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Abstract— The major challenges encountered during the design 

of IC include battery lifetime and energy constraints especially 

for Internet of Things and mobile applications. Many techniques 

in the domain of low power and power management have gained 

widespread attention because of the significance of power 

efficiency. Due to the increasing complexity of systems on chips 

(SoCs), multiple power domains on a single integrated circuit 

(IC) are becoming more common as process nodes are getting 

smaller. Stacked power domain approach connects voltage 

domains in series, which effectively improves battery lifetime and 

efficiency of power delivery. Stacked domain implementation 

requires partitioning the logic design into two power domains. 

But this approach requires balancing the currents between 

power domains. Level shifter insertion between power domain 

regions, can result in remarkable area penalties. In the 

proposed paper, a flow based partitioning algorithm is 

introduced. Considering the solution obtained after initial 

placement, a flow-based partitioning is applied, which is based on 

maximum flow and minimum cut algorithm and aware of cell 

placement in order to partition all cells into two different power 

domains while achieving balance in cross-domain currents. 

Algorithm is implemented on MCNC bench mark circuit. 

Algorithm removes the need for dummy vertices (super source 

and super sink) to do partitioning. 

 

Keywords—max flow min cut; Ford Fulkerson, Stacked power 

domain 

 

I.  INTRODUCTION 

The partitioning is defined as dividing a chip into smaller 

blocks/sub blocks. Partitioning is carried out to separate 

different functional blocks and to ease routing and placement. 

Partitioning is the initial step in the physical design process. 

The designer breaks the larger design into various smaller 

functional modules/blocks and then proceeds with 

implementation of these smaller modules during RTL design 

phase. These smaller functional blocks are structurally 

instantiated or linked in the main module. Main module is 

called TOP LEVEL module. This type of partitioning is called 

as Logical Partitioning. 

There are many techniques of multi-supply voltage, which 

allows operation of different blocks with different voltages. 

Operating at a lower voltage reduces power consumption, but 

with the compromise in speed. Depending upon the 

performance requirements, different parts of a chip can use 

different supply voltages. One of the solutions to reduce 

power is using multiple supply voltage implementations, since 

reduction in the voltage has a squared impact on active power 

consumption. Multiple supply voltage implementation 

requires insertion of level shifters on signals that cross 

different voltage levels. Without using level shifters, the 

signals crossing voltage levels cannot be sampled correctly.  

For placement and optimization to implement whole 

design, the tool must know that no logic can be moved from 

one power domain to another power domain. The tool must be 

capable enough to use the correct set of timing libraries for 

each of the power domain. Lower voltage can result in timing 

issues and can increase transition time. Logic needs to be 

upsized or inserted, to overcome timing issues which results in 

more power consumption. 

If there exists a misalignment in battery voltages in 

comparison to scaled core voltages, this can result in 

inefficiency which requires saving of power. A stacked 

power domain design normally connects power domains in 

series which are connected parallelly in the conventional 

design for the purpose of aligning the system on chip power 

domain voltages with battery voltages [1]. The top power 

domain is placed over the bottom power domain in order to 

reduce the current to half and double the voltage compared to 

that of conventional design. This technique performs implicit 

2:1 down conversion of external supplies. If the supply 

voltage of a conventional design i.e. power supply VDD = V 

and ground supply VSS = 0, the power and ground supplies 

for the top and bottom domains in the stacked-domain design 

are (2V, V) and (V, 0), respectively. 

 

 
(a) 

 
(b) 

Fig 1. (a) Conventional design. (b) Stacked power-domain design 
 

 Fig 1 shows comparison between Conventional design and 

stacked power domain design. In the above figure, VR 

represents voltage regulator. The arrow in red symbolizes 

stacked current. The arrow in orange symbolizes current from 

the Voltage Regulator. 

Battery lifetime (T) and external power (Pext) are inversely 

proportional to each other. In a stacked-domain, 
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                      Pext = Pstk+ PVR,in = Pstk+  PVR,out/ηVR           

(1)  

Where, Pext is Total input power from external supply 

            P
stk is direct power of stacked power domain from       

external supply 

P
VR,in is Voltage regulator input power from external  

supply 

             PVR,out is Voltage regulator output power to core 

        η
VR is Voltage regulator power conversion efficiency 

  In a traditional design, power supply is only provided 

through Voltage Regulator. Total input power from the     

external supply for a traditional design (P`ext) is calculated as, 

                                       P`ext=Pcore/ηVR                              

(2) 

Where, Pcore is Total core power consumption 

 The Ratio between the battery lifetime of stacked-

domain design (T) and the battery lifetime of conventional 

design (T`) is, 

              T/T`=   (2 · Istk+ IVR) / (2 · ηVR· Istk+IVR)            (3) 

Where Istk is Stacked current i.e. the current from top power 

domain  to bottom power domain 

       I
VR is Voltage regulator output current 

 The lifetime of a battery increases with a smaller IVR  

because the power efficiency of the Voltage Regulator reduces 

with smaller currents supply. If there is a proper balance of 

current between two different domains (i.e., IVR= 0) in stacked 

domain implementation, the design results in improvement in 

lifetime of a battery over the traditional design.  

