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Abstract— The integration of advanced technologies into 

Electrical Vehicles (EV) has been increasing in recent times, so it 

has become crucial to evaluate the risk of the technologies that 

are deployed into it. Functional safety is something which is 

required in automobiles for ensuring safety of human lives. 

Battery Management System (BMS) chip is one such important 

component of EV which uses Serial Peripheral Interface (SPI) as 

a peripheral to communicate with external ICs to monitor 

battery state used in an EV. To get this chip functional safety 

certification, every block in on the chip should possess safety 

architecture around it and functional safety verification for the 

same should be done. This paper performs Failure Mode Effects 

and Diagnostic Analysis (FMEDA) based Fault Injection to 

validate the safety architecture of SPI as recommended by ISO 

26262. Diagnostic coverage of 97.2 % is achieved for the single 

point faults in the SPI block which makes it sufficient to achieve 

Single Point Fault Metric (SPFM) of 99% for the entire chip. 

 

Keywords— BMS, EV, FMEDA, Fault Injection, Functional 

Safety, ISO-26262, SPI, SPFM. 

I.  INTRODUCTION 

With advanced electronics bringing the automotive 

industry to higher levels, automotive Original Equipment 

Manufacturer (OEM)s require safety-certified semiconductors. 

The automation of E/E systems in the automobiles is evolving 

into a complex process which are designed to deliver many 

advanced features like electric power steering, ADAS, braking 

system, airbags and many more, these need safety assurance. 

Due to the incorporation of these cutting-edge technology into 

automobiles, it is now necessary for manufacturers to evaluate 

and examine the risk related to the technology they want to 

use. Functional safety is something which is required in 

automobiles for ensuring safety of human lives. Functional 

Safety (FuSa) is the idea that an overall system will continue 

to work reliably and as intended even if an unexpected event, 

occurs. Additionally, the systems guarantee that there is no 

unacceptable danger of physical harm or damage. Automotive 

features are possible because of the electronics that is going 

into that. This led to the requirement of FuSa semiconductor 

chips in the automotive industry. For System on Chip (SoC)s, 

especially as one moves into sub-micron designs, 

susceptibility becomes greater. High levels of safety can 

distinguish this product and change consumers opinions of it.  

BMS is one such SoC used in EVs which should meet 

functional safety standards. A BMS is any electronic system 

that controls a rechargeable battery's environment, protects the 

battery from running outside of its safe operating parameters, 

monitors the battery's condition, reports derived secondary 

data, balances, and authenticates the battery. Consider some 

scenarios where a BMS chip that doesn’t have the capability 

of measuring current. An external IC that measures current 

tries to send current data that needs to be fed to the BMS chip. 

Or, monitoring the voltages of battery cells. To send and/or 

receive information from one another, these ICs must be able 

to communicate with one another. So, communication 

protocols are vital for a BMS with multiple ICs to be able to 

communicate with each other. SPI is a protocol that provides 

an easy to implement and very low-cost interface between a 

micro-controller and its peripherals. The SPI protocol uses a 

serial clock that is generated by the master to synchronize the 

master and slave devices for transmissions and receptions. 

One device is considered the master of the bus (BMS is the 

master in this case) and all the other devices (peripheral ICs or 

even other micro-controllers) are considered as slave devices.  

A computed estimate of the rate of hazards caused by 

random hardware failures is required by ISO 26262. During 

the product development phase, hardware and software are 

actually developed by first trying to analyze the BMS at the 

system level, then at the component level, deriving the safety 

requirements from the functional safety concept, developing a 

system architecture, and defining safety mechanisms for 

failure detection and avoidance. Using an FMEDA, which 

identifies possible failure modes and the impacts of those 

failures on multiple system levels, it is typically the first step 

in comprehending system safety [2]. Faults, which can result 

in errors and failures later on, are where analysis begins. To 

ensure the safety requirements of ISO 26262, safety 

mechanisms are designed for every function in the BMS. SPI, 

a peripheral in a BMS has a safety architecture designed 

around it, a safety mechanism for every failure mode in the 

function. Any safety architecture designed for various 

purposes in automotive industry to meet the safety standards 

of highest level should be verified using fault injection. By 

introducing faults into a design and monitoring it to see how it 

reacts to a fault, the dependability of a design under test that 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS070103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 07, July-2022

178

www.ijert.org
www.ijert.org
www.ijert.org


can be evaluated using the fault injection technique. Digital 

fault injection runs on RTL/GLS (netlist) by injecting faults at 

each block’s input/output ports and internal nodes during top-

level verification. Injected faults are then checked whether 

they can be detected by safety mechanisms. Diagnostic 

coverage (DC) is a benchmark of the safety measure to detect 

dangerous failures which will be calculated for the SPI safety 

architecture. 

