Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 07, July-2020

Flow Based Logic Design
Partitioning

Anupama Patil
Department of Electronics and Communication
B M S College of Engineering
Bengaluru, India

Abstract— The major challenges encountered during the design
of IC include battery lifetime and energy constraints especially
for Internet of Things and mobile applications. Many techniques
in the domain of low power and power management have gained
widespread attention because of the significance of power
efficiency. Due to the increasing complexity of systems on chips
(SoCs), multiple power domains on a single integrated circuit
(IC) are becoming more common as process nodes are getting
smaller. Stacked power domain approach connects voltage
domains in series, which effectively improves battery lifetime and
efficiency of power delivery. Stacked domain implementation
requires partitioning the logic design into two power domains.
But this approach requires balancing the currents between
power domains. Level shifter insertion between power domain
regions, can result in remarkable area penalties. In the
proposed paper, a flow based partitioning algorithm is
introduced. Considering the solution obtained after initial
placement, a flow-based partitioning is applied, which is based on
maximum flow and minimum cut algorithm and aware of cell
placement in order to partition all cells into two different power
domains while achieving balance in cross-domain currents.
Algorithm is implemented on MCNC bench mark circuit.
Algorithm removes the need for dummy vertices (super source
and super sink) to do partitioning.

Keywords—max flow min cut; Ford Fulkerson, Stacked power
domain

I INTRODUCTION

The partitioning is defined as dividing a chip into smaller
blocks/sub blocks. Partitioning is carried out to separate
different functional blocks and to ease routing and placement.
Partitioning is the initial step in the physical design process.
The designer breaks the larger design into various smaller
functional modules/blocks and then proceeds with
implementation of these smaller modules during RTL design
phase. These smaller functional blocks are structurally
instantiated or linked in the main module. Main module is
called TOP LEVEL module. This type of partitioning is called
as Logical Partitioning.

There are many techniques of multi-supply voltage, which
allows operation of different blocks with different voltages.
Operating at a lower voltage reduces power consumption, but
with the compromise in speed. Depending upon the
performance requirements, different parts of a chip can use
different supply voltages. One of the solutions to reduce
power is using multiple supply voltage implementations, since
reduction in the voltage has a squared impact on active power
consumption. Multiple supply voltage implementation
requires insertion of level shifters on signals that cross
different voltage levels. Without using level shifters, the
signals crossing voltage levels cannot be sampled correctly.

For placement and optimization to implement whole
design, the tool must know that no logic can be moved from
one power domain to another power domain. The tool must be
capable enough to use the correct set of timing libraries for
each of the power domain. Lower voltage can result in timing
issues and can increase transition time. Logic needs to be
upsized or inserted, to overcome timing issues which results in
more power consumption.

If there exists a misalignment in battery voltages in
comparison to scaled core voltages, this can result in
inefficiency which requires saving of power. A stacked
power domain design normally connects power domains in
series which are connected parallelly in the conventional
design for the purpose of aligning the system on chip power
domain voltages with battery voltages [1]. The top power
domain is placed over the bottom power domain in order to
reduce the current to half and double the voltage compared to
that of conventional design. This technique performs implicit
2:1 down conversion of external supplies. If the supply
voltage of a conventional design i.e. power supply VDD =V
and ground supply VSS = 0, the power and ground supplies
for the top and bottom domains in the stacked-domain design

are (2V, V) and (V, 0), respectively.

Fig 1. (a) Conventional design. (b) Stacked power-domain design

Fig 1 shows comparison between Conventional design and
stacked power domain design. In the above figure, VR
represents voltage regulator. The arrow in red symbolizes
stacked current. The arrow in orange symbolizes current from
the Voltage Regulator.

Battery lifetime (T) and external power (Pex are inversely
proportional to each other. In a stacked-domain,

IJERTV9I S070631

www.ijert.org

1419

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 07, July-2020

Pext = Pstkt Pyriin = Pstkt PyRr out/MVR
1)

Where, Py is Total input power from external supply

Pe is direct power of stacked power domain from
external supply

Purin is Voltage regulator input power from external
supply

Pyrout is Voltage regulator output power to core

Mvr is Voltage regulator power conversion efficiency

In a traditional design, power supply is only provided
through Voltage Regulator. Total input power from the
external supply for a traditional design (P ex) is calculated as,

P‘ext:Pcore/nVR
)

Where, P is Total core power consumption

The Ratio between the battery lifetime of stacked-
domain design (T) and the battery lifetime of conventional

design (T") is,
TIT= (2 lsact IvR) /(2 - MR lstctIvR) 3)

Where g is Stacked current i.e. the current from top power
domain to bottom power domain

Iy is Voltage regulator output current

The lifetime of a battery increases with a smaller Iy
because the power efficiency of the Voltage Regulator reduces
with smaller currents supply. If there is a proper balance of
current between two different domains (i.e., lvg= 0) in stacked
domain implementation, the design results in improvement in
lifetime of a battery over the traditional design.