 There are some challenges related to stacked power 

domain implementation.  

i. Level shifters are required for the communication 

between the power domains; such level shifter can 

convert extreme levels of signal. 

ii. The improvement in power efficiency is dependent 

directly on balancing of current between two power 

domains. 

iii. Partitioning optimization must take into consideration 

various operating scenarios, power penalties and area 

penalties and also impact of level shifters insertion on 

timing. 

iv. Extending stacked domain concept to three or multiple 

power domains can increase number of level shifters 

and demand topology of power delivery which can be 

more complex. 

 The contribution of the proposed paper is stated below. 

1) This paper proposes a flow based partitioning 

methodology that exploits MAX_FLOW_MIN_CUT 

algorithm, which can partition a netlist into two parts 

where each part belongs to a power domain. This 

becomes basic structure of stacked domain. 

 

2) The optimization flow is validated on an open source 

benchmark circuit. 

3) The proposed optimization facilitates the maximum 

flow of current between the stacked domains.         

 

II. PREVIOUS WORK 

This section describes the previous work done on netlist 

partitioning and voltage stacking. The power-island generation 

problem [2] describes region-based Multi Supply Voltage 

circuits, where each circuit is divided into "voltage islands". 

Here each voltage island occupies a contiguous physical space 

and assumes different supply voltages for power domains. But 

our stacked domain optimization shows balanced current 

across power domains. Voltage stacking of memory and logic 

in studied in [3], in this the series connection of corresponding 

power domains of the logic and memory is described. An 

ARM Cortex-M0+ and its peripherals are powered from 

supply of 0 V to VDD, and its 4-kB ROM as well as  the 16-

kB SRAM are powered from supply VDD to 2VDD satisfying 

2:1 ratio of voltages. Stacked-domain technique applied to a 

complete MCU or microcontroller unit [5] is ad hoc and it has 

a standard design flow. But it is not applicable to wider range of 

designs. System designed for energy reuse between two or 

more stacked CPUs is explained in [7]. To double the battery 

life, a charge-recycling circuit is used. This architecture 

consists of multiple CPUs where CPUs are divided as lower 

load group and upper load group. Electrical charges are shared 

among the stacked CPUs. Temporary charge storage and reuse 

is done      by the help of tank capacitor. But this design is not 

useful for complex realistic applications. A smart regulation 

scheme is described in [8]; this design is relatively complex, 

which consists of processor cores.  

Different types of netlist partitioning have been studied in 

the previous literature. We highlight three basic netlist 

partitioning approaches. 

 

A.  Move-Based Netlist Partitioning 

 Kernighan and Lin [6] and Fiduccia and Mattheyses [4] 

proposed move based algorithms for network partitions. The 

algorithm in [4] iteratively move or swap a pair vertices but in 

[6] in any single move only a single vertex will be moved 

across the cut at reducing net-cut costs. Vertices are weighted. 

A gain function helps in partitioning a set of vertices into two 

parts while maintaining minimized number of hyper edge cuts 

and balanced weights. FM algorithm adds new features to K-L 

heuristic. Improvements to the FM and KL algorithms have  

been  proposed,  such as   multilevel k-way hyper graph 

partitioning algorithm substantially improves the existing KL 

algorithm[10], multilevel extension of FM based partitioning 

technique, in which optimal placement and partitioning 

algorithms are developed based on Gray code-based 

enumeration and branch-and-bound [9]. 

 

B.  Clustering Based Netlist Partitioning 

 A circuit clustering technique for minimizing the delay 

under general delay model is explained in [12]. Algorithm has 

two phases, labelling phase and clustering phase. Delay 

minimization is from PIs (primary input) to POs (primary 

output) where area constraints are taken into consideration. 
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C. Flow-Based Netlist Partitioning 

 An iterative max flow and min cut calculation and 

clustering process to obtain a balanced bi partitioning solution 

is explained in [11]. It provides comparatively better quality 

solution of flow-based partitioning, meeting an objective of 

obtaining min-cut. Using the flow based partitioning method; 

stacked domain implementation has been performed in [1]. 

