at hourly intervals. The
hourly peak demands of the Loads can also be predicted by
threshold auto regressive model as presented in [15].

A new method, Nonlinear Load Research based Estimation
(NLRE), is used in the paper [16] to derive monthly load
shapes by subdividing the category of customer class for
estimating the peak MW load on substations as a function of
total MWh usage by customer class, type of day, and month.
The properties of the load can be described in terms of a
multivariate probability density function (PDF) of load and
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is presented in [17], time and temperature are possibly other
factors.

A new approach to trend removal has been developed in
[18] based on optimal smoothing (sometimes referred to as
fixed interval smoothing). One hour ahead load forecasts
have been calculated for the Shcotland meso-scale system. It
is suggested that the best guide to the load value for a
particular hour of the day is the value of the load for the
same hour and day of the previous week i.e. the hourly
mean, 168 hours earlier[18].

Three practical techniques for very short-term load
forecasting have been proposed and discussed in the paper
[21]. Their performances are evaluated through a simulation
study. The preliminary study shows that it is feasible to
design a simple, satisfactory dynamic forecaster to predict
the very short-term load trends on-line. The performances of
FL-based and NN-based forecaster are much superior to the
one of AR-based forecaster. In this the researcher has
predicted the next 30-minute data.

Based on the recent trends of research of Short term Load
Forecasting it can be concluded that the Artificial
Intelligence methods like Neural Network outperforms the
conventional approach in terms of accuracy, with minimal
human intervention[23]. According to the paper [24] it
indicates that certain DNN architectures achieve greater
accuracy than traditional methods. Besides the Short term
forecasting when the results based on DNN for weekdays
and weekends were analyzed, we see that DNNs still
outperform traditional methods.

2. ARIMA MODEL OF LOAD FORECASTING
(ALGORITHM 1)

The mathematical model for the prediction of load for a time
interval t can be represented in the Equation-2.

p q
Yi = +zai Yii +Zﬂjgj 2
i1 -1

Where, Y, = the load at time interval t

Y,_; = the load at time interval t-i

&j =Y — Y, which is nothing but the error term of the

load series

p and g are the lengths of load ARIMA & error ARIMA
series which are determined based on the formula of auto-
correlation function as mentioned in Section 2.1.

o, = bias of ANN
a; = coefficient of load series updated by ANN

ﬂj = coefficient of error series updated by ANN

2.1. Determination of lengths of Load & Error Series
We know, Auto-correlation coefficients for a time series

X = [Xl, Xy Xn]with a time lag k can be determined
using the Equation-3.

1 n-k
R(k) =W§(Xt ) (X —1) @)

n = length of the series
u = mean of the time series
o = Standard Deviation of the time series

Using the above formula of Auto-correlation function n-1
number of auto-correlation coefficients can be generated for
a time series having n number of coefficients.

The length of the load ARIMA series (i.e. p) is nothing but
the nearest time lag which produces the minimum Auto-
correlation coefficient when Auto-correlation coefficients
are calculated for the Load Series. Similarly, the length of
the error ARIMA series (i.e. q) is nothing but the nearest
time lag which produces the minimum Auto-correlation
coefficient when Auto-correlation coefficients are calculated
for the Error Series.

2.2.
Series
The Coefficients of Load & Error Series are determined
based on the Approach of Artificial Neural Network
Training. Three types of Activation functions namely the
Linear Activation function, Unipolar Activation function &
Bipolar Activation function are used to update the
coefficients.

Determination of Coefficients of Load & Error

The Unipolar Activation Function used is of the form as
follows:

(]
f =
(X) eLX +1

Lx

(4)

The Bipolar Activation Function used is of the form as
follows:

®)
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The values of L & learning parameter C that gives the
minimum gross error during training will be used as the L &
C values of the Prediction model. The predicted Load based
on Algorithm 1 and the Actual Load is plotted in Fig. 1.
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Fig. 1. Load Comparison of a particular day based on Algorithm 1

3. ALGORITHM 2
In this algorithm the load of a day is assumed to be
Summation of many independent frequency loads of Square
wave nature.
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Fig. 2. Different Frequency Components of Load Variation based on
Algorithm 2

At the initial stage of this Algorithm the Fast Fourier
Transform is performed to analyze the system based on
variation of frequency components. A Sample picture of all
Independent frequency loads has been presented in Fig. 2.

