
FMEDA based Fault Injection to Validate Safety

Architecture of SPI

Vinod Sai E
Department of Electronics and Communication

R V College of Engineering

Bengaluru, India.

Praneeth Uddagiri
Staff Design Verification Engineer

Analog Devices, Inc.

Bengaluru, India.

Namita Palaeha
Assistant Professor

Department of Electronics and Communication

R V College of Engineering

Bengaluru, India.

Abstract— The integration of advanced technologies into

Electrical Vehicles (EV) has been increasing in recent times, so it

has become crucial to evaluate the risk of the technologies that

are deployed into it. Functional safety is something which is

required in automobiles for ensuring safety of human lives.

Battery Management System (BMS) chip is one such important

component of EV which uses Serial Peripheral Interface (SPI) as

a peripheral to communicate with external ICs to monitor

battery state used in an EV. To get this chip functional safety

certification, every block in on the chip should possess safety

architecture around it and functional safety verification for the

same should be done. This paper performs Failure Mode Effects

and Diagnostic Analysis (FMEDA) based Fault Injection to

validate the safety architecture of SPI as recommended by ISO

26262. Diagnostic coverage of 97.2 % is achieved for the single

point faults in the SPI block which makes it sufficient to achieve

Single Point Fault Metric (SPFM) of 99% for the entire chip.

Keywords— BMS, EV, FMEDA, Fault Injection, Functional

Safety, ISO-26262, SPI, SPFM.

I. INTRODUCTION

With advanced electronics bringing the automotive

industry to higher levels, automotive Original Equipment

Manufacturer (OEM)s require safety-certified semiconductors.

The automation of E/E systems in the automobiles is evolving

into a complex process which are designed to deliver many

advanced features like electric power steering, ADAS, braking

system, airbags and many more, these need safety assurance.

Due to the incorporation of these cutting-edge technology into

automobiles, it is now necessary for manufacturers to evaluate

and examine the risk related to the technology they want to

use. Functional safety is something which is required in

automobiles for ensuring safety of human lives. Functional

Safety (FuSa) is the idea that an overall system will continue

to work reliably and as intended even if an unexpected event,

occurs. Additionally, the systems guarantee that there is no

unacceptable danger of physical harm or damage. Automotive

features are possible because of the electronics that is going

into that. This led to the requirement of FuSa semiconductor

chips in the automotive industry. For System on Chip (SoC)s,

especially as one moves into sub-micron designs,

susceptibility becomes greater. High levels of safety can

distinguish this product and change consumers opinions of it.

BMS is one such SoC used in EVs which should meet

functional safety standards. A BMS is any electronic system

that controls a rechargeable battery's environment, protects the

battery from running outside of its safe operating parameters,

monitors the battery's condition, reports derived secondary

data, balances, and authenticates the battery. Consider some

scenarios where a BMS chip that doesn’t have the capability

of measuring current. An external IC that measures current

tries to send current data that needs to be fed to the BMS chip.

Or, monitoring the voltages of battery cells. To send and/or

receive information from one another, these ICs must be able

to communicate with one another. So, communication

protocols are vital for a BMS with multiple ICs to be able to

communicate with each other. SPI is a protocol that provides

an easy to implement and very low-cost interface between a

micro-controller and its peripherals. The SPI protocol uses a

serial clock that is generated by the master to synchronize the

master and slave devices for transmissions and receptions.

One device is considered the master of the bus (BMS is the

master in this case) and all the other devices (peripheral ICs or

even other micro-controllers) are considered as slave devices.

