
Fluid Induced Piping Vibration with Elastically 

Restrained Different End Supports*  
 

 

S. Shankarachar1 , M. Radhakrishna2  
 Senior Scientist, Chief Scientist,  

Design and Engineering Division,  

CSIR-Indian Institute of Chemical Technology,  

Uppal Road, Tarnaka, Hyderabad, India. 

  

P. Rameshbabu3 

Associate Professor, Department of Mechanical 

Engineering, University college of Engineering, Osmania 

University, Hyderabad, India 

 

 
Abstract—The dynamic stability of elastically restrained 

pipe conveying fluid is investigated in this study. The 

frequency expression is derived for classical boundary 

conditions by considering the supports as compliant material 

with linear and rotational stiffness. A new transcendental 

frequency equation is developed by using Euler-Bernoulli 

beam theory; the equation of motion is derived from energy 

expressions using the Hamilton's Principle. The natural 

frequencies are presented for a wide range of restraint 

parameters. Cases are studied for different boundary 

conditions- Linearly and Rotationally Restrained, Rotational-

Linearly & Linearly Restrained, Rotational-Linearly and 

Fixed, Rotationally Restrained –Guided, are computed and it 

is noted that as the flow velocity increases the first mode 

frequency decreases and by varying the mass ratio the 

frequency increases. 

Keywords—Elastically Restrained, Frequency, Linearly 

Restrained, Pipe, Guided Support  

I. INTRODUCTION 

The vibration analysis of piping systems is important 
from the view point of safeguarding the equipment's and 
pipelines from damage which is mostly applicable in 
chemical, petrochemical and other allied industries. It is 
well known that pipeline systems may undergo divergence 
and flutter type of instability due to fluid-structure 
interaction. 

The dynamic behavior of fluid conveying pipes was 
predicted first by Ashley and Haviland in 1950 [1]. and later 
by Housner in 1952. Housner considered a simply 
supported beam model for the pipeline and analysed it using 
a series solution approach which showed that critical flow 
velocity could cause buckling [2]. S. S Rao developed a 
mathematical model for transverse vibration for elastically 
restrained conditions for beams [3]. Naguleswaran and 
Williams developed solutions for natural frequencies in 
axial mode for Hinged-Hinged, Fixed-Hinged and Fixed-
Fixed boundary conditions [4]. Chen and Paidoussis 
developed dynamic stiffness matrix for coupled fluid 
structure interaction [5], [6]. Huang Yi-min considered 
Galerkin’s method and obtained natural frequencies for 
fluid conveying pipeline with different boundary conditions 
[7]. R.A. Stein and M.W.Tobriner discussed Vibration of 
pipes containing flowing fluid, in which the effects of 
foundation modulus, flow velocity and internal pressure on 
the dynamic stability, frequency response and wave 

propagation characteristics of an un-damped system was 
studied [8]. Wang Shizhong, Liu Yulan, Huang Wenhu, had 
conducted research on solid liquid coupling dynamics of 
pipe conveying fluid, where they studied the influence of 
flowing velocity, pressure, solid-liquid coupling damping 
and solid-liquid coupling stiffness on natural frequency for 
simply supported ends [9]. Weaver D.S and Unny T.E. 
studied the dynamic stability of finite length of pipe 
conveying fluid using Flugge-Kempner equation to find the 
critical flow velocities [10]. 

In most of the cases, the differential equation of motion 
of fluid-conveyed pipe is deduced using the Galerkin’s 
method in Lagrange system. Subsequently, the solution of 
the differential equation is obtained by considering many 
numerical methods such as transfer matrix, finite element, 
perturbation, Runge-Kutta and differential quadrature. 

It is the need to have a better understanding of the 
dynamics of the pipes conveying fluid. The various 
important factors that influence the dynamic behaviour of 
fluid conveying pipe are (i) Flow Velocity (ii) Support 
conditions and (iii) Interaction with supporting medium. 
Hence, the estimation of exact natural frequencies of pipes 
is presented with exact approach for finding the transverse 
vibration of elastically restrained pipes.  