The implementation flow of [1] is as shown below. 

 

Fig 2. Stacked domain implementation flow 

 

Fig 2 demonstrates stacked domain implementation flow. 

The stacked-domain implementation explained in [1], the 

netlist is partitioned before the actual floor-planning stage in 

order to define the power domain of each block or instance. A 

trial placement is performed before actual placement because 

the optimization process during placement stage upsize the 

cells and inserts buffers. This could result in change in the 

current profile of each power domain. This results in current 

imbalance where balance had happened during the 

partitioning stage. In order to assign cells or instances to 

corresponding power domains a technique called layout-

aware partitioning is performed. A particular layout region is 

defined for every power domain where each one of these 

power domain has a continuous region. There is a need for 

minimizing the boundary length between two power domains 

which is performed using an optimization technique referred 

as dynamic programming. Commercial APR tool legalizes 

the placement of instances within the region defined for each 

power domain. Then floor plan is updated by shifting the 

power domains and inserting level shifters between power 

domains. Level shifter insertion done with the aim of 

minimizing wire length using a matching-based optimization. 

Although partitioning flow will be aware of critical timing 

paths as a result of trial or initial placement, insertion of level 

shifter as well as legalization of instant placement incur timing 

violations. An incremental optimization of the placement is 

performed including VT-swapping and gate sizing in order to 

fix timing violations.  

 

In this paper, the improved version of flow-based netlist 

partitioning approach is applied which is demonstrated taking 

into consideration the basics of [11] for partitioning the circuit 

into two different power domains. 

 

III. PROPOSED WORK 

 The proposed netlist partitioning algorithm partition the 

netlist into two parts based on current flow between the 

cells/instances. Partitioning is done on the basis of iterative 

max flow, min cut process. The Ford-Fulkerson algorithm is 

used as a method that resolves the max flow, min cut 

problem. Flow-based method divides instances into two 

power domains with the objective of 1) minimizing the 

number of cuts, 2) balancing the current between two 

partitions or clusters (where two partitions represent two 

power domains in stacked domain design). 

  Max flow min cut theorem, finds solution for 

partitioning with minimized number of cuts for the given 

netlist through the method of max flow optimization. But 

this cannot ensure balancing constraints are met. To meet 

balancing constraint after every max flow process, need to 

cluster cut edge node/ vertex with one neighbor vertex, 

forming a super vertex. This is done to avoid getting same 

solution for partitioning. Once an updated flow network is 

obtained, another set of max flow computation and 

optimization is performed. This approach will perform max 

flow computation as well as clustering iteratively unless and 

until the balancing criteria is obtained. In this process, 

process stops when current iteration flow is greater than 

previous flow meeting max flow objective and min number 

of cuts are obtained. Fig. 3 demonstrates basic idea of the 

flow based partitioning. 

 
 

 
(a) 

 

 
(b) 
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(c) 

 

(d) 

Fig 3. Flow-based net list partitioning. 0thand 5th nodes are Source and Sink, 

respectively. Dotted lines denote cuts. Number on edges represents actual 

flow value which is current flow in this algorithm. (a) Initial graph 

representing flow network. (b) First iteration with max flow min- cut 

computation. (c) First clustering operation and second iteration of max flow 
min- cut computation (d) Second clustering operation 

 

Algorithm 1 explains proposed Flow based netlist 

partitioning technique. 

 

Algorithm 1: Flow based netlist partitioning 

 For a given netlist, numbers of cells/instances are 

represented by ‘V’ or ‘n’ which represents vertices / nodes in 

graph representation of netlist. Connection between 

cells/instances is represented by ‘e’ which represents edges in 

graph representation of netlist. 

Step 1. Pre_placement of instances: Initial placement of cells 

based on the position of cells defined in netlist file. 

Step 2. Define source and sink node: The flow between 

vertices selected as source and sink may not cover the 

complete flow network, if two nodes of the netlist are 

selected randomly as source and sink nodes, which 

results in unbalanced partitioning solutions. To 

address this problem instances which are located near 

core boundary will be considered as source and sink. 

Step 3. Convert given netlist into a graph, in which a graph has 

nodes representing cells, edges representing 

connection between cells with edge capacity defining 

current flow between nodes. 

