
Flow Based Logic Design

Partitioning

Anupama Patil

Department of Electronics and Communication
B M S College of Engineering

Bengaluru, India

Abstract— The major challenges encountered during the design

of IC include battery lifetime and energy constraints especially

for Internet of Things and mobile applications. Many techniques

in the domain of low power and power management have gained

widespread attention because of the significance of power

efficiency. Due to the increasing complexity of systems on chips

(SoCs), multiple power domains on a single integrated circuit

(IC) are becoming more common as process nodes are getting

smaller. Stacked power domain approach connects voltage

domains in series, which effectively improves battery lifetime and

efficiency of power delivery. Stacked domain implementation

requires partitioning the logic design into two power domains.

But this approach requires balancing the currents between

power domains. Level shifter insertion between power domain

regions, can result in remarkable area penalties. In the

proposed paper, a flow based partitioning algorithm is

introduced. Considering the solution obtained after initial

placement, a flow-based partitioning is applied, which is based on

maximum flow and minimum cut algorithm and aware of cell

placement in order to partition all cells into two different power

domains while achieving balance in cross-domain currents.

Algorithm is implemented on MCNC bench mark circuit.

Algorithm removes the need for dummy vertices (super source

and super sink) to do partitioning.

Keywords—max flow min cut; Ford Fulkerson, Stacked power

domain

I. INTRODUCTION

The partitioning is defined as dividing a chip into smaller

blocks/sub blocks. Partitioning is carried out to separate

different functional blocks and to ease routing and placement.

Partitioning is the initial step in the physical design process.

The designer breaks the larger design into various smaller

functional modules/blocks and then proceeds with

implementation of these smaller modules during RTL design

phase. These smaller functional blocks are structurally

instantiated or linked in the main module. Main module is

called TOP LEVEL module. This type of partitioning is called

as Logical Partitioning.

There are many techniques of multi-supply voltage, which

allows operation of different blocks with different voltages.

Operating at a lower voltage reduces power consumption, but

with the compromise in speed. Depending upon the

performance requirements, different parts of a chip can use

different supply voltages. One of the solutions to reduce

power is using multiple supply voltage implementations, since

reduction in the voltage has a squared impact on active power

consumption. Multiple supply voltage implementation

requires insertion of level shifters on signals that cross

different voltage levels. Without using level shifters, the

signals crossing voltage levels cannot be sampled correctly.

For placement and optimization to implement whole

design, the tool must know that no logic can be moved from

one power domain to another power domain. The tool must be

capable enough to use the correct set of timing libraries for

each of the power domain. Lower voltage can result in timing

issues and can increase transition time. Logic needs to be

upsized or inserted, to overcome timing issues which results in

more power consumption.

If there exists a misalignment in battery voltages in

comparison to scaled core voltages, this can result in

inefficiency which requires saving of power. A stacked

power domain design normally connects power domains in

series which are connected parallelly in the conventional

design for the purpose of aligning the system on chip power

domain voltages with battery voltages [1]. The top power

domain is placed over the bottom power domain in order to

reduce the current to half and double the voltage compared to

that of conventional design. This technique performs implicit

2:1 down conversion of external supplies. If the supply

voltage of a conventional design i.e. power supply VDD = V

and ground supply VSS = 0, the power and ground supplies

for the top and bottom domains in the stacked-domain design

are (2V, V) and (V, 0), respectively.

(a)

(b)

Fig 1. (a) Conventional design. (b) Stacked power-domain design

 Fig 1 shows comparison between Conventional design and

stacked power domain design. In the above figure, VR

represents voltage regulator. The arrow in red symbolizes

stacked current. The arrow in orange symbolizes current from

the Voltage Regulator.

Battery lifetime (T) and external power (Pext) are inversely

proportional to each other. In a stacked-domain,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070631
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1419

www.ijert.org
www.ijert.org
www.ijert.org

 Pext = Pstk+ PVR,in = Pstk+ PVR,out/ηVR

(1)

Where, Pext is Total input power from external supply

 P
stk is direct power of stacked power domain from

external supply

P
VR,in is Voltage regulator input power from external

supply

 PVR,out is Voltage regulator output power to core

 η
VR is Voltage regulator power conversion efficiency

 In a traditional design, power supply is only provided

through Voltage Regulator. Total input power from the

external supply for a traditional design (P`ext) is calculated as,

 P`ext=Pcore/ηVR

(2)

Where, Pcore is Total core power consumption

 The Ratio between the battery lifetime of stacked-

domain design (T) and the battery lifetime of conventional

design (T`) is,

 T/T`= (2 · Istk+ IVR) / (2 · ηVR· Istk+IVR) (3)

Where Istk is Stacked current i.e. the current from top power

domain to bottom power domain

 I
VR is Voltage regulator output current

 The lifetime of a battery increases with a smaller IVR

because the power efficiency of the Voltage Regulator reduces

with smaller currents supply. If there is a proper balance of

current between two different domains (i.e., IVR= 0) in stacked

domain implementation, the design results in improvement in

lifetime of a battery over the traditional design.