Nomenclature 

EI  bending stiffness of a pipe 

mp mass of pipe 

U   velocity of the fluid  

w   lateral deflection of pipe                        

γ    mass ratio 

λ    non-dimensional parameter 

mf   fluid mass 

t     time 

x    the axial coordinate 

V   non-dimensional Velocity 

      𝛼&𝛽 coefficient of trigonometric function 

ξ    natural boundary conditions. 
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II. MATHEMATICAL MODEL 

A. FORMULATION OF PROBLEM 

The governing differential equation of motion and 
boundary conditions corresponding to the transverse 
vibration of pipe has been derived by considering the 
equilibrium approach. Consider a straight uniform single 
span pipe conveying fluid of length L where K1 and K2 are 
translational and kt1 and kt2 are rotational stiffness 
parameters as shown in Figure1. The displacement of the 
pipe is assumed to be restrained in the z-x plane. 

 

Fig.1. Elastically restrained pipe conveying fluid and with both ends 
supported 

 

Where mp is the mass per unit length of pipe, mf is the 
mass of fluid per unit length, U is the flow velocity, E is the 
elastic modulus of the pipeline material, I is the moment of 
inertia of cross-section of the pipe and z is the lateral 
deflection of the pipeline; x and t are the axial co-ordinate 
and time, respectively. Considering only time dependent 
variables, and after simplification, we obtain the following 
transverse vibration equation of the pipeline conveying 
fluid. 

From first principles and applying the Euler-Bernoulli 
beam theory and Hamilton's energy equations for the 
elastically restrained pipe conveying fluid, the differential 
equation of motion and boundary conditions are obtained as 
(3) 

 

EI = Bending stiffness of a pipe;  

 = mass of pipe and mass of fluid; 

U= Velocity of the fluid; t = time; 

; 

 

;  

The boundary conditions for the piping system are 
given below 

                                                                       

 

 

 

Where  and L=Length of the pipe supports 
or span. 
 
The equation of motion Eq. (1) can be written in the 

following non-dimensional form: 

 
 

Where,     

  = Mass ratio, ξ = Natural boundary condition,  

ω =Natural frequency of pipe vibration,  

V=Non-dimensional velocity and λ=Wavelength 

 ;        

 

   ;         

When the natural frequency of the pipe approaches zero 
the critical flow velocity has been computed for all the end 
conditions. When the flow velocity is equal to the critical 
velocity, the pipe bows out and buckles, as the forces 
required to make the fluid deform to the pipe curvature are 
greater than the stiffness of the pipe. The term Coriolis 
force represents the damping of the system, and its effect 
on the frequency of vibration is negligible and so is 
omitted, as the present work aims to obtain upper bounds 
for the frequencies of vibration of the pipe conveying fluid. 
The damping term is omitted and Eq. (7) is a non-
dimensional partial differential equation of higher order 
with boundary problem.  

                                                           
(8) 

 

 

, where c and s are constants and 

substitution of eq. (8) in to (7) results. 

                                               
(10) 

The roots of equation (10) is given by 

 

 

;  ;      

Considering first two roots  and  

Then  ;            
(11) 

                                                (2) 

                                          (3) 

                                                (4) 

                                            (5) 

                       (6) 

                                             (7) 

                              (9) 
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B. NATURAL FREQUENCY EVALUATION  

Let the solution of the general equation (6) given as 

           
(12) 

 
 

                                                                                             
(14) 

 

                                                                                     
(15) 

The above boundary conditions (2), (3), (4) and (5) are 
substituted in exact solution equations (12) to (15) to get 
the transcendental frequency equation can be written as 
follows 

 

Table I. Natural Frequencies (N=1) for Mass 

Ratio   and     for  Linearly and 

Rotationally Restrained End Conditions 

V @  @   

 

