
 

 

Flexural-Distortional Performance of Thin- Walled Mono Symmetric  

Box Girder Structures  
 

 

Osadebe N.N.  

 Dept of Civil Engineering, University of 

Nigeria, Nsukka. 
  

 

Chidolue C.A. 

 Dept of Civil Engineering, Nnamdi Azikiwe 

University, Awka, Nigeria 
  

 

 

  

Abstract 
     Thin-walled mono symmetric box girder structures 

are commonly found in the form of trapezoidal cross 

sections of either concrete or steel. Such structures 

resist eccentric vertical loads in bending action and 

torsion. The torsional component of eccentric loads on 

such structures give rise to pure torsion (Saint Venant 

torsion), distortion and flexure about the non 

symmetric axis of the box girder section. In order to 

provide an improved understanding of the complex 

interactions between these strain fields, this paper 

examined the interaction between the distortional strain 

mode and flexural strain mode and derived a general 

differential equations of equilibrium for flexural-

distortional analysis of mono symmetric box girder 

structures. In addition the derived equations were used 

to analyze a double cell mono symmetric box girder 

section to obtain flexural and distortional deformations. 

 

1. Introduction 
     Thin walled structures are structures in which the 

ratio of the thickness t, to the two other linear 

dimensions (length l, and width w) ranges within the 

limits  t/l or t/w = 1/50 to 1/10, Rekach [1]. Thus a thin 

walled structure has two dimensions of the structural 

element much larger than the third one, i.e., the 

thickness. When two or more plates are joined together 

to form an open or closed structure strength and 

rigidity are increased. For example, tanks, boilers, etc, 

are cylindrical shell structures with increased strength 

and rigidity. Conical shell structures are also common 

features in construction, mechanical engineering and 

aeronautical design. Thin-walled structures are used 

extensively in steel and concrete bridges, ships, air 

crafts, mining head frames and gantry frames. These 

are seen in the form of box girders,  plate girders, box 

columns and purlins (z and channel sections). Because 

of their thin wall thicknesses, the shearing resistances 

are constant across the thickness of the plate. On the 

other hand thin walled box structures may be subjected 

to bending, torsional and distortional stresses. 

Distortion alters the geometry of the cross section and 

generates some additional stresses thereby reducing the 

bearing capability of the box structural component.                                            

      Research [2], has shown that a mono symmetric 

thin walled box girder has three strain modes 

interactions: torsion interacts with distortion and each 

of these interacts with flexure about the non axis of 

symmetry. Thus we have torsional-distortional 

interaction, flexural-torsional interaction, and flexural-

distortional interaction. In this work, the interaction of 

flexural strain mode about the non axis of symmetry 

with distortional strain mode of a mono symmetric box 

girder structure is examined. 

 

2. Literature review 
     Recent literatures, Hsu et al [3], Fan and Helwig [4],  

Sennah and Kennedy [5], on straight and curved box 

girder bridges deal with analytical formulations to 

better understand the behaviour of these complex 

structural systems. Few authors, Okil and El-tawil [6], 

Sennah and Kennedy [5], have undertaken 

experimental studies to investigate the accuracy of 

existing methods. Before the advent of Vlasov’s 

‘theory of thin-walled beams’, [7], the conventional 

method of predicting warping and distortional stresses 

is by beam on elastic foundation (BEF) analogy. This 

analogy ignores the effect of shear deformations and 

takes no account of the cross sectional deformations 

which are likely to occur in a thin walled box girder 

structure 

     Several investigators; Bazant and El-Nimeiri [8], 

Zhang and Lyons [9], Boswell and Zhang [10], Usuki 

[11], Waldron [12], Paavola [13], Razaqpur and Lui 

[14], Fu and Hsu [15], Tesar [16], have combined thin-
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walled beam theory of Vlasov and the finite element 

technique to develop a thin walled box element for 

elastic analysis of straight and curved cellular bridges. 

Osadebe and Chidolue [17], [18], obtained fourth order 

differential equations of torsional-distortional 

equilibrium and flexural-torsional equilibrium for the 

analysis of mono symmetric box girder structures using 

Vlasov’s theory with modifications by Varbanov [19].  