II. FUNCTIONAL SAFETY STANDARD 

International Electrotechnical Commission (IEC) 61508 is 

a single standard that addresses functional safety for all 

products and industries. The International Electrotechnical 

Commission has published a global standard that outlines 

techniques for using, designing, deploying, and maintaining 

safety-related technologies. Functional Safety of Electrical, 

Electronic, and Programmable Electronic Safety Related 

Systems (E/E/PE or E/E/PES) is the title of the document. IEC 

61508 is the fundamental Functional Safety standard, and it is 

applicable to all sectors. Despite the fact that this standard 

applies to all industries, each one has its own subtleties, which 

is why so many industries have created their own standards 

based on IEC 61508. The design under validation is a BMS 

which comes under the Automotive industry.  

A. ISO-26262 

A worldwide standard for the automotive industry that 

focuses on safety-critical systems is ISO 26262, which is 

mainly derived from IEC 61508. It is used for E/E systems, 

which include both hardware and software components, in 

automobiles. It outlines the requirements that must be met by 

the system's safety-relevant function as well as by the 

procedures, techniques, and tools used during the development 

process. As the automotive sector becomes more complex, 

more effort must be made to provide safety-compliant 

systems. The objective of ISO 26262 is to offer a single safety 

standard for all E/E systems in automobiles. Functional safety 

of the product is managed systematically by ISO 26262 at the 

system, hardware, and software levels during development. It 

features an automobile safety lifecycle that outlines every 

stage of production, from management to development to 

production to operation to service to decommissioning. 

Automobile Safety Integrity Levels (ASILs), which are used 

to establish the applicable standards of ISO 26262 in order to 

reduce unacceptable residual risk, this is further used as a 

distinctive risk-based approach for identifying risk classes for 

the automotive industry. Defines specifications for the 

architecture, design development, verification, integration, 

validation, and confirmation procedures to guarantee the 

achievement of an acceptable level of safety. 

B. Automotive Safety Integration Levels 

The ASIL is a vital component of ISO 26262 compliance. 

The system's design and development must adhere to the 

ASIL, which is determined at the start of the chip's 

development phases. The planned functionalities of the 

system are examined in light of any potential dangers. The 

estimation of this risk, based on a combination of the 

probability of exposure, the possible controllability by a 

driver, and the possible outcome’s severity if a critical event 

occurs, leads to the ASIL. Regardless of the technologies 

used in the system, the ASIL is exclusively dependent on the 

harm to the driver and other road users. Any safety 

requirement is assigned an ASIL rating of A, B, C, or D. 

Systems with a "D" are considered to be the most safety-

critical and are subject to the strictest testing standards, while 

processes with a "A" are considered to be the least safety-

critical. The minimum testing criteria are outlined in the ISO 

26262 standard. This makes picking the testing methods 

simpler. Based on the ASIL level, the Single Point Fault 

Metric (SPFM), Latent Fault Metric (LFM), and Probabilistic 

Metric for Hardware Failure (PMHF) should all be computed 

and further met, as shown in Table I. 

TABLE I.  TARGET VALUES FOR HARDWARE 

ARCHITECTURAL METRICS FOR EACH ASIL 

 

ASIL SPFM LFM PMHF 

A 

Not 

Relevant 

Not 

Relevant <1000FIT 

B ≥90% ≥60% <100FIT 

C ≥97% ≥80% <100FIT 

D ≥99% ≥90% <10FIT 

 

SPFM measures how safety is the system towards Single 

Point Faults (SPF) and Residual Faults (RF), higher the 

SPFM better is the safety. For example, if SPI receives 

corrupted data, if not detected, will always lead to incorrect 

outputs and surely result in a critical situation. For ASIL D, 

the SPFM of 99% should be achieved, in simple terms over 

99% of Single Point Faults should be detected. SPFM can be 

calculated as weighted average of diagnostic coverage 

calculated for SPFs of each block on chip under 

consideration. The weights are directly proportional to the 

area occupied by the block on the chip. Latent-fault Metric 

measures how safety is the system towards Multi Point Faults 

(MPF) faults, higher the LFM better is the safety. For ASIL 

D, over 90% of MPF should be detected and mitigated. 