A computed estimate of the rate of hazards caused by

random hardware failures is required by ISO 26262. During

the product development phase, hardware and software are

actually developed by first trying to analyze the BMS at the

system level, then at the component level, deriving the safety

requirements from the functional safety concept, developing a

system architecture, and defining safety mechanisms for

failure detection and avoidance. Using an FMEDA, which

identifies possible failure modes and the impacts of those

failures on multiple system levels, it is typically the first step

in comprehending system safety [2]. Faults, which can result

in errors and failures later on, are where analysis begins. To

ensure the safety requirements of ISO 26262, safety

mechanisms are designed for every function in the BMS. SPI,

a peripheral in a BMS has a safety architecture designed

around it, a safety mechanism for every failure mode in the

function. Any safety architecture designed for various

purposes in automotive industry to meet the safety standards

of highest level should be verified using fault injection. By

introducing faults into a design and monitoring it to see how it

reacts to a fault, the dependability of a design under test that

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS070103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 07, July-2022

178

www.ijert.org
www.ijert.org
www.ijert.org

can be evaluated using the fault injection technique. Digital

fault injection runs on RTL/GLS (netlist) by injecting faults at

each block’s input/output ports and internal nodes during top-

level verification. Injected faults are then checked whether

they can be detected by safety mechanisms. Diagnostic

coverage (DC) is a benchmark of the safety measure to detect

dangerous failures which will be calculated for the SPI safety

architecture.

II. FUNCTIONAL SAFETY STANDARD

International Electrotechnical Commission (IEC) 61508 is

a single standard that addresses functional safety for all

products and industries. The International Electrotechnical

Commission has published a global standard that outlines

techniques for using, designing, deploying, and maintaining

safety-related technologies. Functional Safety of Electrical,

Electronic, and Programmable Electronic Safety Related

Systems (E/E/PE or E/E/PES) is the title of the document. IEC

61508 is the fundamental Functional Safety standard, and it is

applicable to all sectors. Despite the fact that this standard

applies to all industries, each one has its own subtleties, which

is why so many industries have created their own standards

based on IEC 61508. The design under validation is a BMS

which comes under the Automotive industry.

A. ISO-26262

A worldwide standard for the automotive industry that

focuses on safety-critical systems is ISO 26262, which is

mainly derived from IEC 61508. It is used for E/E systems,

which include both hardware and software components, in

automobiles. It outlines the requirements that must be met by

the system's safety-relevant function as well as by the

procedures, techniques, and tools used during the development

process. As the automotive sector becomes more complex,

more effort must be made to provide safety-compliant

systems. The objective of ISO 26262 is to offer a single safety

standard for all E/E systems in automobiles. Functional safety

of the product is managed systematically by ISO 26262 at the

system, hardware, and software levels during development. It

features an automobile safety lifecycle that outlines every

stage of production, from management to development to

production to operation to service to decommissioning.

Automobile Safety Integrity Levels (ASILs), which are used

to establish the applicable standards of ISO 26262 in order to

reduce unacceptable residual risk, this is further used as a

distinctive risk-based approach for identifying risk classes for

the automotive industry. Defines specifications for the

architecture, design development, verification, integration,

validation, and confirmation procedures to guarantee the

achievement of an acceptable level of safety.

B. Automotive Safety Integration Levels

The ASIL is a vital component of ISO 26262 compliance.

The system's design and development must adhere to the

ASIL, which is determined at the start of the chip's

development phases. The planned functionalities of the

system are examined in light of any potential dangers. The

estimation of this risk, based on a combination of the

probability of exposure, the possible controllability by a

driver, and the possible outcome’s severity if a critical event

occurs, leads to the ASIL. Regardless of the technologies

used in the system, the ASIL is exclusively dependent on the

harm to the driver and other road users. Any safety

requirement is assigned an ASIL rating of A, B, C, or D.

Systems with a "D" are considered to be the most safety-

critical and are subject to the strictest testing standards, while

processes with a "A" are considered to be the least safety-

critical. The minimum testing criteria are outlined in the ISO

26262 standard. This makes picking the testing methods

simpler. Based on the ASIL level, the Single Point Fault

Metric (SPFM), Latent Fault Metric (LFM), and Probabilistic

Metric for Hardware Failure (PMHF) should all be computed

and further met, as shown in Table I.