V @  @   

 
0.1 

2.7729 3.1203 3.3381 
6.0 

2.4613 2.8477 3.0852 

0.2 2.7727 3.1201 3.3379 6.1 2.4502 2.8381 3.0763 

0.3 2.7723 3.1197 3.3375 6.2 2.4388 2.8282 3.0673 

0.4 2.7717 3.1192 3.3371 6.3 2.4271 2.8182 3.0581 

0.5 2.7710 3.1186 3.3365 6.4 2.4152 2.8080 3.0487 

0.6 2.7701 3.1178 3.3357 6.5 2.4030 2.7976 3.0391 

0.7 2.7690 3.1168 3.3348 6.6 2.3906 2.7870 3.0294 

0.8 2.7678 3.1157 3.3338 6.7 2.3780 2.7761 3.0194 

0.9 2.7664 3.1145 3.3327 6.8 2.3651 2.7651 3.0093 

1.0 2.7648 3.1131 3.3314 6.9 2.3519 2.7539 2.9990 

1.1 2.7631 3.1116 3.3300 7.0 2.3384 2.7424 2.9885 

1.2 2.7612 3.1099 3.3284 7.1 2.3247 2.7307 2.9778 

1.3 2.7592 3.1081 3.3267 7.2 2.3107 2.7189 2.9669 

1.4 2.7570 3.1062 3.3249 7.3 2.2964 2.7068 2.9559 

1.5 2.7546 3.1040 3.3229 7.4 2.2818 2.6944 2.9446 

1.6 2.7520 3.1018 3.3208 7.5 2.2670 2.6819 2.9331 

1.7 2.7493 3.0994 3.3186 7.6 2.2518 2.6691 2.9215 

1.8 2.7464 3.0968 3.3162 7.7 2.2363 2.6561 2.9096 

1.9 2.7434 3.0941 3.3137 7.8 2.2205 2.6428 2.8975 

2.0 2.7402 3.0913 3.3110 7.9 2.2044 2.6293 2.8829 

2.1 2.7368 3.0883 3.3082 8.0 2.1879 2.6156 2.8728 

2.2 2.7332 3.0851 3.3053 8.1 2.1712 2.6016 2.8600 

2.3 2.7295 3.0818 3.3022 8.2 2.1540 2.5874 2.8471 

2.4 2.7256 3.0784 3.2990 8.3 2.1366 2.5729 2.8340 

2.5 2.7215 3.0748 3.2957 8.4 2.1187 2.5581 2.8206 

2.6 2.7173 3.0711 3.2922 8.5 2.1005 2.5431 2.8070 

2.7 2.7128 3.0672 3.2885 8.6 2.0819 2.5278 2.7932 

2.8 2.7082 3.0631 3.2848 8.7 2.0630 2.5122 2.7791 

2.9 2.7035 3.0589 3.2809 8.8 2.0436 2.4964 2.7649 

3.0 2.6985 3.0545 3.2768 8.9 2.0238 2.4803 2.7503 

3.1 2.6934 3.0500 3.2726 9.0 2.0036 2.4638 2.7355 

3.2 2.6881 3.0453 3.2682 9.1 1.9830 2.4471 2.7205 

3.3 2.6826 3.0405 3.2638 9.2 1.9619 2.4301 2.7052 

3.4 2.6770 3.0355 3.2591 9.3 1.9403 2.4128 2.6897 

3.5 2.6711 3.0304 3.2543 9.4 1.9182 2.3951 2.6739 

3.6 2.6651 3.0251 3.2494 9.5 1.8957 2.3771 2.6579 

3.7 2.6589 3.0196 3.2443 9.6 1.8726 2.3588 2.6415 

3.8 2.6525 3.0140 3.2391 9.7 1.8490 2.3404 2.6249 

3.9 2.6459 3.0082 3.2338 9.8 1.8249 2.3212 2.6080 

4.0 2.6391 3.0023 3.2282 9.9 1.8002 2.3019 2.5909 

4.1 2.6322 2.9962 3.2226 10.0 1.7748 2.2822 2.5734 

4.2 2.6250 2.9899 3.2168 10.1 1.7488 2.2621 2.5556 

4.3 2.6177 2.9835 3.2108 10.2 1.7222 2.2416 2.5376 

4.4 2.6101 2.9769 3.2047 10.3 1.6949 2.2207 2.5192 

4.5 2.6024 2.9701 3.1984 10.4 1.6669 2.1995 2.5005 

4.6 2.5944 2.9632 3.1920 10.5 1.6381 2.1778 2.4815 

4.7 2.5863 2.9561 3.1854 10.6 1.6085 2.1556 2.4621 

4.8 2.5780 2.9488 3.1786 10.7 1.5780 2.1331 2.4424 

4.9 2.5694 2.9414 3.1718 10.8 1.5467 2.1100 2.4223 

5.0 2.5607 2.9338 3.1647 . . . . 