Probabilistic Metric for random Hardware Failures is the 

average probability of failure of system per hour throughout 

the operational lifetime of the system. For ASIL D, PMHF of 

≤ 10 FIT should be achieved. Where, the failures-in-time 

(FIT) rate is determined by the number of random failures 

that can be expected to happen in one billion (109) device-

hours of operation [1].  

 

This paper focuses on performing functional safety 

verification of SPI by estimating the safeness of the design at 

SoC level, to meet FuSa standards in accordance with 

ISO26262:2018. At the top-level targets to achieve ASIL D. 

Here, to achieve this level a DC of SPFs of greater than 97% 

should be achieved, the value is decided based on the 

weighted average formula used for the calculation of SPFM, 

based on this there are industry standard tools available, 

which calculates LFM and PMHF. To define verification 

procedure some of the clauses of ISO 26262:2018 adopted: 

1. Clause 7.4.3 of ISO 26262-5:2018 - Safety analyses of 

the hardware design to identify the causes of failures 

and the effects of faults shall be applied by performing 

deductive and inductive analysis. 
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2. Clause 7.4.4 of ISO 26262-5:2018 - The hardware 

design shall be verified by using hardware design 

verification methods like hardware design walk-

through, inspection and simulation in accordance with 

Clause 7.4.3 of ISO 26262-5:2018 to fulfill the safety 

related special characteristics to achieve functional 

safety during production and service [3]. 

3. Clause 7.4.5 of ISO 26262-5:2018 - Safety related 

special characteristics shall be specified if safety 

analysis has shown these characteristics to be relevant. 

4. Clause 4.8.1 of ISO 26262-5:20182-11:2018 - Fault 

injection at the semiconductor component level is a 

known methodology which can be used to support 

several activities of the lifecycle when the safety 

concept involves semiconductor components [4]. 

5. Clause 4.8.2 of ISO 26262-11:2018 - Characteristics 

or variables of fault injection that help the verification 

planning [4]. 

6. Clause 4.8.3 of ISO 26262-11:2018 - Results of fault 

injection can be used to verify the safety concept and 

the underlying assumptions as listed in Clause 4.8.1 of 

ISO 26262-11:2018 (e.g., the effectiveness of the 

safety mechanism, the diagnostic coverage and 

number of safe faults) [4].  

7. Clause 5.1.10 of ISO 26262-11:2018 - Verification 

using fault injection simulation can be used for both 

permanent and transient faults. Fault injection 

utilizing design models can be successfully used to 

assist in verification of safe faults and computation of 

their amount and failure mode coverage. Injecting 

faults and utilizing well-specified observation points 

to determine if the fault caused a measurable effect. 

Moreover, it can be used to assist the computation and 

to verify the values of failure mode coverage. 

injecting faults that were able to cause a measurable 

effect and determining if those faults were detected or 

controlled by the safety mechanisms within the 

maximum fault handling time interval [4]. 

C. Fault Injection Terminologies: 

Fault injection is an integral step and valuable technique 

for functional safety verification. This paper, which is an 

automotive application, with a particular focus on the 

simulation-based fault injection platform. Simulation Based 

Fault Injection is an automated fault injected simulation is 

used to mimic” in the field faults” to verify the safety 

architecture. With the system Verilog, the random fault 

injection simulation platforms can implement fault models 

such as: Stuck at 0, Stuck-at 1 and Bit flip, and insert them 

randomly into the design to analyze fault coverage. By 

performing fault injection, a wrong output signal is/ are 

produced which is an error, which will further lead to a 

failure. The simulation-based fault injection environment 

consists of a Fault Injector, Fault Library, Controller and data 

analyzer. 

In simulation-based fault injection faults can be modelled 

as permanent and transient faults. A permanent fault is a 

persistent failure, such as a short circuit between wires, pins, 

or tracks which continues to exist until the faulty component 

is repaired or replaced. Real world examples of permanent 

faults include disk head crashes, software bugs, and burnt-out 

power supplies. Permanent fault that continues to exist within 

a system until that error is fixed or repaired. In simulation-

based fault injection further, permanent faults can be modelled 

in two different ways: 

1. Stuck at 0 or SA0: Forcing a signal value to be 0 from 

the start of fault injection to the end of simulation. 

2. Stuck at 1 or SA1: Forcing a signal value to be 1 from 

the start of fault injection to the end of simulation. 