The mathematical model for the prediction of load for a time
interval t can be represented in the Equation-6.

fol P Ok
Y :Z zaiLt—i(a}k)+ZﬂjEj(wk) (6)

k=1| i=1

L, (®,)is the vector of k" frequency component of a
particular day t-i in the Square wave load amplitude.

E; (@) is the error vector of the above load vector

Y, = the load at time interval t

a; = coefficient of load series updated by ANN
ﬂj = coefficient of error series updated by ANN
f = number of frequency terms

P, and q, are the lengths of load ARIMA & error ARIMA
series which are determined based on the formula of auto-
correlation function as mentioned in Section 2.1.

The coefficients of the load series & the error series are
determined in the similar manner as presented in the section
2.2.

The predicted values based on algorithm 2 are compared
with the actual values is presented in Fig. 3.
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Fig. 3. Load Comparison of a particular day based on Algorithm 2

4. ALGORITHM 3
In this algorithm the load of a day is assumed to be an
effective summation of effects of Independent Periodic
loads of varying frequencies and the environment variables.
Among all the environment variables only two are
considered here: one is the Temperature and the other is the
Humidity.

The mathematical model for the prediction of load for a time
interval t can be represented in the Equation-7.

y, = aX,(t)+ AH(t)+ AT (1) @
Y, = the load at time interval t

«a = Coefficient of load series updated by ANN

[ = Coefficient of Humidity Neuron Output updated by
ANN

A =Coefficient of Temperature Neuron Output updated by
ANN

X, (t) =Predicted load determined by the Algorithm 2
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H (t) = Humidity of the locality at the time interval t

T (t) = Temperature of the locality at the time interval t

The Load Prediction in Algorithm 3 is basically summation
of three components: the real load component, temperature
component and the Humidity Component. Algorithm 3
utilizes the predicted outputs of Algorithm 2 as its real load
prediction. The outputs of the hidden layer are assigned to
the vectors which are ultimately fed into the Outer layer.
The weights in between the hidden layer and outer layer are
initialized based on experimental calculations. Finally, the
Load prediction output is calculated based on these three
vectors and assigned to a prediction variable.
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Fig. 4. Load Comparison of a particular day based on Algorithm 3
5. CONCLUSIONS
Three different types of Algorithms are investigated and the [6]
Average of Root Mean Square Error (RMSE), Normalized
Root Mean Square Error (NRMSE) & R values for several o
iterations are presented in the Table I.
Table I: Algorithm Comparisons 8]
Algorithm RMSE NRMSE R
Algorithm 1 288.4203 0.5649 0.5861
Algorithm 2 213.4418 0.4846 0.5679
Algorithm 3 235.1597 0.5445 0.7356
From the Comparison following conclusions can be drawn: [9]
i Short term Load Forecasting with traditional
ARIMA model leads to least error with Bipolar Sigmoidal
Activation as Training Activation function and Unipolar (10]
Sigmoidal Activation as Prediction Activation function at
L=0.43 and ¢=0.53.
ii. Short Term Load Forecasting does not depend [11]
significantly on the environment parameter variation which
can be concluded from the observations drawn from the
Algorithm 3. (1]
iii. The best Method for Short Term Load Forecasting
is the method of “independent load Frequency Algorithm” [13]
or Algorithm 2 with Bipolar Sigmoidal Activation as
Training Activation function and Bipolar Sigmoidal
Activation as Prediction Load Activation function. The [14]
comparisons of the results of the three types of Algorithms
are presented in Fig. 5. [15]

Load comparisan based on Algorithms
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Fig. 5. Load Comparison based on all three Algorithms
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