TABLE I. TARGET VALUES FOR HARDWARE

ARCHITECTURAL METRICS FOR EACH ASIL

ASIL SPFM LFM PMHF

A

Not

Relevant

Not

Relevant <1000FIT

B ≥90% ≥60% <100FIT

C ≥97% ≥80% <100FIT

D ≥99% ≥90% <10FIT

SPFM measures how safety is the system towards Single

Point Faults (SPF) and Residual Faults (RF), higher the

SPFM better is the safety. For example, if SPI receives

corrupted data, if not detected, will always lead to incorrect

outputs and surely result in a critical situation. For ASIL D,

the SPFM of 99% should be achieved, in simple terms over

99% of Single Point Faults should be detected. SPFM can be

calculated as weighted average of diagnostic coverage

calculated for SPFs of each block on chip under

consideration. The weights are directly proportional to the

area occupied by the block on the chip. Latent-fault Metric

measures how safety is the system towards Multi Point Faults

(MPF) faults, higher the LFM better is the safety. For ASIL

D, over 90% of MPF should be detected and mitigated.

Probabilistic Metric for random Hardware Failures is the

average probability of failure of system per hour throughout

the operational lifetime of the system. For ASIL D, PMHF of

≤ 10 FIT should be achieved. Where, the failures-in-time

(FIT) rate is determined by the number of random failures

that can be expected to happen in one billion (109) device-

hours of operation [1].

This paper focuses on performing functional safety

verification of SPI by estimating the safeness of the design at

SoC level, to meet FuSa standards in accordance with

ISO26262:2018. At the top-level targets to achieve ASIL D.

Here, to achieve this level a DC of SPFs of greater than 97%

should be achieved, the value is decided based on the

weighted average formula used for the calculation of SPFM,

based on this there are industry standard tools available,

which calculates LFM and PMHF. To define verification

procedure some of the clauses of ISO 26262:2018 adopted:

1. Clause 7.4.3 of ISO 26262-5:2018 - Safety analyses of

the hardware design to identify the causes of failures

and the effects of faults shall be applied by performing

deductive and inductive analysis.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS070103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 07, July-2022

179

www.ijert.org
www.ijert.org
www.ijert.org

2. Clause 7.4.4 of ISO 26262-5:2018 - The hardware

design shall be verified by using hardware design

verification methods like hardware design walk-

through, inspection and simulation in accordance with

Clause 7.4.3 of ISO 26262-5:2018 to fulfill the safety

related special characteristics to achieve functional

safety during production and service [3].

3. Clause 7.4.5 of ISO 26262-5:2018 - Safety related

special characteristics shall be specified if safety

analysis has shown these characteristics to be relevant.

4. Clause 4.8.1 of ISO 26262-5:20182-11:2018 - Fault

injection at the semiconductor component level is a

known methodology which can be used to support

several activities of the lifecycle when the safety

concept involves semiconductor components [4].

5. Clause 4.8.2 of ISO 26262-11:2018 - Characteristics

or variables of fault injection that help the verification

planning [4].

6. Clause 4.8.3 of ISO 26262-11:2018 - Results of fault

injection can be used to verify the safety concept and

the underlying assumptions as listed in Clause 4.8.1 of

ISO 26262-11:2018 (e.g., the effectiveness of the

safety mechanism, the diagnostic coverage and

number of safe faults) [4].

7. Clause 5.1.10 of ISO 26262-11:2018 - Verification

using fault injection simulation can be used for both

permanent and transient faults. Fault injection

utilizing design models can be successfully used to

assist in verification of safe faults and computation of

their amount and failure mode coverage. Injecting

faults and utilizing well-specified observation points

to determine if the fault caused a measurable effect.

Moreover, it can be used to assist the computation and

to verify the values of failure mode coverage.

injecting faults that were able to cause a measurable

effect and determining if those faults were detected or

controlled by the safety mechanisms within the

maximum fault handling time interval [4].