      Various theories were therefore postulated by 

different authors examining methods of analysis, both 

classical and numerical. A few others however carried 

out tests on prototype models to verify the authenticity 

of the theories. The authors are of the view  that 

Vlasov’s theory captures all peculiarities of cross 

sectional deformation such as warping, torsion, 

distortion etc, and is therefore adopted in this work. 

     The objective of this study is to derive a set of 

differential equations governing the  flexural-

distortional behaviour of thin- walled mono symmetric 

box girder structures on the basis of Vlasov’s theory 

and to apply the obtained equations in the analysis of  

double cell mono symmetric box girder structure to 

obtain flexural and distortional deformations. 

 

3. Vlasov’s stress – strain relations 
      The longitudinal warping and transverse 

(distortional) displacements given by Vlasov [7], are 

( , ) ( ) ( )

( , ) ( ) ( )

u x s U x s

v x s V x s




 (1)                                                

The displacements may be represented in series form 

as; 

          
1

1

( , ) ( ) ( )

( , ) ( ) ( )

m

i i

i

n

k k

k

u x s U x s

v x s V x s













                             (2) 

where, Ui(x) and Vk(x) are unknown functions which 

express the laws governing the variation of the 

displacements along the length of the box girder frame. 

( )si and ( )k s  are elementary displacements of the 

strip frame, respectively out of the plane (m 

displacements) and in the plane (n displacements). 

These displacements are chosen among all 

displacements possible, and are called the generalized 

strain coordinates of a strip frame. 

     From the theory of elasticity the strains in the 

longitudinal and transverse directions are given by;         

1

1

( , )
'( ) ( )

( , )
'( ) ( )

m

i i

i

n

k k

k

u x s
U x s

x

v x s
V x s

x




















                                   (3) 

The expression for shear strain is  ( , )
u v

x s
s x


 

 
 

   


1 1

( , ) '( ) ( ) ( ) '( )
m n

i i k k

i k

x s s U x s V x 
 

   

                                                                                    (4) 

Using the above displacement fields i iand  , 

and basic stress-strain relationships of the theory of 

elasticity, the expressions for normal and shear stresses 

become:  

1

( , )
( , ) ( ) '( )

m

i i

i

u x s
x s E E s U x

x
 




 


  (5)                                                                                   

1

( , ) ( , ) '( ) ( )
m

i i

i

x s G x s G s U x 


                                   

+                                      
1

( ) '( )
n

k k

k

G s V x


            (6)   

Transverse bending moment generated in the box 

structure due to distortion is given by; 

 
1

, ( ) ( )
n

k k

k

M x s M s V x


                                   (7)                                                                              

where Mk(s) = bending moment generated in the cross 

sectional frame of unit with due to a unit distortion 

V(x) = 1. 

 

4. Energy formulation of the equilibrium 

equations 
     The potential energy of a box structure under the 

action of a distortional load of intensity q is given by:  

EU W          (8)                                                                                           

where, 

  = the total potential energy of the box structure, 

U = Strain energy, 

EV  = External potential or work done by the external 

loads. 
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From strength of materials, the strain energy U, of a 

structure is given by: 

 

( )

2 2( , ) ( , )
( )

1

2 2( , )

s

x s x s
t s

E G
U dxds

L S M x s

EI

   
  
  
    
 
 
  

  (9)  

Work done by external load is given by: 

 

( , )EW qv x s dxds  

= ( ) ( )h h

s x

q V x s dsdx  

= h h

x

q V dx                                                      (10) 

 Substituting eqns (9) and (10) into eqn. (8) we obtain 

that: 

 

2 2( , ) ( , )
( )

2 2

21 ( , )
- ( , )

2 ( )

L S

L S

x s x s
t s dxds

E G

M x s
qv x s dxds

EI s

  
   
  

 
 
  

 

 

 (11)                                

where, 

( , )x s = normal stress 

( , )x s = shear stress 

( , )M x s = transverse distortional bending moment 

q = line load per unit area applied in the plane of the 

plate  
3

( ) 2

( )

12(1- )
s

t s
I


 = moment of inertia                                                                                        

E = modulus of elasticity 

G = shear modulus 

  = poisson ratio 

t = thickness of plate 

 

     Substituting eqns (1), (5), (6), and (7) into eqn.(11) 

and simplifying, noting that ( )t s ds dA  we obtain 

the potential energy of the box structure as follows. 