 

A transient fault is a fault that is no longer present if 

power is disconnected for a short time and then restored or 

which are seen for short time. In simulation-based fault 

injection further, transient faults can be modelled in two 

different ways: 

1. Single Event Upset or SEU: this model inverts the 

value of the output of a sequential element and holds 

the modified value it is assigned a new value. This 

fault model can be applied on the outputs of sequential 

elements such as memories, flipflops and latches. 

2. Single Event Transient or SET: this model inverts the 

value of a signal and holds the modified value for a 

specified period of time. This fault model can be 

applied to any kind of signal, such as nets or registers. 

 

In fault injection campaign multiple fault injection runs 

are executed to generate safety metrics. Every fault injection 

simulation run performs good simulation and fault 

simulation. Good simulation is the initial simulation that you 

must run to generate reference values for fault injection and 

fault simulation is the subsequent simulation that classifies 

any faults injected into the design. In this process to capture 

reference values for observation points (that are defined 

before the good simulation) during the good simulation run. 

These observation points help to better classify injected faults 

at one or more nets/nodes. 

1. Functional Strobes: All the primary outputs in the 

design under consideration will be used to detect 

whether a fault injected on a node/port causes 

functional failure. 

2. Checker strobes: These are the outputs which will be 

used to detect whether a fault injected on a node/port is 

detected by safety mechanism. All the outputs of the 

safety mechanisms are checker strobes. 

 

Functional and checker strobes are required to categorize 

the injected faults. Fault propagating to Functional strobes are 

dangerous and Fault propagating to Checker strobes are 

detected. The injected faults can be classified into following 

ways: 

1. Dangerous and Detected (DD): Any injected fault 

propagates to both functional strobe and checker 

strobe is considered to be DD. If a fault is classified as 

DD, then, safety architecture is able to detect 

dangerous faults. 

2. Dangerous and Undetected (DU): Any injected fault 

propagates to only functional strobe but not checker 

strobe is considered to be DU. If a fault is classified as 

DU, then, safety architecture is not able to detect 

dangerous faults. 
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3. Unobserved and Detected (DU): Any injected fault 

propagates to only checker strobe but not functional 

strobe is considered to be UD. If a fault is classified as 

UD, then, safety architecture is more cautious. 

4. Unobserved and Undetected (UU): Any injected fault 

does not propagate to any functional strobe and 

checker strobe is considered to be UU. If a fault is 

classified as UU, then, this is due to lack of stimuli, on 

providing proper stimuli may end up as 

DDs/DUs/UDs. 

Diagnostic coverage is a benchmark of the safety measure 

to detect dangerous failures. It can be expressed as: 

 

III. SAFETY ARCHITECTURE AND ITS FSV 

A. SPI Safety Architecture. 

A single-master communication protocol is known as SPI. 

This implies that just one device begins communications with 

other slave devices. It is a high-speed synchronous serial IO 

port that shifts the length of a serial bit stream (data) and 

transfers or receives it at a programmed bit-transfer rate. The 

serial clock is activated at a clock frequency that may be 

controlled by both the master and slave when the SPI master 

wants to send data to a slave. The slave makes the selection by 

pushing the corresponding slave selection line low. SPI can 

support duplex communication between the master and its 

peripheral devices because the master generates data onto the 

MOSI line while sampling the MISO line. It is crucial to 

remember that for a communication to work, a master and 

slave pair must employ the same set of parameters, such as the 

SCLK frequency, CPOL, and CPHA. Status, control, and data 

registers, shifter logic, a baud rate generator, master/slave 

control logic, and port control logic make up the majority of 

the SPI design. The SPI designed is extremely similar to the 

one detailed in Motorola, Inc.'s SPI block guide. 

In the safety concept, functional safety requirements are to 

be defined for the SPI design at system level. Functional 

Safety Requirement of SPI is to have data loss protection 

through SPI path (both transmit and receive) which needs to 

be functionally safe and protected from malfunctions. The 

data flow through BMS can happen either from the external 

IC into BMS SPI or from BMS internal storage to external IC 

through BMS SPI. Any fault in SPI path that could lead to 

functional failures that could violate the functional safety 

requirement are mentioned in FMEDA. Any fault in SPI, its 

configuration / mode selection, I/O pins may lead to data 

integrity, authenticity, timeliness (e.g., data transfer initiation 

and completion) and configuration errors. Also, any fault in 

interrupt generation, recognition and servicing may show in an 

inability to recognize events and modify the signal flow which 

results in failures in data acquisition, transmission and 

processing. So, safety mechanisms should be designed in 

order to protect functional safety requirement that is defined. 