There are some challenges related to stacked power

domain implementation.

i. Level shifters are required for the communication
between the power domains; such level shifter can
convert extreme levels of signal.

ii. The improvement in power efficiency is dependent
directly on balancing of current between two power
domains.

iii. Partitioning optimization must take into consideration
various operating scenarios, power penalties and area
penalties and also impact of level shifters insertion on
timing.

iv. Extending stacked domain concept to three or multiple
power domains can increase number of level shifters
and demand topology of power delivery which can be
more complex.

The contribution of the proposed paper is stated below.

1) This paper proposes a flow based partitioning
methodology that exploits MAX_FLOW_MIN_CUT
algorithm, which can partition a netlist into two parts
where each part belongs to a power domain. This
becomes basic structure of stacked domain.

2) The optimization flow is validated on an open source
benchmark circuit.

3) The proposed optimization facilitates the maximum
flow of current between the stacked domains.

Il. PREVIOUS WORK
This section describes the previous work done on netlist
partitioning and voltage stacking. The power-island generation
problem [2] describes region-based Multi Supply Voltage
circuits, where each circuit is divided into "voltage islands".
Here each voltage island occupies a contiguous physical space
and assumes different supply voltages for power domains. But
our stacked domain optimization shows balanced current
across power domains. Voltage stacking of memory and logic
in studied in [3], in this the series connection of corresponding
power domains of the logic and memory is described. An
ARM Cortex-MO0+ and its peripherals are powered from
supply of 0 V to VDD, and its 4-kB ROM as well as the 16-
kB SRAM are powered from supply VDD to 2VDD satisfying
2:1 ratio of voltages. Stacked-domain technique applied to a
complete MCU or microcontroller unit [5] is ad hoc and it has
a standard design flow. But it is not applicable to wider range of
designs. System designed for energy reuse between two or
more stacked CPUs is explained in [7]. To double the battery
life, a charge-recycling circuit is used. This architecture
consists of multiple CPUs where CPUs are divided as lower
load group and upper load group. Electrical charges are shared
among the stacked CPUs. Temporary charge storage and reuse
isdone by the help of tank capacitor. But this design is not
useful for complex realistic applications. A smart regulation
scheme is described in [8]; this design is relatively complex,
which consists of processor cores.
Different types of netlist partitioning have been studied in
the previous literature. We highlight three basic netlist
partitioning approaches.

A. Move-Based Netlist Partitioning

Kernighan and Lin [6] and Fiduccia and Mattheyses [4]
proposed move based algorithms for network partitions. The
algorithm in [4] iteratively move or swap a pair vertices but in
[6] in any single move only a single vertex will be moved
across the cut at reducing net-cut costs. Vertices are weighted.
A gain function helps in partitioning a set of vertices into two
parts while maintaining minimized number of hyper edge cuts
and balanced weights. FM algorithm adds new features to K-L
heuristic. Improvements to the FM and KL algorithms have
been proposed, such as multilevel k-way hyper graph
partitioning algorithm substantially improves the existing KL
algorithm[10], multilevel extension of FM based partitioning
technique, in which optimal placement and partitioning
algorithms are developed based on Gray code-based
enumeration and branch-and-bound [9].

B. Clustering Based Netlist Partitioning

A circuit clustering technique for minimizing the delay
under general delay model is explained in [12]. Algorithm has
two phases, labelling phase and clustering phase. Delay
minimization is from Pls (primary input) to POs (primary
output) where area constraints are taken into consideration.

IJERTV9I S070631

www.ijert.org

1420

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

https://en.wikipedia.org/wiki/Kernighan%E2%80%93Lin_algorithm
https://en.wikipedia.org/wiki/Kernighan%E2%80%93Lin_algorithm
www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 07, July-2020

C. Flow-Based Netlist Partitioning

An iterative max flow and min cut calculation and
clustering process to obtain a balanced bi partitioning solution
is explained in [11]. It provides comparatively better quality
solution of flow-based partitioning, meeting an objective of
obtaining min-cut. Using the flow based partitioning method;
stacked domain implementation has been performed in [1].
The implementation flow of [1] is as shown below.