'( ) '( )
2

ij i j

E
a U x U x dx  

( ) ( ) ( ) '( )
2

ij i j kj k j

G
b U x U x c U x V x dx     

  

+  ( ) '( ) '( ) '( )
2

ih i h kh k h

G
c U x V x r V x V x dx  +

( ) ( )
2

hk k h

E
s V x V x dx - h hq V dx                     (12) 

where the (Vlasov’s) coefficients are defined as 

follows. 

( ) ( )ij jia a s s dA    i j
                  (a) 

' '( ) ( )ij ji i jb b s s dA                      (b) 

' ( ) ( )kj jk k jc c s s dA                   (c) 

'( ) ( )ih hi i kc c s s dA                     (d)            (13) 

( ) ( ) ;kh hk k hr r s s dA                   (e) 

( )

( ) ( )1 k h
kh hk

s

M s M s
s s ds

E EI
          (f)  

h hq q ds                                       (g) 

 

     The governing equations of flexural-distortional 

equilibrium are obtained by minimizing the energy 

functional eqn. (12), with respect to its functional 

variables u(x) and v(x) using Euler Lagrange technique 

[20].  Minimizing with respect to u(x) we obtain; 

1 1 1

''( ) - ( ) - '( ) 0
m m n

ij i ij i kj k

i i k

k a U x b U x c V x
  

    (14) 

Minimizing with respect to v(x) we have; 

'( ) ( )ih i hk kc U x s V x 
1

''( ) 0kh k hr V x q
G

     (15)                                        

where                 2(1 )
E

G
     

     Equations (14) and (15) are Vlasov’s generalized 

differential equations of distortional equilibrium for a 

box girder structure. 
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5. Generation of Strain Modes Diagrams 
     Consider a simply supported girder loaded as shown 

in Fig 1(a). If we assume the normal beam theory, i.e., 

neutral axis remaining neutral before and after bending, 

then the distortion of the cross section will be as shown 

in Fig. 1(b) where,   is the distortion angle (rotation 

of the vertical axis). The displacement φ1 at any 

distance R, from the centroid is given by 1 Rθ . If 

we assume a unit rotation of the vertical (z) axis then 

1 R , at any point on the cross section. Note that 

1   can be positive or negative depending on the value 

of R,  in the tension or compression zone of the girder. 

Thus, 1   is a property of the cross section obtained by 

plotting the displacement of the members of the cross 

section when the vertical (z-z) axis is rotated through a 

unit radian. 
      Similarly, if the load is acting in horizontal (y- y) 

direction, normal to the x-z plane in Fig.1(a), then the 

bending is in x-z plane and y axis is rotated through 

angle θ2 giving rise to 2  displacement out of plane. 

The values of 2  are obtained for the members of the 

cross section by plotting the displacement of the cross 

section when y-axis is rotated through a unit radian.  

     The warping function 3  of the beam cross section 

is obtained as detailed in [1] and [2]. It has been 

explained that the warping function is the out of plane 

displacement of the cross section when the beam is 

twisted about its axis through the pole, one radian per 

unit length without bending in either x or y direction 

and without longitudinal extension. 

     ψ1 and ψ2 are in-plane displacements of the cross 

section in x-z and x-y planes respectively while ψ3 is  

the distortion of the cross section.  

     The authors have shown that these in-plane 

displacement quantities ψ1, ψ2 and ψ3 are the same as 

the derivatives of their corresponding out of plane 

displacements. Consequently, ψ1, ψ2 and ψ3 are obtained 

by numerical differentiation of 1 , 2   and 3   

diagrams respectively. 

     ψ4 is the displacement diagram of the beam cross 

section when the section is rotated one radian in say, a 

clockwise direction, about its centroidal axis. Thus, ψ4 

is directly proportional to the perpendicular distance  ( 

radius of rotation) from the centroidal axis to the 

members of the cross section. It is assumed to be 

positive if the member moves in the positive directions 

of the coordinate axis and negative otherwise. 