Step 4. Set initial flow to infinity. I.e. Present flow  ∞ 

 Step 5. Apply Max flow Min cut algorithm in order to 

partition netlist into two parts : The max flow min-cut 

theorem is defined as  in any flow network,  maximum amount 

of flow that is being passed from  source node to sink node is 

equal to sum of  weight of the edges in the minimum cut, i.e. 

the smallest total weight of the edges which if removed would 

disconnect the source from the sink. The following steps are 

performed to find max flow and min cut for flow network. 

 

i. Initialize the variables V=100,n=0,e=0, capacity[][], 

flow[][]; (V= number of vertices, n= number of nodes, 

e= number of edges, capacity[][] = residual capacity 

matrix, flow[][]= actual flow matrix ). 

ii. Read graph values from keyboard. 

iii. Print read values. 

iv. Loop for n-2 iterations (n represents number of nodes)    

 //Ford Fulkerson algorithm 

 

A. Call function minCut and max_flow. 

a. Define a residual graph; store the capacities in 

the original graph into residual graph. 

b.   Augment the flow if a path exists from 

source node to sink node. An augmenting 

path is a path from source to sink, which is 

a simple path and does not include any 

cycles. Augmenting path passes only 

through positive weighted edges. 

c. BFS (breadth first search) function returns 

true, only if there exists a path from source 

node to sink node in residual graph. ( s→ 

source, t→ sink) 

d. Create an array which represent visited 

array. All vertices are marked as not visited. 

e. Create a queue of visited vertices, check 

source vertex and source vertex is marked as 

visited. 

f. If sink is reached in BFS process if started from 

source, then return true, else return false. 

g. Find the minimum residual capacity of the 

edges along the path which is filled by BFS. In 

other words through the path which is found, 

find the maximum flow through it. Residual 

capacity indicates how much flow is still 

allowed in each edge of the network graph. All 

edges have strictly positive residual capacity. 

h. Reverse edges along the path found. Update 

residual capacities of each edge. 

i. Max flow is obtained. 

j. Find the vertices reachable from source using dfs 

(depth first search) function. 

k. The dfs function marks elements of array, 

visited[i] as true, if i can be reachable from 

source. Initially values in array visited [] must 

be false. Where i is any node in graph. 

l. Print all the edges those are from a reachable 

vertex to non-reachable vertex in the original 

graph. Min cut is obtained. 

 

B. Print min cut edges in ith iteration. 

C. Print max flow that is obtained ithiteration. 

D. If  (present flow is not equal to zero and greater 

than past flow)  then 

                       Print max flow attained and terminate program. 
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                 Else 

                Assign present flow to past flow. 

 

E. End If 

 

v. End loop 

 

Step 6. Merge cut edge node with neighbor node. Cut edge 

node is merged with a node which has minimum 

flow difference between actual capacity and residual 

capacity 

 

Step 7. Update flow values of graph. 

Step 8. Print flow graph (represented by capacity flow graph) 

Step 9. End 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

Proposed netlist partitioning algorithm is implemented 

using C++ and simulated using open source cross-platform 

IDE that is Code Blocks. Proposed algorithm was 

implemented on MCNC benchmark circuit. A Block netlist 

“hp” is used for implementation, which is in “yal” text 

format. The MCNC benchmark was chosen because netlist 

has information like cell dimension which was helpful to 

perform initial placement of cells, network section gives 

information of interconnection between cells/modules that 

was useful to get edges in graph representation. Random 

current flow values are assigned to each edge in the graph, as 

MCNC benchmark suite doesn’t have current information 

between cells. Netlist is converted into graph format using 

python scripting language and simulated using 

ANACONDA which is an open source distribution for 

Python. Proposed algorithm took less than 5 seconds to 

execute for these benchmark circuits on a PC with 4GB 

RAM. Table 1 gives details of MCNC benchmark circuit 

HP. 

 
 

TABLE 1:  MCNC BENCH MARK CIRCUIT 

 
Ben

chm

ark 

Modules/ 

Cells 

Total 

number 

of nets 

Number 

of  Pins 

No of 

iterations 

Run 

Time ( 

in 

seconds

) 

HP 11 83  309 4 1.97 

 
Table 1 describes the No of cells, No of pins and total 

nets under benchmark. Along with that the no of iterations 

performed to partition netlist and run time are specified in 

table. For the benchmark circuit “HP” netlist has 11 modules 

where each module represents a cell/instance, 309 pins and 

83 nets. Among 83 nets, only nets with forward direction are 

taken to form directed graph since implemented algorithm 

only considers forward flow. “HP” circuit takes 4 iterations 

for netlist partitioning and it takes 1.97 seconds to execute 

the code.   

Following section describes the partitioning process 

using bench mark circuits “HP”. 