 There are some challenges related to stacked power

domain implementation.

i. Level shifters are required for the communication

between the power domains; such level shifter can

convert extreme levels of signal.

ii. The improvement in power efficiency is dependent

directly on balancing of current between two power

domains.

iii. Partitioning optimization must take into consideration

various operating scenarios, power penalties and area

penalties and also impact of level shifters insertion on

timing.

iv. Extending stacked domain concept to three or multiple

power domains can increase number of level shifters

and demand topology of power delivery which can be

more complex.

 The contribution of the proposed paper is stated below.

1) This paper proposes a flow based partitioning

methodology that exploits MAX_FLOW_MIN_CUT

algorithm, which can partition a netlist into two parts

where each part belongs to a power domain. This

becomes basic structure of stacked domain.

2) The optimization flow is validated on an open source

benchmark circuit.

3) The proposed optimization facilitates the maximum

flow of current between the stacked domains.

II. PREVIOUS WORK

This section describes the previous work done on netlist

partitioning and voltage stacking. The power-island generation

problem [2] describes region-based Multi Supply Voltage

circuits, where each circuit is divided into "voltage islands".

Here each voltage island occupies a contiguous physical space

and assumes different supply voltages for power domains. But

our stacked domain optimization shows balanced current

across power domains. Voltage stacking of memory and logic

in studied in [3], in this the series connection of corresponding

power domains of the logic and memory is described. An

ARM Cortex-M0+ and its peripherals are powered from

supply of 0 V to VDD, and its 4-kB ROM as well as the 16-

kB SRAM are powered from supply VDD to 2VDD satisfying

2:1 ratio of voltages. Stacked-domain technique applied to a

complete MCU or microcontroller unit [5] is ad hoc and it has

a standard design flow. But it is not applicable to wider range of

designs. System designed for energy reuse between two or

more stacked CPUs is explained in [7]. To double the battery

life, a charge-recycling circuit is used. This architecture

consists of multiple CPUs where CPUs are divided as lower

load group and upper load group. Electrical charges are shared

among the stacked CPUs. Temporary charge storage and reuse

is done by the help of tank capacitor. But this design is not

useful for complex realistic applications. A smart regulation

scheme is described in [8]; this design is relatively complex,

which consists of processor cores.

Different types of netlist partitioning have been studied in

the previous literature. We highlight three basic netlist

partitioning approaches.

A. Move-Based Netlist Partitioning

 Kernighan and Lin [6] and Fiduccia and Mattheyses [4]

proposed move based algorithms for network partitions. The

algorithm in [4] iteratively move or swap a pair vertices but in

[6] in any single move only a single vertex will be moved

across the cut at reducing net-cut costs. Vertices are weighted.

A gain function helps in partitioning a set of vertices into two

parts while maintaining minimized number of hyper edge cuts

and balanced weights. FM algorithm adds new features to K-L

heuristic. Improvements to the FM and KL algorithms have

been proposed, such as multilevel k-way hyper graph

partitioning algorithm substantially improves the existing KL

algorithm[10], multilevel extension of FM based partitioning

technique, in which optimal placement and partitioning

algorithms are developed based on Gray code-based

enumeration and branch-and-bound [9].

B. Clustering Based Netlist Partitioning

 A circuit clustering technique for minimizing the delay

under general delay model is explained in [12]. Algorithm has

two phases, labelling phase and clustering phase. Delay

minimization is from PIs (primary input) to POs (primary

output) where area constraints are taken into consideration.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070631
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1420

https://en.wikipedia.org/wiki/Kernighan%E2%80%93Lin_algorithm
https://en.wikipedia.org/wiki/Kernighan%E2%80%93Lin_algorithm
www.ijert.org
www.ijert.org
www.ijert.org

C. Flow-Based Netlist Partitioning

 An iterative max flow and min cut calculation and

clustering process to obtain a balanced bi partitioning solution

is explained in [11]. It provides comparatively better quality

solution of flow-based partitioning, meeting an objective of

obtaining min-cut. Using the flow based partitioning method;

stacked domain implementation has been performed in [1].