Trial Placement

v
Flow Based Partitioning

I

Domain Region Definition

l

Re-Floor planning

¥
Level Shifter Insertion

v
Placement Optimization

Fig 2. Stacked domain implementation flow

Fig 2 demonstrates stacked domain implementation flow.
The stacked-domain implementation explained in [1], the
netlist is partitioned before the actual floor-planning stage in
order to define the power domain of each block or instance. A
trial placement is performed before actual placement because
the optimization process during placement stage upsize the
cells and inserts buffers. This could result in change in the
current profile of each power domain. This results in current
imbalance where balance had happened during the
partitioning stage. In order to assign cells or instances to
corresponding power domains a technique called layout-
aware partitioning is performed. A particular layout region is
defined for every power domain where each one of these
power domain has a continuous region. There is a need for
minimizing the boundary length between two power domains
which is performed using an optimization technique referred
as dynamic programming. Commercial APR tool legalizes
the placement of instances within the region defined for each
power domain. Then floor plan is updated by shifting the
power domains and inserting level shifters between power
domains. Level shifter insertion done with the aim of
minimizing wire length using a matching-based optimization.

Although partitioning flow will be aware of critical timing
paths as a result of trial or initial placement, insertion of level
shifter as well as legalization of instant placement incur timing
violations. An incremental optimization of the placement is
performed including VT-swapping and gate sizing in order to
fix timing violations.

In this paper, the improved version of flow-based netlist
partitioning approach is applied which is demonstrated taking
into consideration the basics of [11] for partitioning the circuit
into two different power domains.

I1l. PROPOSED WORK

The proposed netlist partitioning algorithm partition the
netlist into two parts based on current flow between the
cells/instances. Partitioning is done on the basis of iterative
max flow, min cut process. The Ford-Fulkerson algorithm is
used as a method that resolves the max flow, min cut
problem. Flow-based method divides instances into two
power domains with the objective of 1) minimizing the
number of cuts, 2) balancing the current between two
partitions or clusters (where two partitions represent two
power domains in stacked domain design).

Max flow min cut theorem, finds solution for
partitioning with minimized number of cuts for the given
netlist through the method of max flow optimization. But
this cannot ensure balancing constraints are met. To meet
balancing constraint after every max flow process, need to
cluster cut edge node/ vertex with one neighbor vertex,
forming a super vertex. This is done to avoid getting same
solution for partitioning. Once an updated flow network is
obtained, another set of max flow computation and
optimization is performed. This approach will perform max
flow computation as well as clustering iteratively unless and
until the balancing criteria is obtained. In this process,
process stops when current iteration flow is greater than
previous flow meeting max flow objective and min number
of cuts are obtained. Fig. 3 demonstrates basic idea of the
flow based partitioning.

IJERTV9I S070631

www.ijert.org

1421

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 07, July-2020

Q)

cut

Source @

Source g2 9

©)]

Fig 3. Flow-based net list partitioning. 0"and 5™ nodes are Source and Sink,
respectively. Dotted lines denote cuts. Number on edges represents actual
flow value which is current flow in this algorithm. (a) Initial graph
representing flow network. (b) First iteration with max flow min- cut
computation. (c) First clustering operation and second iteration of max flow
min- cut computation (d) Second clustering operation

Algorithm 1 explains netlist

partitioning technique.

proposed Flow based

Algorithm 1: Flow based netlist partitioning

For a given netlist, numbers of cells/instances are
represented by ‘V’ or ‘n” which represents vertices / nodes in
graph representation of netlist. Connection between
cells/instances is represented by ‘e’ which represents edges in
graph representation of netlist.

Step 1. Pre_placement of instances: Initial placement of cells
based on the position of cells defined in netlist file.
Define source and sink node: The flow between
vertices selected as source and sink may not cover the
complete flow network, if two nodes of the netlist are
selected randomly as source and sink nodes, which
results in unbalanced partitioning solutions. To
address this problem instances which are located near
core boundary will be considered as source and sink.
Step 3. Convert given netlist into a graph, in which a graph has
nodes representing cells, edges representing
connection between cells with edge capacity defining
current flow between nodes.
Step 4. Set initial flow to infinity. l.e. Present flow < o
Step 5. Apply Max flow Min cut algorithm in order to
partition netlist into two parts : The max flow min-cut
theorem is defined as in any flow network, maximum amount