C. Fault Injection Terminologies:

Fault injection is an integral step and valuable technique

for functional safety verification. This paper, which is an

automotive application, with a particular focus on the

simulation-based fault injection platform. Simulation Based

Fault Injection is an automated fault injected simulation is

used to mimic” in the field faults” to verify the safety

architecture. With the system Verilog, the random fault

injection simulation platforms can implement fault models

such as: Stuck at 0, Stuck-at 1 and Bit flip, and insert them

randomly into the design to analyze fault coverage. By

performing fault injection, a wrong output signal is/ are

produced which is an error, which will further lead to a

failure. The simulation-based fault injection environment

consists of a Fault Injector, Fault Library, Controller and data

analyzer.

In simulation-based fault injection faults can be modelled

as permanent and transient faults. A permanent fault is a

persistent failure, such as a short circuit between wires, pins,

or tracks which continues to exist until the faulty component

is repaired or replaced. Real world examples of permanent

faults include disk head crashes, software bugs, and burnt-out

power supplies. Permanent fault that continues to exist within

a system until that error is fixed or repaired. In simulation-

based fault injection further, permanent faults can be modelled

in two different ways:

1. Stuck at 0 or SA0: Forcing a signal value to be 0 from

the start of fault injection to the end of simulation.

2. Stuck at 1 or SA1: Forcing a signal value to be 1 from

the start of fault injection to the end of simulation.

A transient fault is a fault that is no longer present if

power is disconnected for a short time and then restored or

which are seen for short time. In simulation-based fault

injection further, transient faults can be modelled in two

different ways:

1. Single Event Upset or SEU: this model inverts the

value of the output of a sequential element and holds

the modified value it is assigned a new value. This

fault model can be applied on the outputs of sequential

elements such as memories, flipflops and latches.

2. Single Event Transient or SET: this model inverts the

value of a signal and holds the modified value for a

specified period of time. This fault model can be

applied to any kind of signal, such as nets or registers.

In fault injection campaign multiple fault injection runs

are executed to generate safety metrics. Every fault injection

simulation run performs good simulation and fault

simulation. Good simulation is the initial simulation that you

must run to generate reference values for fault injection and

fault simulation is the subsequent simulation that classifies

any faults injected into the design. In this process to capture

reference values for observation points (that are defined

before the good simulation) during the good simulation run.

These observation points help to better classify injected faults

at one or more nets/nodes.

1. Functional Strobes: All the primary outputs in the

design under consideration will be used to detect

whether a fault injected on a node/port causes

functional failure.

2. Checker strobes: These are the outputs which will be

used to detect whether a fault injected on a node/port is

detected by safety mechanism. All the outputs of the

safety mechanisms are checker strobes.

Functional and checker strobes are required to categorize

the injected faults. Fault propagating to Functional strobes are

dangerous and Fault propagating to Checker strobes are

detected. The injected faults can be classified into following

ways:

1. Dangerous and Detected (DD): Any injected fault

propagates to both functional strobe and checker

strobe is considered to be DD. If a fault is classified as

DD, then, safety architecture is able to detect

dangerous faults.

2. Dangerous and Undetected (DU): Any injected fault

propagates to only functional strobe but not checker

strobe is considered to be DU. If a fault is classified as

DU, then, safety architecture is not able to detect

dangerous faults.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS070103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 07, July-2022

180

www.ijert.org
www.ijert.org
www.ijert.org

3. Unobserved and Detected (DU): Any injected fault

propagates to only checker strobe but not functional

strobe is considered to be UD. If a fault is classified as

UD, then, safety architecture is more cautious.

4. Unobserved and Undetected (UU): Any injected fault

does not propagate to any functional strobe and

checker strobe is considered to be UU. If a fault is

classified as UU, then, this is due to lack of stimuli, on

providing proper stimuli may end up as

DDs/DUs/UDs.

Diagnostic coverage is a benchmark of the safety measure

to detect dangerous failures. It can be expressed as:

III. SAFETY ARCHITECTURE AND ITS FSV

A. SPI Safety Architecture.

A single-master communication protocol is known as SPI.