The implementation flow of [1] is as shown below.

Fig 2. Stacked domain implementation flow

Fig 2 demonstrates stacked domain implementation flow.

The stacked-domain implementation explained in [1], the

netlist is partitioned before the actual floor-planning stage in

order to define the power domain of each block or instance. A

trial placement is performed before actual placement because

the optimization process during placement stage upsize the

cells and inserts buffers. This could result in change in the

current profile of each power domain. This results in current

imbalance where balance had happened during the

partitioning stage. In order to assign cells or instances to

corresponding power domains a technique called layout-

aware partitioning is performed. A particular layout region is

defined for every power domain where each one of these

power domain has a continuous region. There is a need for

minimizing the boundary length between two power domains

which is performed using an optimization technique referred

as dynamic programming. Commercial APR tool legalizes

the placement of instances within the region defined for each

power domain. Then floor plan is updated by shifting the

power domains and inserting level shifters between power

domains. Level shifter insertion done with the aim of

minimizing wire length using a matching-based optimization.

Although partitioning flow will be aware of critical timing

paths as a result of trial or initial placement, insertion of level

shifter as well as legalization of instant placement incur timing

violations. An incremental optimization of the placement is

performed including VT-swapping and gate sizing in order to

fix timing violations.

In this paper, the improved version of flow-based netlist

partitioning approach is applied which is demonstrated taking

into consideration the basics of [11] for partitioning the circuit

into two different power domains.

III. PROPOSED WORK

 The proposed netlist partitioning algorithm partition the

netlist into two parts based on current flow between the

cells/instances. Partitioning is done on the basis of iterative

max flow, min cut process. The Ford-Fulkerson algorithm is

used as a method that resolves the max flow, min cut

problem. Flow-based method divides instances into two

power domains with the objective of 1) minimizing the

number of cuts, 2) balancing the current between two

partitions or clusters (where two partitions represent two

power domains in stacked domain design).

 Max flow min cut theorem, finds solution for

partitioning with minimized number of cuts for the given

netlist through the method of max flow optimization. But

this cannot ensure balancing constraints are met. To meet

balancing constraint after every max flow process, need to

cluster cut edge node/ vertex with one neighbor vertex,

forming a super vertex. This is done to avoid getting same

solution for partitioning. Once an updated flow network is

obtained, another set of max flow computation and

optimization is performed. This approach will perform max

flow computation as well as clustering iteratively unless and

until the balancing criteria is obtained. In this process,

process stops when current iteration flow is greater than

previous flow meeting max flow objective and min number

of cuts are obtained. Fig. 3 demonstrates basic idea of the

flow based partitioning.

(a)

(b)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070631
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1421

www.ijert.org
www.ijert.org
www.ijert.org

(c)

(d)

Fig 3. Flow-based net list partitioning. 0thand 5th nodes are Source and Sink,

respectively. Dotted lines denote cuts. Number on edges represents actual

flow value which is current flow in this algorithm. (a) Initial graph

representing flow network. (b) First iteration with max flow min- cut

computation. (c) First clustering operation and second iteration of max flow
min- cut computation (d) Second clustering operation

Algorithm 1 explains proposed Flow based netlist

partitioning technique.

Algorithm 1: Flow based netlist partitioning

 For a given netlist, numbers of cells/instances are

represented by ‘V’ or ‘n’ which represents vertices / nodes in

graph representation of netlist. Connection between

cells/instances is represented by ‘e’ which represents edges in

graph representation of netlist.

Step 1. Pre_placement of instances: Initial placement of cells

based on the position of cells defined in netlist file.

Step 2. Define source and sink node: The flow between

vertices selected as source and sink may not cover the

complete flow network, if two nodes of the netlist are

selected randomly as source and sink nodes, which

results in unbalanced partitioning solutions. To

address this problem instances which are located near

core boundary will be considered as source and sink.

Step 3. Convert given netlist into a graph, in which a graph has

nodes representing cells, edges representing

connection between cells with edge capacity defining

current flow between nodes.