B. SPI FMEDA 

 Firstly, FMEDA is performed by asking the questions” 

What are we trying to avoid??” and” How can it occur??” and 

also adds a “Diagnostic” section by asking the question 

beyond “what can go wrong??”. FMEDA includes analysis of 

diagnostic coverage to identify failure mode that has potential 

to violate safety goal in absence of safety mechanism and then 

identify the safety mechanism that prevent the failure mode 

from violating the safety goal. After the netlist is available, 

FMEDA at block level is done which helps in 

implementations of these mechanisms in order to detect all the 

failure modes at bottom level. The objective is to calculate the 

failure mode coverage wrt safety goal violation. Functional 

analysis forms the basis for FMEDA.  

 

TABLE II.  SPI FMEDA 

Failure Modes Malfunction Safety mechanisms 

Transmit shift register, which holds the latest data to be transmitted to external 
device. 

Data corruption CRC Check on data. 

Receive shift register, which holds the latest of data received from external 

device. 

Data corruption CRC Check on data. 

Clock selection logic, select the clock polarity and phase based on 
CPOL/CPHA configuration or master/slave modes. 

Wrong decode of clock selection Register toggle verification 

Data transfer type logic, which selects the data to be transmitted with 

LSB/MSB bit first. 

Wrong data transmission. CRC Check on data and Register 

toggle verification 

Interrupt generation logic, which enables SPI interrupt requests upon 
corresponding flag bits set in status register. 

Wrong interrupt being serviced or interrupt 
may not be serviced. 

Interrupt count and Register toggle 
verification 

Protocol generation logic, generates SPI protocol signals: SCLK, SS. Wrong protocol signals generated Timeliness check and CRC check in 

external device. 

SPI state machine, provides control signals to shift registers and transfers & 
Wrong control signals generated and state machine is corrupted 

Wrong control signals generated and state 
machine is corrupted 

Timeliness check and CRC check 
on data. 

Input/Output enable controls, provides IO control to SPI ports. Incorrect IO control - MISO, MOSI, SCLK 

and SS. 

Timeliness check. 

IV. IMPLEMENTATION 

A. Safety Mechanisms 

Safety mechanisms are on-chip features that detect and 

mitigate or make the design tolerate faults and report them 

when they are detected These can be pure hardware, pure 

software or hybrid. The safety mechanisms proposed during 

the design phase to protect SPI from failures are purely 

software safety mechanisms. After performing FMEDA at 

block level these mechanisms are implemented in order to 

detect all the failure modes at bottom level. These have to 

be implemented in parallel when SPI operations are 

happening. The proposed safety mechanisms are: 

1. CRC check on the data: CRC provides error 

detection on serial interfaces as data moves across 
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chips. Detects faults that lead to any mismatch in 

the expected data.  

2. Interrupt Count and timeliness check: Detects any 

missing or spurious interrupts resulting random 

failures in interrupt generation. 

3. Register toggle verification: Detects faults leading 

to incorrect configuration that cause incorrect data 

transfers 

B. Simulation based fault Injection 

 To support functional safety verification, Cadence 

vManager Safety Client is used to automate fault injection 

campaign using well-defined flows. By using input files, 

one can drive both the safety client and the internal core 

engine running within the client, the Xcelium Fault 

Simulator. The input files are, configuration file that defines 

the overall parameters, the fault list that identifies targets for 

fault instrumentation, the fault list that identifies targets for 

fault instrumentation, the test list that specifies one or more 

tests to run in a single session and other script files required 

for running a campaign.  

 The vManager Safety Client supports various campaign 

flow types, the ones used are serial and concurrent. In 

Serial: flows the injection of one fault during a fault 

simulation run (i.e., the next fault can be injected after the 

run is closed and reopened). Number of fault simulations is 

equal to the number of faults to be injected, which is a 

disadvantage in this flow and consumes more CPU memory 

because of large number of simulations. In Concurrent flow, 

injection of multiple faults per run for the fault simulation 

session. Advantage of this flow is it is a throughput solution 

where multiple faults are injected and simulated together 

and also simulate good and fault simulation simultaneously. 

Tool keeps a list of faulty values along with good value at 

every node in the circuit. Disadvantage of this flow is, the 

hyperactive faults, which cause very large number of 

simulation events will not propagate to their respective 

observation point(s). Such faults are flagged in the fault 

database for concurrent simulations as Not Simulatable 

(NS). Also, if faulty simulation doesn’t converge within the 

time good simulation value is calculated then the faults are 

reported as DU. 