This implies that just one device begins communications with

other slave devices. It is a high-speed synchronous serial IO

port that shifts the length of a serial bit stream (data) and

transfers or receives it at a programmed bit-transfer rate. The

serial clock is activated at a clock frequency that may be

controlled by both the master and slave when the SPI master

wants to send data to a slave. The slave makes the selection by

pushing the corresponding slave selection line low. SPI can

support duplex communication between the master and its

peripheral devices because the master generates data onto the

MOSI line while sampling the MISO line. It is crucial to

remember that for a communication to work, a master and

slave pair must employ the same set of parameters, such as the

SCLK frequency, CPOL, and CPHA. Status, control, and data

registers, shifter logic, a baud rate generator, master/slave

control logic, and port control logic make up the majority of

the SPI design. The SPI designed is extremely similar to the

one detailed in Motorola, Inc.'s SPI block guide.

In the safety concept, functional safety requirements are to

be defined for the SPI design at system level. Functional

Safety Requirement of SPI is to have data loss protection

through SPI path (both transmit and receive) which needs to

be functionally safe and protected from malfunctions. The

data flow through BMS can happen either from the external

IC into BMS SPI or from BMS internal storage to external IC

through BMS SPI. Any fault in SPI path that could lead to

functional failures that could violate the functional safety

requirement are mentioned in FMEDA. Any fault in SPI, its

configuration / mode selection, I/O pins may lead to data

integrity, authenticity, timeliness (e.g., data transfer initiation

and completion) and configuration errors. Also, any fault in

interrupt generation, recognition and servicing may show in an

inability to recognize events and modify the signal flow which

results in failures in data acquisition, transmission and

processing. So, safety mechanisms should be designed in

order to protect functional safety requirement that is defined.

B. SPI FMEDA

 Firstly, FMEDA is performed by asking the questions”

What are we trying to avoid??” and” How can it occur??” and

also adds a “Diagnostic” section by asking the question

beyond “what can go wrong??”. FMEDA includes analysis of

diagnostic coverage to identify failure mode that has potential

to violate safety goal in absence of safety mechanism and then

identify the safety mechanism that prevent the failure mode

from violating the safety goal. After the netlist is available,

FMEDA at block level is done which helps in

implementations of these mechanisms in order to detect all the

failure modes at bottom level. The objective is to calculate the

failure mode coverage wrt safety goal violation. Functional

analysis forms the basis for FMEDA.

TABLE II. SPI FMEDA

Failure Modes Malfunction Safety mechanisms

Transmit shift register, which holds the latest data to be transmitted to external
device.

Data corruption CRC Check on data.

Receive shift register, which holds the latest of data received from external

device.

Data corruption CRC Check on data.

Clock selection logic, select the clock polarity and phase based on
CPOL/CPHA configuration or master/slave modes.

Wrong decode of clock selection Register toggle verification

Data transfer type logic, which selects the data to be transmitted with

LSB/MSB bit first.

Wrong data transmission. CRC Check on data and Register

toggle verification

Interrupt generation logic, which enables SPI interrupt requests upon
corresponding flag bits set in status register.

Wrong interrupt being serviced or interrupt
may not be serviced.

Interrupt count and Register toggle
verification

Protocol generation logic, generates SPI protocol signals: SCLK, SS. Wrong protocol signals generated Timeliness check and CRC check in

external device.

SPI state machine, provides control signals to shift registers and transfers &
Wrong control signals generated and state machine is corrupted

Wrong control signals generated and state
machine is corrupted

Timeliness check and CRC check
on data.

Input/Output enable controls, provides IO control to SPI ports. Incorrect IO control - MISO, MOSI, SCLK

and SS.

Timeliness check.