 

 
Fig 4. Graph representation of netlist with edges assigned with random 

current values for “HP” benchmark circuit. 

 

 Fig 4 shows initial flow graph with random current values 

assigned to edges for “HP” netlist. For the MCNC benchmark 

circuit “hp” there are 11 vertices and 41 nets in graphical 

representation. 0th node is considered as “Source” node and 

10th node is considered as “sink” node.  So V= [0 1 2 3 4 5 6 

7 8 9 10] a list of nodes. Random current values are assigned 

in the range of 5 to 15. Table 2 shows different iterations and 

flow values and cut edges at each iteration. Here program 

stops after 4 iterations when stopping condition is satisfied. 

Programs prints the max flow attainted, cut edges and which 

node be merged in each iteration. After each iteration node is 

merged with neighboring node based on criteria that is a node 

which has minimum flow difference between actual capacity 

and residual capacity. At the final iteration max flow obtained 

is 40 and cut edges are 3-4, 3-5, 3-10, 6-10, 9-10.   
 

TABLE 2: PARTITION OUTPUT AFTER  EACH ITERATION FOR 
“HP” 

Iteration Max flow Cut edges Nodes to be 

merged 

1 80 0-1, 0-2, 0-3, 0-10, 5-10, 
6-10, 9-10 

0,9 (forms 
super vertex 9 ) 

2 67 1-2, 1-10, 3-10, 5-10, 

6-10, 9-10 

1,9 (forms a 

super vertex 9 

3 33 2-10, 6-10, 9-10 2, 9 (forms a 
super vertex 9) 

4 40 3-4,  3-5, 3-10, 6-10, 9-10 3,9 (forms 

super vertex 9) 

 

 Finally we get 2 clusters in which cluster 1 has nodes 

0,1,2, 3,9 and cluster 2 has nodes 4,5,6,7,8,10. Each cluster 

corresponds to a power domain which becomes a basic 

structure for stacked domain implementation. Clustering is 

observed visually after seeing output of each iteration. Fig 5 

shows the visual representation of two clusters. 

 

Fig 5. Final partition with two clusters for benchmark circuit “HP” 
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    The flow based partitioning is better compared to KL and 

FM algorithms, where latter ones perform move based 

partitioning.  

The reasons are listed below: 

i. KL and FM algorithms require arbitrary initial 

partition of vertex set but a global partitioning 

approach relies on entire graph rather than initial 

partition otherwise it will affect final solution quality.  

Proposed algorithm will not take into consideration the 

initial partition; it works on entire graph providing 

better quality solution. 

ii. Initial edge swapping or vertex movement is done 

randomly. Whereas flow based partitioning selects 

source and sink nodes which are at core boundary or in 

certain situation adds dummy vertices to handle 

unbalanced partition.  

iii. FM and KL algorithms can only form two partitions. 

Whereas extending flow based algorithm, more than 

two partitions can be formed which can result in 

formation of multiple power domains of stacked 

implementation. 

iv. Time complexity of KL algorithm is O(n3) per pass [6], 

where N represents number of vertices. For FM time 

complexity is O(P) per pass [4] , where P is total 

number of pins. But for flow based algorithm which 

follows max flow min cut process, total time 

complexity is O(|V||E|) for a connected circuit N = (V, 

E), which is same as one max-flow computation [11]. 

Taking all the above points into consideration, our flow 

based algorithm is best suited for flow network as well as for 

stacked domain implementation compared to KL and FM 

partitioning methods. 
 

V. CONCLUSION 

In this paper, the flow based logic design partitioning is 

demonstrated, which provides basic structure for optimization 

framework of stacked power domain implementation. 

Algorithm partition the netlist into two parts based on current 

flow between the instances. Where each part or cluster 

corresponds to a power domain. Iterative max flow min cut 

process partition the netlist. Few improvements are 

implemented compared base flow based algorithm [1] which 

includes: 1) V shaped vertices were removed in base algorithm 

during clustering phase , where in proposed algorithm V 

shaped vertices are not considered instead clustering is done 

based on flow difference. 2) Need for Super Source and Super 

Sink is removed in proposed algorithm where nodes located 

near core boundary are taken as Source and Sink. The 

algorithm is implemented in C++ and netlist to graph 

conversion is implemented using python.  Algorithm tested 

successfully using MCNC bench mark circuit. Partitioning 

provides nearly balanced currents for one of bench mark 

circuit. Our future work includes, a. Extending the partitioning 

approach in obtaining 3 or multiple power domains. b. 

Reduction in number of level shifter which should be inserted 

between power domains by using control switch. 
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