5.1 2.5517 2.9260 3.1575 . . . . 

5.2 2.5425 2.9180 3.1501 12.9 - 0.11260 0.9678 

5.3 2.5332 2.9098 3.1426 . . 0.10649 0.8940 

5.4 2.5236 2.9015 3.1349 . . . . 

5.5 2.5138 2.8930 3.1270 14.6 . - 0.7223 

5.6 2.5037 2.8843 3.1190 . . . 0.6177 

5.7 2.4935 2.8754 3.1108 . . . . 

5.8 2.4830 2.8664 3.1024 . . . . 

5.9 2.4723 2.8571 3.0939 15.6 . . - 

                                                                                       

Equation (16) is the general frequency equation of 
elastically restrained pipe conveying fluid.  

Assuming C = 0 then  

a) Applying the B.C,  , , in 

the general frequency equation (11), for 

     Linearly & Rotationally Restrained End 
Condition (Reference Fig.1) will result as 

 

  (13) 

                                               (16) 
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Fig.2. Linearly and Rotationally Restrained End Conditions 

b) Applying the B.C,  ,  ,  , 

 , in the general frequency equation [16],   

    for Rotationally Restrained-Linearly Restrained and 
Linearly Restrained Condition will result as 



Fig.3.Rotationally Restrained –Linearly Restrained and 

 Linearly Restrained End Condition 

 

 

Table II. Natural Frequencies (N=1) for Mass 

Ratio   and     for  Rotationally 

Restrained –Linearly Restrained and linearly Restrained End Condition 

V @

 

@

 
 

 

V @

 

@

 
 