IV. IMPLEMENTATION

A. Safety Mechanisms

Safety mechanisms are on-chip features that detect and

mitigate or make the design tolerate faults and report them

when they are detected These can be pure hardware, pure

software or hybrid. The safety mechanisms proposed during

the design phase to protect SPI from failures are purely

software safety mechanisms. After performing FMEDA at

block level these mechanisms are implemented in order to

detect all the failure modes at bottom level. These have to

be implemented in parallel when SPI operations are

happening. The proposed safety mechanisms are:

1. CRC check on the data: CRC provides error

detection on serial interfaces as data moves across

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS070103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 07, July-2022

181

www.ijert.org
www.ijert.org
www.ijert.org

chips. Detects faults that lead to any mismatch in

the expected data.

2. Interrupt Count and timeliness check: Detects any

missing or spurious interrupts resulting random

failures in interrupt generation.

3. Register toggle verification: Detects faults leading

to incorrect configuration that cause incorrect data

transfers

B. Simulation based fault Injection

 To support functional safety verification, Cadence

vManager Safety Client is used to automate fault injection

campaign using well-defined flows. By using input files,

one can drive both the safety client and the internal core

engine running within the client, the Xcelium Fault

Simulator. The input files are, configuration file that defines

the overall parameters, the fault list that identifies targets for

fault instrumentation, the fault list that identifies targets for

fault instrumentation, the test list that specifies one or more

tests to run in a single session and other script files required

for running a campaign.

 The vManager Safety Client supports various campaign

flow types, the ones used are serial and concurrent. In

Serial: flows the injection of one fault during a fault

simulation run (i.e., the next fault can be injected after the

run is closed and reopened). Number of fault simulations is

equal to the number of faults to be injected, which is a

disadvantage in this flow and consumes more CPU memory

because of large number of simulations. In Concurrent flow,

injection of multiple faults per run for the fault simulation

session. Advantage of this flow is it is a throughput solution

where multiple faults are injected and simulated together

and also simulate good and fault simulation simultaneously.

Tool keeps a list of faulty values along with good value at

every node in the circuit. Disadvantage of this flow is, the

hyperactive faults, which cause very large number of

simulation events will not propagate to their respective

observation point(s). Such faults are flagged in the fault

database for concurrent simulations as Not Simulatable

(NS). Also, if faulty simulation doesn’t converge within the

time good simulation value is calculated then the faults are

reported as DU.

 For the SPI block all the functional outputs are defined

as functional strobes – MISO, MOSI, SCLK, SS and

corresponding input & output enables. All the safety

mechanism outputs are defined as checker strobes – CRC

check, timeliness check, register toggle configuration check

and interrupt count and timing check. All the test cases

implemented for various SPI operating modes with safety

mechanisms. Fault instrumentation of the SA0 and SA1

fault types for all cell ports in SPI netlist and these are

injected at 80ns after simulation started and timeout factor

of 10 is given, this means fault simulation should be

executed maximum up to 10 times the good simulation

time.

V. RESULTS AND DISCUSSIONS

A. Concurrent Run

 The concurrent simulation is done considering group

size of 2000, this indicates for multiple faults injected and

simulated are restricted to 2000 per group. A total of 9702

faults can be instrumented into the design out of which 119

were reported safe after structural analysis, 9583 as testable

out of which 6264 are prime faults. After fault simulation is

completed a session report is generated, shown in figure I,

DC of 83.84 % is achieved.

FIGURE I CONCURRENT SIMULATION LOG

B. Serial Run

 Though concurrent flow is a throughput solution it has

many disadvantages as mentioned earlier in this paper. So,

the fault nodes which are reported as DU’s in the previous

run are extracted and given as input to serial run in fault list

file. After fault simulation is completed a session report is

generated, shown in figure II, DC of 93.57 % is achieved

after merging the concurrent and serial run results.

C. DU Analysis

 The obtained DC is not sufficient and has to be

improved, this can be done by reducing number of faults

that are reported as DU. To do this a detailed DU analysis

for every node that is reported has to carried out and which

is possible only with the good understanding of the

architectural design, and find a way to detect them or

classify them as safe, even though they disturb the

functional strobes but have no safety violation. vManager

safety client also supports debugging ways through which

the reported DU’s can be rerun with waves, this helps in

comparing good simulation waves with fault simulation

waves, when is the injected fault effecting different signals

and logic blocks of the SPI.