Step 4. Set initial flow to infinity. I.e. Present flow  ∞

 Step 5. Apply Max flow Min cut algorithm in order to

partition netlist into two parts : The max flow min-cut

theorem is defined as in any flow network, maximum amount

of flow that is being passed from source node to sink node is

equal to sum of weight of the edges in the minimum cut, i.e.

the smallest total weight of the edges which if removed would

disconnect the source from the sink. The following steps are

performed to find max flow and min cut for flow network.

i. Initialize the variables V=100,n=0,e=0, capacity[][],

flow[][]; (V= number of vertices, n= number of nodes,

e= number of edges, capacity[][] = residual capacity

matrix, flow[][]= actual flow matrix).

ii. Read graph values from keyboard.

iii. Print read values.

iv. Loop for n-2 iterations (n represents number of nodes)

 //Ford Fulkerson algorithm

A. Call function minCut and max_flow.

a. Define a residual graph; store the capacities in

the original graph into residual graph.

b. Augment the flow if a path exists from

source node to sink node. An augmenting

path is a path from source to sink, which is

a simple path and does not include any

cycles. Augmenting path passes only

through positive weighted edges.

c. BFS (breadth first search) function returns

true, only if there exists a path from source

node to sink node in residual graph. (s→

source, t→ sink)

d. Create an array which represent visited

array. All vertices are marked as not visited.

e. Create a queue of visited vertices, check

source vertex and source vertex is marked as

visited.

f. If sink is reached in BFS process if started from

source, then return true, else return false.

g. Find the minimum residual capacity of the

edges along the path which is filled by BFS. In

other words through the path which is found,

find the maximum flow through it. Residual

capacity indicates how much flow is still

allowed in each edge of the network graph. All

edges have strictly positive residual capacity.

h. Reverse edges along the path found. Update

residual capacities of each edge.

i. Max flow is obtained.

j. Find the vertices reachable from source using dfs

(depth first search) function.

k. The dfs function marks elements of array,

visited[i] as true, if i can be reachable from

source. Initially values in array visited [] must

be false. Where i is any node in graph.

l. Print all the edges those are from a reachable

vertex to non-reachable vertex in the original

graph. Min cut is obtained.

B. Print min cut edges in ith iteration.

C. Print max flow that is obtained ithiteration.

D. If (present flow is not equal to zero and greater

than past flow) then

 Print max flow attained and terminate program.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070631
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1422

https://en.wikipedia.org/wiki/Flow_network
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Direction
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Direction
https://en.wikipedia.org/wiki/Minimum_cut
www.ijert.org
www.ijert.org
www.ijert.org

 Else

 Assign present flow to past flow.

E. End If

v. End loop

Step 6. Merge cut edge node with neighbor node. Cut edge

node is merged with a node which has minimum

flow difference between actual capacity and residual

capacity

Step 7. Update flow values of graph.

Step 8. Print flow graph (represented by capacity flow graph)

Step 9. End

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Proposed netlist partitioning algorithm is implemented

using C++ and simulated using open source cross-platform

IDE that is Code Blocks. Proposed algorithm was

implemented on MCNC benchmark circuit. A Block netlist

“hp” is used for implementation, which is in “yal” text

format. The MCNC benchmark was chosen because netlist

has information like cell dimension which was helpful to

perform initial placement of cells, network section gives

information of interconnection between cells/modules that

was useful to get edges in graph representation. Random

current flow values are assigned to each edge in the graph, as

MCNC benchmark suite doesn’t have current information

between cells. Netlist is converted into graph format using

python scripting language and simulated using

ANACONDA which is an open source distribution for

Python. Proposed algorithm took less than 5 seconds to

execute for these benchmark circuits on a PC with 4GB

RAM. Table 1 gives details of MCNC benchmark circuit

HP.

TABLE 1: MCNC BENCH MARK CIRCUIT

Ben

chm

ark

Modules/

Cells

Total

number

of nets

Number

of Pins

No of

iterations

Run

Time (

in

seconds

)

HP 11 83 309 4 1.97

Table 1 describes the No of cells, No of pins and total

nets under benchmark. Along with that the no of iterations

performed to partition netlist and run time are specified in

table. For the benchmark circuit “HP” netlist has 11 modules

where each module represents a cell/instance, 309 pins and

83 nets. Among 83 nets, only nets with forward direction are

taken to form directed graph since implemented algorithm

only considers forward flow. “HP” circuit takes 4 iterations

for netlist partitioning and it takes 1.97 seconds to execute

the code.

Following section describes the partitioning process

using bench mark circuits “HP”.

Fig 4. Graph representation of netlist with edges assigned with random

current values for “HP” benchmark circuit.