 
0.1 3.1754 3.2105 3.2340 1.5 2.9333 2.9776 3.0069 

0.2 3.1599 3.1955 3.2193 1.6 2.9136 2.9587 2.9886 

0.3 3.1441 3.1802 3.2044 1.7 2.8934 2.9395 2.9700 

0.4 3.1281 3.1648 3.1893 1.8 2.8728 2.9199 2.9510 

0.5 3.1119 3.1491 3.1740 1.9 2.8518 2.8998 2.9316 

0.6 3.0954 3.1332 3.1585 2.0 2.8303 2.8794 2.9118 

0.7 3.0786 3.1170 3.1427 2.1 2.8083 2.8585 2.8916 

0.8 3.0615 3.1006 3.1267 2.2 2.7857 2.8371 2.8709 

0.9 3.0442 3.0839 3.1104 2.3 2.7626 2.8153 2.8499 

1.0 3.0266 3.0669 3.0939 2.4 2.7389 2.7929 2.8283 

1.1 3.0086 3.0497 3.0771 2.5 2.7146 2.7699 2.8062 

1.2 2.9903 3.0321 3.0600 2.6 2.6895 2.7464 2.7836 

1.3 2.9717 3.0143 3.0426 2.7 2.6638 2.7223 2.7605 

1.4 2.9527 2.9961 3.0249 2.8 2.6373 2.6975 2.7367 

1.5 2.9333 2.9776 3.0069 2.9 2.6373 2.6720 2.7123 

1.6 2.9136 2.9587 2.9886 3.0 2.5818 2.6457 2.6872 

1.7 2.8934 2.9395 2.9700 3.1 2.5526 2.6187 2.6614 

1.8 2.8728 2.9199 2.9510 3.2 2.5224 2.5908 2.6349 

1.9 2.8518 2.8998 2.9316 3.3 2.4911 2.5619 2.6075 

2.0 2.8303 2.8794 2.9118 3.4 2.4585 2.5320 2.5792 

2.1 2.8083 2.8585 2.8916 3.5 2.4246 2.5011 2.5499 

2.2 2.7857 2.8371 2.8709 3.6 2.3893 2.4689 2.5196 

2.3 2.7626 2.8153 2.8499 3.7 2.3522 2.4355 2.4882 

2.4 2.7389 2.7929 2.8283 3.8 2.3134 2.4006 2.45550 

2.5 2.7146 2.7699 2.8062 3.9 2.2724 2.3641 2.4215 

2.6 2.6895 2.7464 2.7836 4.0 2.2292 2.3258 2.3859 

2.7 2.6638 2.7223 2.7605 4.1 2.1832 2.2856 2.3488 

2.8 2.6373 2.6975 2.7367 4.2 2.1342 2.2431 2.3097 

2.9 2.6373 2.6720 2.7123 4.3 2.0815 2.1980 2.2686 

3.0 2.5818 2.6457 2.6872 4.4 2.0245 2.1500 2.2251 

0.1 3.1754 3.2105 3.2340 4.5 1.9622 2.0985 2.1789 

0.2 3.1599 3.1955 3.2193 4.6 1.8933 2.0429 2.1295 

0.3 3.1441 3.1802 3.2044 4.7 1.8160 1.9824 2.0765 

0.4 3.1281 3.1648 3.1893 4.8 1.7273 1.9158 2.0190 

0.5 3.1119 3.1491 3.1740 4.9 1.6224 1.8414 1.9562 

0.6 3.0954 3.1332 3.1585 5.0 1.4919 1.7567 1.8866 

0.7 3.0786 3.1170 3.1427 5.1 1.3140 1.6576 1.8084 

0.8 3.0615 3.1006 3.1267 5.2 1.0018 1.5367 1.7185 

0.9 3.0442 3.0839 3.1104 5.3 - 1.3777 1.6117 

1.0 3.0266 3.0669 3.0939 5.4  1.1297 1.4782 

1.1 3.0086 3.0497 3.0771 5.5  - 1.2937 

1.2 2.9903 3.0321 3.0600 5.6   0.9536 

1.3 2.9717 3.0143 3.0426 5.7   - 

1.4 2.9527 2.9961 3.0249     

 

 

Fig.4. Rotationally Restrained-Linearly Restrained and Linearly 
Restrained 

c) Applying the B.C,  ,  ,  ,  
, in the general frequency equation [16],   

    for Rotationally Restrained-Linearly Restrained and 
Fixed End Condition will result as 

 

 

Fig.5. Rotationally Restrained –Linearly Restrained and Fixed End 
Condition 
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Table III. Natural Frequencies (N=1) for Mass 

Ratio   and     for  Rotationally 
Restrained and Linearly Restrained and Fixed End Condition 

V @

 

@

 
 

 

V @

 

@

 
 

 

0.1 3.1754 3.2105 3.2340 

2.

7 2.6638 2.7223 2.7605 

0.2 3.1599 3.1955 3.2193 

2.

8 2.6373 2.6975 2.7367 

0.3 3.1441 3.1802 3.2044 

2.

9 2.610 2.6720 2.7123 

0.4 3.1281 3.1648 3.1893 

3.

0 2.5818 2.6457 2.6872 

0.5 3.1119 3.1491 3.1740 

3.

1 2.5526 2.6187 2.6614 

0.6 3.0954 3.1332 3.1650 

3.

2 2.5224 2.5908 2.6349 

0.7 3.0786 3.1170 3.1427 

3.

3 2.4911 2.5619 2.6075 

0.8 3.0615 3.1006 3.1267 

3.

4 2.4585 2.5320 2.5792 

0.9 3.0442 3.0839 3.1104 

3.

5 2.4246 2.5011 2.5499 

1.0 3.0266 3.0669 3.0939 

3.

6 2.3893 2.4689 2.5196 

1.1 3.0086 3.0497 3.0771 

3.

7 2.3522 2.4355 2.4882 

1.2 2.9903 3.0321 3.0600 

3.

8 2.3134 2.4006 2.4555 

1.3 2.9717 3.0143 3.0426 

3.

9 2.2724 2.3641 2.4215 

1.4 2.9527 2.9961 3.0249 

4.

0 2.2292 2.3258 2.3859 

1.5 2.9333 2.9776 3.0069 

4.

1 2.1832 2.2856 2.3488 

1.6 2.9136 2.9587 2.9886 

4.

2 2.1342 2.2856 2.3097 

1.7 2.8934 2.9395 2.9700 

4.

3 2.0815 2.1980 2.2686 

1.8 2.8728 2.9199 2.9510 

4.

4 2.0245 2.1500 2.2251 

1.9 2.8518 2.8998 2.9316 

4.