Step 2.

of flow that is being passed from source node to sink node is
equal to sum of weight of the edges in the minimum cut, i.e.
the smallest total weight of the edges which if removed would
disconnect the source from the sink. The following steps are
performed to find max flow and min cut for flow network.

i. Initialize the variables VV=100,n=0,e=0, capacity[][],
flow[][]; (V= number of vertices, n= number of nodes,
e= number of edges, capacity[][] = residual capacity
matrix, flow[][]= actual flow matrix).

ii. Read graph values from keyboard.

iii. Print read values.

iv. Loop for n-2 iterations (n represents number of nodes)
/IFord Fulkerson algorithm

A. Call function minCut and max_flow.

a. Define a residual graph; store the capacities in
the original graph into residual graph.

b. Augment the flow if a path exists from
source node to sink node. An augmenting
path is a path from source to sink, which is
a simple path and does not include any
cycles. Augmenting path passes only
through positive weighted edges.

c. BFS (breadth first search) function returns
true, only if there exists a path from source
node to sink node in residual graph. (s>
source, t-> sink)

d. Create an array which represent visited
array. All vertices are marked as not visited.

e. Create a queue of visited vertices, check
source vertex and source vertex is marked as
visited.

f. If sink is reached in BFS process if started from
source, then return true, else return false.

g. Find the minimum residual capacity of the
edges along the path which is filled by BFS. In
other words through the path which is found,
find the maximum flow through it. Residual
capacity indicates how much flow is still
allowed in each edge of the network graph. All
edges have strictly positive residual capacity.

h. Reverse edges along the path found. Update
residual capacities of each edge.

i. Max flow is obtained.

j. Find the vertices reachable from source using dfs
(depth first search) function.

k. The dfs function marks elements of array,
visited[i] as true, if i can be reachable from
source. Initially values in array visited [] must
be false. Where i is any node in graph.

I. Print all the edges those are from a reachable
vertex to non-reachable vertex in the original
graph. Min cut is obtained.

B. Print min cut edges in i iteration.

C. Print max flow that is obtained i"iteration.

D. If (present flow is not equal to zero and greater
than past flow) then
Print max flow attained and terminate program.

IJERTV9I S070631

www.ijert.org

1422

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

https://en.wikipedia.org/wiki/Flow_network
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Direction
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Direction
https://en.wikipedia.org/wiki/Minimum_cut
www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 07, July-2020

Else
Assign present flow to past flow.

E.End If
V. End loop

Step 6. Merge cut edge node with neighbor node. Cut edge
node is merged with a node which has minimum
flow difference between actual capacity and residual
capacity

Step 7. Update flow values of graph.
Step 8. Print flow graph (represented by capacity flow graph)
Step 9. End

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Proposed netlist partitioning algorithm is implemented
using C++ and simulated using open source cross-platform
IDE that is Code Blocks. Proposed algorithm was
implemented on MCNC benchmark circuit. A Block netlist
“hp” is used for implementation, which is in “yal” text
format. The MCNC benchmark was chosen because netlist
has information like cell dimension which was helpful to
perform initial placement of cells, network section gives
information of interconnection between cells/modules that
was useful to get edges in graph representation. Random
current flow values are assigned to each edge in the graph, as
MCNC benchmark suite doesn’t have current information
between cells. Netlist is converted into graph format using
python scripting language and simulated using
ANACONDA which is an open source distribution for
Python. Proposed algorithm took less than 5 seconds to
execute for these benchmark circuits on a PC with 4GB
RAM. Table 1 gives details of MCNC benchmark circuit

10

05

0.0

-1.0

100 075 -050 -025 000 025 050 075 100

Fig 4. Graph representation of netlist with edges assigned with random
current values for “HP” benchmark circuit.

Fig 4 shows initial flow graph with random current values
assigned to edges for “HP” netlist. For the MCNC benchmark
circuit “hp” there are 11 vertices and 41 nets in graphical
representation. 0" node is considered as “Source” node and
10" node is considered as “sink” node. So V=[0123456
7 8 9 10] a list of nodes. Random current values are assigned
in the range of 5 to 15. Table 2 shows different iterations and
flow values and cut edges at each iteration. Here program
stops after 4 iterations when stopping condition is satisfied.
Programs prints the max flow attainted, cut edges and which
node be merged in each iteration. After each iteration node is
merged with neighboring node based on criteria that is a hode
which has minimum flow difference between actual capacity
and residual capacity. At the final iteration max flow obtained
is 40 and cut edges are 3-4, 3-5, 3-10, 6-10, 9-10.