 Fig 4 shows initial flow graph with random current values

assigned to edges for “HP” netlist. For the MCNC benchmark

circuit “hp” there are 11 vertices and 41 nets in graphical

representation. 0th node is considered as “Source” node and

10th node is considered as “sink” node. So V= [0 1 2 3 4 5 6

7 8 9 10] a list of nodes. Random current values are assigned

in the range of 5 to 15. Table 2 shows different iterations and

flow values and cut edges at each iteration. Here program

stops after 4 iterations when stopping condition is satisfied.

Programs prints the max flow attainted, cut edges and which

node be merged in each iteration. After each iteration node is

merged with neighboring node based on criteria that is a node

which has minimum flow difference between actual capacity

and residual capacity. At the final iteration max flow obtained

is 40 and cut edges are 3-4, 3-5, 3-10, 6-10, 9-10.

TABLE 2: PARTITION OUTPUT AFTER EACH ITERATION FOR
“HP”

Iteration Max flow Cut edges Nodes to be

merged

1 80 0-1, 0-2, 0-3, 0-10, 5-10,
6-10, 9-10

0,9 (forms
super vertex 9)

2 67 1-2, 1-10, 3-10, 5-10,

6-10, 9-10

1,9 (forms a

super vertex 9

3 33 2-10, 6-10, 9-10 2, 9 (forms a
super vertex 9)

4 40 3-4, 3-5, 3-10, 6-10, 9-10 3,9 (forms

super vertex 9)

 Finally we get 2 clusters in which cluster 1 has nodes

0,1,2, 3,9 and cluster 2 has nodes 4,5,6,7,8,10. Each cluster

corresponds to a power domain which becomes a basic

structure for stacked domain implementation. Clustering is

observed visually after seeing output of each iteration. Fig 5

shows the visual representation of two clusters.

Fig 5. Final partition with two clusters for benchmark circuit “HP”

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070631
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1423

www.ijert.org
www.ijert.org
www.ijert.org

 The flow based partitioning is better compared to KL and

FM algorithms, where latter ones perform move based

partitioning.

The reasons are listed below:

i. KL and FM algorithms require arbitrary initial

partition of vertex set but a global partitioning

approach relies on entire graph rather than initial

partition otherwise it will affect final solution quality.

Proposed algorithm will not take into consideration the

initial partition; it works on entire graph providing

better quality solution.

ii. Initial edge swapping or vertex movement is done

randomly. Whereas flow based partitioning selects

source and sink nodes which are at core boundary or in

certain situation adds dummy vertices to handle

unbalanced partition.

iii. FM and KL algorithms can only form two partitions.

Whereas extending flow based algorithm, more than

two partitions can be formed which can result in

formation of multiple power domains of stacked

implementation.

iv. Time complexity of KL algorithm is O(n3) per pass [6],

where N represents number of vertices. For FM time

complexity is O(P) per pass [4] , where P is total

number of pins. But for flow based algorithm which

follows max flow min cut process, total time

complexity is O(|V||E|) for a connected circuit N = (V,

E), which is same as one max-flow computation [11].

Taking all the above points into consideration, our flow

based algorithm is best suited for flow network as well as for

stacked domain implementation compared to KL and FM

partitioning methods.

V. CONCLUSION

In this paper, the flow based logic design partitioning is

demonstrated, which provides basic structure for optimization

framework of stacked power domain implementation.

Algorithm partition the netlist into two parts based on current

flow between the instances. Where each part or cluster

corresponds to a power domain. Iterative max flow min cut

process partition the netlist. Few improvements are

implemented compared base flow based algorithm [1] which

includes: 1) V shaped vertices were removed in base algorithm

during clustering phase , where in proposed algorithm V

shaped vertices are not considered instead clustering is done

based on flow difference. 2) Need for Super Source and Super

Sink is removed in proposed algorithm where nodes located

near core boundary are taken as Source and Sink. The

algorithm is implemented in C++ and netlist to graph

conversion is implemented using python. Algorithm tested

successfully using MCNC bench mark circuit. Partitioning

provides nearly balanced currents for one of bench mark

circuit. Our future work includes, a. Extending the partitioning

approach in obtaining 3 or multiple power domains. b.

Reduction in number of level shifter which should be inserted

between power domains by using control switch.

ACKNOWLEDGMENT

 I would like to extend my token of gratitude to Dr. R

Jayagowri, Associate Professor, Department of Electronics

and Communication Engineering, B M S College of

Engineering, Bengaluru, for her immense support and constant

guidance throughout this work and for her valuable

suggestions which helped me to complete this work.