 For the SPI block all the functional outputs are defined 

as functional strobes – MISO, MOSI, SCLK, SS and 

corresponding input & output enables. All the safety 

mechanism outputs are defined as checker strobes – CRC 

check, timeliness check, register toggle configuration check 

and interrupt count and timing check. All the test cases 

implemented for various SPI operating modes with safety 

mechanisms. Fault instrumentation of the SA0 and SA1 

fault types for all cell ports in SPI netlist and these are 

injected at 80ns after simulation started and timeout factor 

of 10 is given, this means fault simulation should be 

executed maximum up to 10 times the good simulation 

time. 

V. RESULTS AND DISCUSSIONS 

A. Concurrent Run 

 The concurrent simulation is done considering group 

size of 2000, this indicates for multiple faults injected and 

simulated are restricted to 2000 per group. A total of 9702 

faults can be instrumented into the design out of which 119 

were reported safe after structural analysis, 9583 as testable 

out of which 6264 are prime faults. After fault simulation is 

completed a session report is generated, shown in figure I, 

DC of 83.84 % is achieved. 

 

FIGURE I           CONCURRENT SIMULATION LOG 

B. Serial Run 

 Though concurrent flow is a throughput solution it has 

many disadvantages as mentioned earlier in this paper. So, 

the fault nodes which are reported as DU’s in the previous 

run are extracted and given as input to serial run in fault list 

file. After fault simulation is completed a session report is 

generated, shown in figure II, DC of 93.57 % is achieved 

after merging the concurrent and serial run results. 

 

C. DU Analysis 

 The obtained DC is not sufficient and has to be 

improved, this can be done by reducing number of faults 

that are reported as DU. To do this a detailed DU analysis 

for every node that is reported has to carried out and which 

is possible only with the good understanding of the 

architectural design, and find a way to detect them or 

classify them as safe, even though they disturb the 

functional strobes but have no safety violation. vManager 

safety client also supports debugging ways through which 

the reported DU’s can be rerun with waves, this helps in 

comparing good simulation waves with fault simulation 

waves, when is the injected fault effecting different signals 

and logic blocks of the SPI.  

 To achieve the targeted ASIL D, diagnostic coverage of 

97.2 % is achieved for the single point faults in the SPI 

block by performing detailed DU analysis and moving them 

to DD category by identifying the detection mechanism or 

to safe category by analyzing the effect of the fault, which 

makes it sufficient to achieve SPFM of 99% for the entire 

chip. 
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VI. CONCLUSIONS 

Based on the FMEDA, safety mechanisms are 

implemented and simulation based digital fault injection is 

performed for safety mechanisms (diagnostics) verification 

using vManager safety client. Here, permanent faults at 

every cell port of the netlist are injected, set of functional 

and checker strobes are defined which classify faults as 

DD, DU, UD, UU and Safe. Both serial and concurrent 

flows supported by the tool were used to achieve a 

diagnostic coverage of 93.5% for the total 9702 

instrumented faults, with 6047 reported as DD and 414 

reported as DU. To achieve the targeted ASIL D, 

diagnostic coverage of 97.2 % is achieved for the single 

point faults in the SPI block by performing detailed DU 

analysis and moving them to DD category by identifying 

the detection mechanism or to safe category by analyzing 

the effect of the fault, which makes it sufficient to achieve 

SPFM of 99% for the entire chip. 

VII. FUTURE SCOPE 

Based on the challenges faced to complete the functional 

safety verification faster, there are some ways possible to 

achieve the same results in the less time frame and 

recommendations for other designs [5][6]. 

1. Running a concurrent run and then extracting the 

fault list to run serial run involves more time for 

setup creation and execution. So, a hybrid flow can 

be created by asking the tool vendor to run 

concurrent and serial campaigns simultaneously 

with the single setup and internally extract the fault 

list for serial run as soon as concurrent run reports a 

fault as NS and DU. Then generated a merged data 

report which saves a lot of execution time. 

2. For more complex designs, having > 40,000 faults, 

performing fault injection on all possible faults is 

not a good way, rather sampling method should be 

used where tool randomly injects faults in the 

design for the specified value. Then analyze the 

results for the fewer faults and modify the test cases 

to achieve desired DC for this set of faults. Perform 

this for 2 to 3 iterations, usually the DC value will 

converge. 

3. To perform the DU analysis faster, formal methods 

can be used to know the stimuli for which the fault 

injected can be detected or classified as safe.  
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