    The generalized strain modes for the double cell 

mono-symmetric frame are shown in Fig 2  
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Computation of Vlasovs coefficients 

     The coefficients , , ,ij ij kj iha b c c   and khr , of the 

differential equations of equilibrium  are computed 

with the aid of Morh’s integral chart. Thus:  

( ) ( )a a s s dAij ji i j                                          

( ). ( ) 25.073
22 2 2

a s s dA
s
                            

( ) ( ) 0.425
23 32 2 3

a a s s dA                       

( ). ( ) 0.750
33 3 3

a s s dA
s
                              

' '
( ). ( )b b s s dA

i jij ji
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     
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22 2 2
b s s dA

s
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( ). ( ) 0.449

23 32 2 3
b b s s dA

s
      

' '
( ). ( ) 1.533

33 3 3
b s s dA

s
    

'
( ). ( )c c s s dAjkj jk ks
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( ). ( )r r s s dA
kh hk k hs
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6.1 Evaluation of distortional bending moment 

coefficients, shk 

The distortional bending moment coefficients  hks , 

given by eqn. (13f) depend on the bending deformation 

of the strip frame characterized by the distortional 

bending moment, M
k

(for k = 1, 2, 3, 4). To compute 

the coefficients we need to construct the diagram of the 

bending moments due to strain modes , ,
1 2 3

      

and  4
 . Incidentally, 1

 , 2
 and 4

  strain modes 

do not generate distortional bending moment on the 

box girder structure as they involve pure bending and 

pure rotation. Only 3
  strain mode generates 

distortional bending moment which can be evaluated 

using the distortion diagram for the relevant cross 

section. Consequently the relevant expression for the 

coefficient becomes: 

 
33

( ) ( )1 3 3
M s M s

s s s
hk kh sE EIs

                       (19)                                              

where ( )
3

M s  is the distortional bending moment of 

the relevant cross section due to strain mode 3. 

     The procedure for evaluation of distortional bending 

moments is given in literatures [1], [17]. Fig. 3 shows 

the distortional bending moment  for evaluation of Shk 

for the double cell mono symmetric frame of  Fig. 2(a). 

The computed value of 33hks s  for the single cell 

mono symmetric frame example was : 

33 0.723* SS I . 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

7. Flexural-distortional equilibrium 

equations 
     The relevant coefficients  for flexural-distortional 

equilibrium are those involving strain modes 2 and 3 as 

shown in the computation of Vlasov’s coefficients. 

These are: 

22 23 33 22 23 33 23 33 22 23 33, , , , , , , , , ,a a a b b b c c r r r

and 33s . All other coefficients are zero. 

Substituting these into eqns. [14] and [15] and adopting 

matrix notation of the equations we obtain: 

''0 0 0 0 0 01 1

0 '' - 0
22 23 2 22 23 2

''0 03 332 33 32 33

U U

a a U b b U

U Ua a b b



      
      
      
            

-

'
1

0 0 0 0
'

20 0 0
22 23 '

3
0 0

32 33 '
4

V

V
c c

V
c c

V



 
   
   
   
    

 

                           (16)    

 

0 0 0
'

10
22 23

'
20

32 33 '
30 0 0

U
c c

U
c c

U

 
 

 
 

 
 

 
    

-

0 0 0 0
1
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33
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4

V
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   
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  
  
     

+

0 0 0 0
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1
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22 23 ''
2
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32 33 ''

3
0 0 0 0

''
4

V
r r

V
r r

V

V



 
 

 
 

 
 

 
 

 
 

   
 

1

1 2 0

3

4

q

q

qG

q

 

 
 
 
 
 
 

         (17) 

 

 

Multiplying out we obtain: 

'' ''- - -
22 2 23 3 22 2 23 3

ka U ka U b U b U  

                              - '- ' 0
22 2 23 3

c V c V           (18)                                                                  Fig. 3 Distortional bending moment for 

 double cell mono-symmetric frame 
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'' ''- - -
32 2 33 3 32 2 33 3

ka U ka U b U b U                                                                                                                                                                                   

-                                      '- ' 0
32 2 33 3

c V c V            (19)                                            

2
22 2 23 3 22 2 23 3' ' '' '' -

q
c U c U r V r V

G
              (20)                                                                                       