5 1.9622 2.0985 2.1789 

2.0 2.8303 2.8794 2.9118 . . . . 

2.1 2.8083 2.8585 2.8916 

5.

1 - 1.6042 1.7679 

2.2 2.7857 2.8371 2.8709 

5.

2  1.5367 1.7185 

2.3 2.7626 2.8153 2.8499 . . . . 

2.4 2.7389 2.7929 2.8283 

5.

3  -  1.5093 

2.5 2.7146 2.7699 2.8062 

5.

4 . . 1.4782 

2.6 2.6895 2.7464 2.7836 

5.

5 

  

- 

 

 

Fig.6. Rotationally Restrained and Linearly Restrained and 

 Fixed End Condition 

d) Applying the B.C,  ,  ,  , 

 , in the general frequency equation [16],   

for Rotationally Restrained and Guided End Condition will 
result as 

 

 

Fig.7. Rotationally Restrained and Guided End Condition 

Table IV. Natural Frequencies (N=1) for Mass 

Ratio   and     for  
Rotationally Restrained and Guided End Condition 

V @  @   

0.1 1.8577 1.8336 1.8156 

0.2 1.8665 1.8445 1.8269 

0.3 1.8740 1.8547 1.8381 

0.4 1.8800 1.8639 1.8488 

0.5 1.8843 1.8718 1.8586 

0.6 1.8869 1.8782 1.8672 

0.7 1.8875 1.8831 1.8746 

0.8 1.8862 1.8863 1.8804 

0.9 1.8827 1.8875 1.8846 

1.0 1.8768 1.8868 1.8870 

1.1 1.8685 1.8840 1.8875 

1.2 1.8573 1.8789 1.8860 

1.3 1.8429 1.8714 1.8823 

1.4 1.8250 1.8611 1.8762 

1.5 1.8026 1.8478 1.8676 

1.6 - 1.8311 1.8561 

1.7  1.8102 1.8415 

1.8  - 1.8231 

1.9   1.8003 

2.0   - 
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Fig.8. Rotationally Restrained and Guided End Condition 

III.  RESULTS AND DISCUSSIONS 

Table 1, shows the graph of non-dimensional natural 
frequencies with non-dimensional velocities. In the case of 
a) Linearly and Rotationally Restrained end conditions the 
instability region lies in the range of 12.99435 to 15.66188. 
However, in other three cases like b) Rotationally 
Restrained –Linearly Restrained and Linearly Restrained 
end conditions c) Rotationally Restrained and Linearly 
Restrained and Fixed end conditions d) Rotationally 
Restrained and Guided end conditions are shown in Tables 
2, 3 & 4 the pipe flutters at a much lower velocity, in the 
flow region of b) V=5.3 to V=5.7, c) V=5.147 to V=5.338 
and d) V=1.6 to V=2.0. Figures  2, 4, 6 and 8 shows the 
points of flutter for three mass ratios. The percentage 
reduction in frequency as velocity increases from 
(reference fig.2) V=0.1 to V=2.77298 is 72 %, For Tables 2 
and 3 (reference fig.4 & 6) from V=0.1 to V=3.175468 
shows 68.24%, reduction in frequency. Table 4 shows the 
frequency reduction (reference fig.8) from V=0.1 to 
V=1.85777 is 81.42%.  It is found that the natural 
frequencies remain same for all the three mass ratios, 
which means that the instability condition is close with 
higher mass ratio and fluid velocity. 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 

 Exact method is developed for pipes conveying 
fluid for Linearly Restrained and Rotationally 
restrained end conditions, Rotationally Restrained 
–Linearly Restrained and Linearly Restrained end 
conditions, Rotationally Restrained –Linearly 
Restrained and Fixed end conditions and 
Rotationally Restrained and Guided  end 
conditions  

 The frequencies of the first mode of vibration are 
computed by varying the fluid velocity 

 Critical velocity for different mass ratios are 
found  

 A FORTRAN program is developed for 
computation of natural frequencies by using 
Mueller’s Iteration method for non-linear 
equations (Bi-section) and the iterated value of x 
(non-dimensional) natural frequency is found by 
the Inverse Parabolic Interpolation method 

 The natural frequencies are obtained by varying 
the fluid velocities. 
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