 To achieve the targeted ASIL D, diagnostic coverage of

97.2 % is achieved for the single point faults in the SPI

block by performing detailed DU analysis and moving them

to DD category by identifying the detection mechanism or

to safe category by analyzing the effect of the fault, which

makes it sufficient to achieve SPFM of 99% for the entire

chip.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS070103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 07, July-2022

182

www.ijert.org
www.ijert.org
www.ijert.org

VI. CONCLUSIONS

Based on the FMEDA, safety mechanisms are

implemented and simulation based digital fault injection is

performed for safety mechanisms (diagnostics) verification

using vManager safety client. Here, permanent faults at

every cell port of the netlist are injected, set of functional

and checker strobes are defined which classify faults as

DD, DU, UD, UU and Safe. Both serial and concurrent

flows supported by the tool were used to achieve a

diagnostic coverage of 93.5% for the total 9702

instrumented faults, with 6047 reported as DD and 414

reported as DU. To achieve the targeted ASIL D,

diagnostic coverage of 97.2 % is achieved for the single

point faults in the SPI block by performing detailed DU

analysis and moving them to DD category by identifying

the detection mechanism or to safe category by analyzing

the effect of the fault, which makes it sufficient to achieve

SPFM of 99% for the entire chip.

VII. FUTURE SCOPE

Based on the challenges faced to complete the functional

safety verification faster, there are some ways possible to

achieve the same results in the less time frame and

recommendations for other designs [5][6].

1. Running a concurrent run and then extracting the

fault list to run serial run involves more time for

setup creation and execution. So, a hybrid flow can

be created by asking the tool vendor to run

concurrent and serial campaigns simultaneously

with the single setup and internally extract the fault

list for serial run as soon as concurrent run reports a

fault as NS and DU. Then generated a merged data

report which saves a lot of execution time.

2. For more complex designs, having > 40,000 faults,

performing fault injection on all possible faults is

not a good way, rather sampling method should be

used where tool randomly injects faults in the

design for the specified value. Then analyze the

results for the fewer faults and modify the test cases

to achieve desired DC for this set of faults. Perform

this for 2 to 3 iterations, usually the DC value will

converge.

3. To perform the DU analysis faster, formal methods

can be used to know the stimuli for which the fault

injected can be detected or classified as safe.

REFERENCES

[1] S. Chonnad, R. Iacob, and V. Litovtchenko, “A quantitative

approach to soc functional safety analysis,” in 2018 31st IEEE

International System-on-Chip Conference (SOCC), IEEE, 2018, pp.

197–202.
[2] K.-L. Lu, Y.-Y. Chen, and L.-R. Huang, “Fmeda-based fault

injection and data analysis in compliance with iso-26262,” in 2018

48th Annual IEEE/IFIP international conference on dependable
systems and networks workshops (DSN-W), IEEE, 2018, pp. 275–

278.

[3] ISO, “26262 road vehicles-function safety-part 5: Product
development at the hardware level,” International Standardization

Organization Std, 2018.

[4] ISO, “26262 road vehicles-function safety-part 11: Guidelines on
applying the standard to semiconductors,” International

Standardization Organization Std, 2018.

[5] F. A. Da Silva, A. C. Bagbaba, S. Hamdioui, and C. Sauer,
“Efficient methodology for iso26262 functional safety verification,”

in 2019 IEEE 25th International Symposium on On-Line Testing

and Robust System Design (IOLTS), IEEE, 2019, pp. 255–256.
[6] F. A. da Silva, A. C. Bagbaba, S. Hamdioui, and C. Sauer,

“Combining fault analysis technologies for iso26262 functional

safety verification,” in 2019 IEEE 28th Asian Test Symposium
(ATS), IEEE, 2019, pp. 129–1295.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS070103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 07, July-2022

183

www.ijert.org
www.ijert.org
www.ijert.org