TABLE 2: PARTITION OUTPUT AFTER EACH ITERATION FOR

HP. “HP”
Iteration Max flow Cut edges Nodes to be
merged
TABLE 1: MCNC BENCH MARK CIRCUIT 1 80 0-1,0-2,0-3, 0-10, 5-10, 0,9 (forms
6-10, 9-10 super vertex 9)
Ben Modules/ Total Number No of Run 2 67 1-2,1-10, 3-10, 5-10, 1,9 (forms a
chm Cells number of Pins iterations Time (6-10, 9-10 super vertex 9
ark of nets in 3 33 2-10, 6-10, 9-10 2,9 (forms a
seconds super vertex 9)
) 4 40 | 34, 35,3-10,6-10,9-10 | 3,9 (forms
HP 11 83 309 4 1.97 super vertex 9)

Table 1 describes the No of cells, No of pins and total
nets under benchmark. Along with that the no of iterations
performed to partition netlist and run time are specified in
table. For the benchmark circuit “HP” netlist has 11 modules
where each module represents a cell/instance, 309 pins and
83 nets. Among 83 nets, only nets with forward direction are
taken to form directed graph since implemented algorithm
only considers forward flow. “HP” circuit takes 4 iterations
for netlist partitioning and it takes 1.97 seconds to execute
the code.

Following section describes the partitioning process
using bench mark circuits “HP”.

Finally we get 2 clusters in which cluster 1 has nodes
0,1,2, 3,9 and cluster 2 has nodes 4,5,6,7,8,10. Each cluster
corresponds to a power domain which becomes a basic
structure for stacked domain implementation. Clustering is
observed visually after seeing output of each iteration. Fig 5
shows the visual representation of two clusters.

45,67,
§,10

Cluster1l Cluster 2

Fig 5. Final partition with two clusters for benchmark circuit “HP”

IJERTV9I S070631

www.ijert.org

1423

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 07, July-2020

The flow based partitioning is better compared to KL and
FM algorithms, where latter ones perform move based
partitioning.

The reasons are listed below:

i. KL and FM algorithms require arbitrary initial
partition of vertex set but a global partitioning
approach relies on entire graph rather than initial
partition otherwise it will affect final solution quality.
Proposed algorithm will not take into consideration the
initial partition; it works on entire graph providing
better quality solution.

ii. Initial edge swapping or vertex movement is done
randomly. Whereas flow based partitioning selects
source and sink nodes which are at core boundary or in
certain situation adds dummy vertices to handle
unbalanced partition.

iii. FM and KL algorithms can only form two partitions.
Whereas extending flow based algorithm, more than
two partitions can be formed which can result in
formation of multiple power domains of stacked
implementation.

iv. Time complexity of KL algorithm is O(n®) per pass [6],
where N represents number of vertices. For FM time
complexity is O(P) per pass [4] , where P is total
number of pins. But for flow based algorithm which
follows max flow min cut process, total time
complexity is O(|V||E|) for a connected circuit N = (V,
E), which is same as one max-flow computation [11].

Taking all the above points into consideration, our flow
based algorithm is best suited for flow network as well as for
stacked domain implementation compared to KL and FM
partitioning methods.

V. CONCLUSION

In this paper, the flow based logic design partitioning is
demonstrated, which provides basic structure for optimization
framework of stacked power domain implementation.
Algorithm partition the netlist into two parts based on current
flow between the instances. Where each part or cluster
corresponds to a power domain. Iterative max flow min cut
process partition the netlist. Few improvements are
implemented compared base flow based algorithm [1] which
includes: 1) V shaped vertices were removed in base algorithm
during clustering phase , where in proposed algorithm V
shaped vertices are not considered instead clustering is done
based on flow difference. 2) Need for Super Source and Super
Sink is removed in proposed algorithm where nodes located
near core boundary are taken as Source and Sink. The
algorithm is implemented in C++ and netlist to graph
conversion is implemented using python. Algorithm tested
successfully using MCNC bench mark circuit. Partitioning
provides nearly balanced currents for one of bench mark
circuit. Our future work includes, a. Extending the partitioning
approach in obtaining 3 or multiple power domains. b.
Reduction in number of level shifter which should be inserted
between power domains by using control switch.

ACKNOWLEDGMENT
I would like to extend my token of gratitude to Dr. R
Jayagowri, Associate Professor, Department of Electronics
and Communication Engineering, B M S College of
Engineering, Bengaluru, for her immense support and constant
guidance throughout this work and for her valuable
suggestions which helped me to complete this work.