REFERENCES
[1] K. Blutman, H. Fatemi, A. B. Kahng, A. Kapoor, J. Li, and J. P.

de Gyvez, “Logic Design Partitioning For Stacked Power
Domains,” in Proc. IEEE Transactions On Very Large Scale

Integration (VLSI) Systems, Aug 2017, pp.3045-3056.

[2] R. L. S. Ching, E. F. Y. Young, K. C. K. Leung, and C.
Chu,“Post-placement voltage Island generation,” in Proc.

ICCAD, 2006, pp. 641–646.

[3] K. Blutman, Ajay Kapoor, Arjun Majumdar, Jacinto Garcia

Martinez, Juan Echeverri, Leo Sevat, Arnoud P, Hamed Fatemi,

Kofi A. A. Makinwa and J.P. de Gyvez, “A Low-Power

Microcontroller in a 40-nmCMOS Using Charge Recycling,” in
Proc. IEEE Journal of Solid-State Circuits, Jan 2017, pp. 950 –

960.

[4] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic
for improving network partitions,” in Proc. DAC, 1982, pp. 175–

181.

[5] K. Blutman, A. Kapoor, J. G. Martinez, H. Fatemi, and J. P. de
Gyvez, “Lower power by voltage stacking: A fine-grained

system design approach,” in Proc. DAC, 2016, pp.78-1–78-5.

[6] B. W. Kernighan and S. Lin, “An efficient heuristic
procedure for partitioning graphs,” Bell Syst. Tech. J. vol. 49, no.

2, pp. 291–307, 1970.

[7] K. Ueda, F. Morishita, S. Okura, L. Okamura, T. Yoshihara, and
K. Arimoto, “Low-power on-chip charge-recycling DC-DC

conversion circuit and system,” IEEE J. Solid-State Circuits,

vol. 48, no. 11, pp. 2608–2617, Nov. 2013.

[8] S. K. Lee, T. Tong, X. Zhang, D. Brooks, and G.-Y. Wei, “A 16-

core voltage-stacked system with an integrated switched-

capacitor DC-DC converter,” in Proc. Symp. VLSI Circuits,
2015, pp. C318–C319.

[9] G. Karypis and V. Kumar, “Multilevel K-way hypergraph

partitioning,” in Proc. DAC, 1999, pp. 343–348.
[10] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Improved

Algorithms for Hypergraph Bi partitioning,” in Proc. ASP-DAC,

2000, pp. 661–666.
[11] H. Yang and D. F. Wong, “Efficient network flow based min-cut

balanced partitioning,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 15, no. 12, pp. 1533–1540, Dec. 1996.
[12] K. Blutman, H. Fatemi, A. B. Kahng, A. Kapoor, J. Li, and J. P.

de Gyvez, “Floorplan and placement methodology for improved
energy reduction in stacked power-domain design,” in Proc.

ASP-DAC, 2017, pp.444–449.

[13] R. Rajaraman and D. F. Wong, “Optimum clustering for delay
minimization,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 14, no. 12, pp. 1490–1495, Dec. 1995.

[14] K. Blutman et al., “A microcontroller with 96% power-
conversion efficiency using stacked voltage domains,” in Proc.

IEEE Symp. VLSI Circuits, Jun. 2016, pp.1–2.

[15] A. E. Caldwell, A. B. Kahng, and I. L.Markov, “Optimal
partitioners and end-case placers for standard-cell layout,” IEEE

Trans. Comput.-AidedDes. Integr. Circuits Syst., vol. 19, no. 11,

pp. 1304–1313, Nov.2000.
[16] L. Guo, Y. Cai, Q. Zhou, and X. Hong, “Logic and layout aware

voltage Island generation for low power design,” in Proc. ASP-

DAC, 2007, pp.666–671.
[17] https://www.geeksforgeeks.org/minimum-cut-in-a-directed-

graph/

[18] https://cseweb.ucsd.edu/classes/wi09/cse242a/partition/ part.pdf

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS070631
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 07, July-2020

1424

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
https://www.geeksforgeeks.org/minimum-cut-in-a-directed-graph/
https://www.geeksforgeeks.org/minimum-cut-in-a-directed-graph/
https://cseweb.ucsd.edu/classes/wi09/cse242a/partition/
www.ijert.org
www.ijert.org
www.ijert.org