REFERENCES

[1] K. Blutman, H. Fatemi, A. B. Kahng, A. Kapoor, J. Li, and J. P.
de Gyvez, “Logic Design Partitioning For Stacked Power
Domains,” in Proc. IEEE Transactions On Very Large Scale
Integration (VLSI) Systems, Aug 2017, pp.3045-3056.

[2] R. L. S. Ching, E. F. Y. Young, K. C. K. Leung, and C.
Chu,“Post-placement voltage Island generation,” in Proc.
ICCAD, 2006, pp. 641-646.

[3] K. Blutman, Ajay Kapoor, Arjun Majumdar, Jacinto Garcia
Martinez, Juan Echeverri, Leo Sevat, Arnoud P, Hamed Fatemi,
Kofi A. A. Makinwa and J.P. de Gyvez, “A Low-Power
Microcontroller in a 40-nmCMOS Using Charge Recycling,” in
Proc. IEEE Journal of Solid-State Circuits, Jan 2017, pp. 950 —
960.

[4] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic
for improving network partitions,” in Proc. DAC, 1982, pp. 175—
181.

[5] K. Blutman, A. Kapoor, J. G. Martinez, H. Fatemi, and J. P. de
Gyvez, “Lower power by voltage stacking: A fine-grained
system design approach,” in Proc. DAC, 2016, pp.78-1-78-5.

[6] B.W. Kernighan and S. Lin, “An efficient heuristic
procedure for partitioning graphs,” Bell Syst. Tech. J. vol. 49, no.
2, pp. 291-307, 1970.

[7] K. Ueda, F. Morishita, S. Okura, L. Okamura, T. Yoshihara, and
K. Arimoto, “Low-power on-chip charge-recycling DC-DC
conversion circuit and system,” IEEE J. Solid-State Circuits,
vol. 48, no. 11, pp. 2608-2617, Nov. 2013.

[8] S.K.Lee, T.Tong, X. Zhang, D. Brooks, and G.-Y. Wei, “A 16-
core voltage-stacked system with an integrated switched-
capacitor DC-DC converter,” in Proc. Symp. VLSI Circuits,
2015, pp. C318-C319.

[9] G. Karypis and V. Kumar, “Multilevel K-way hypergraph
partitioning,” in Proc. DAC, 1999, pp. 343-348.

[10] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Improved
Algorithms for Hypergraph Bi partitioning,” in Proc. ASP-DAC,
2000, pp. 661-666.

[11] H. Yang and D. F. Wong, “Efficient network flow based min-cut
balanced partitioning,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 15, no. 12, pp. 1533-1540, Dec. 1996.

[12] K. Blutman, H. Fatemi, A. B. Kahng, A. Kapoor, J. Li, and J. P.
de Gyvez, “Floorplan and placement methodology for improved
energy reduction in stacked power-domain design,” in Proc.
ASP-DAC, 2017, pp.444-449.

[13] R. Rajaraman and D. F. Wong, “Optimum clustering for delay
minimization,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 14, no. 12, pp. 1490-1495, Dec. 1995.

[14] K. Blutman et al., “A microcontroller with 96% power-
conversion efficiency using stacked voltage domains,” in Proc.
IEEE Symp. VLSI Circuits, Jun. 2016, pp.1-2.

[15] A. E. Caldwell, A. B. Kahng, and I. L.Markov, “Optimal
partitioners and end-case placers for standard-cell layout,” IEEE
Trans. Comput.-AidedDes. Integr. Circuits Syst., vol. 19, no. 11,
pp. 1304-1313, Nov.2000.

[16] L. Guo, Y. Cai, Q. Zhou, and X. Hong, “Logic and layout aware
voltage Island generation for low power design,” in Proc. ASP-
DAC, 2007, pp.666-671.

[17] https://www.geeksforgeeks.org/minimum-cut-in-a-directed-
graph/

[18] https://cseweb.ucsd.edu/classes/wi09/cse242a/partition/ part.pdf

IJERTV9I S070631

www.ijert.org

1424

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
https://www.geeksforgeeks.org/minimum-cut-in-a-directed-graph/
https://www.geeksforgeeks.org/minimum-cut-in-a-directed-graph/
https://cseweb.ucsd.edu/classes/wi09/cse242a/partition/
www.ijert.org
www.ijert.org
www.ijert.org