3' '- '' '' -
32 2 33 3 33 3 32 2 33 3

q
c U c U ks V r V r V

G
     

                                                                                  (21)                                                                           

Simplifying further we obtain the coupled differential 

equations of flexural-distortional equilibrium for mono 

symmetric sections as follows: 

- '' ( )
1 2 2 3 1 3 3

- ''- - ( )
3 2 4 3 2 3 1 3 4

iv iv
V V V K a

iv iv
V V V V K b

  

   

 

 

        (22)          

where,  44 ,
2

43

r

c
     1 43 33c ks           

 1 34 43 33 44-r c c r  ;         
33 44 34 43

2

33 43

-
,

b r c c

ka c
          

322-
1 2

-
33 22 32

qc
K

Gc c c

 
 
 
 

         

23 3-
2 2

-
33 22 32

c q
K

Gc c c

 
 
 
 

 

-
3 23 1 22 2

K b K b K ,      4 32 2 33 1
K b K b K   

 

8. Flexural-distortional analysis of double 

cell mono symmetric section 
     In this section the solutions of the differential 

equations of equilibrium eqns. (22) are obtained for the 

double cell mono symmetric box girder structure 

whose cross section is shown in Fig. 1(a). Live loads 

are considered according to AASHTO-LRFD [21], 

following the HL-93 loading: uniform lane load of 

9.3N/mm distributed over a 3m width plus tandem load 

of two 110 KN axles. The loads are positioned at the 

outermost possible location to generate the maximum 

torsional effects. A 50m span simply supported bridge 

deck structure is considered. The obtained torsional 

loads  are ; 2 30.00 , 196.46q KN q KN  . 

The governing equations of equilibrium are: 

- '' ( )
1 2 2 3 1 3 3

- ''- - ( )
3 2 4 3 2 3 1 3 4

iv iv
V V V K a

iv iv
V V V V K b

  

   

 

 

  (22)          

The relevant coefficients are as follows: 

25.05; -0.270, 0.757
22 23 32 33

2.982 1.407
22 22 22 33 33 33

a a a a

b c r b c r

   

     
 

-0.153
23 32 23 32 23 32

-4 -4
14.616; 0.261*6.9712*10 1.8195*10

44 33

b b c c r r

r s

     

  

9 2 9 2
24 *10 / ; 9.6 *10 / , 2.5E N m G N m k  

The coefficients of the governing equations are as 

follow: 

62.6825; 1.0625
1 22 2 23

ka ka    

1.0625; 1.875
3 32 4 33

Ka Ka      

  2
-

23 22 22 23 33
0.0283

1 2
-

33 22 32

a c a c k s

c c c
    

 2
-

-333 33 22 32 23
1.750*10

2 2
-

33 22 32

k s a c a c

c c c
    

 -
-332 23 33 22 33

-1.260 *10
1 2

-
33 22 32

a c b c ks

c c c
    

-5322- -1.115*10
1 2

-
33 22 32

qc
K

Gc c c
 
 
 
 
 

 

-623 3- -1.684 *10
2 2

-
33 22 32

c q
K

Gc c c
 
 
 
 
 

 

-5
- 1.003*10

3 23 1 22 2

-5
-1.634 *10

4 32 2 33 1

K b K b K

K b K b K

 

  

 

 

Substituting the coefficients into eqns (22 ) we obtain 
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-5
62.683 1.0625 - 0.0283 '' -1.003*10

2 3 3

-3 -3
1.0625 1.875 -1.750*10 '' 1.26*10

2 3 3 3

iv iv
V V V

iv iv
V V V V

 

 

   

-5
1.634 *10                                                            (23)                                                     

 

 

 

Integrating by method of trigonometric series with 

accelerated convergence we hav: 

 

-3
( ) 8.626 *10 / 50

2

-2
( ) 1.250 *10 50

3

V x Sin x

V x Sin x



 





                        (24) 
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9. Discussion of Results 
      The derived governing differential equations of 

flexural-distortional equilibrium eqn. (22), is applicable 

to all mono symmetric box girder structures, both 

single cell and multi cell profiles. Along the axis of 

symmetry of the box girder structure, bending strain 

mode 1 does not interact with distortional strain mode 

3 hence, there was no relationship between V1 and V3 

as could be seen from the derived eqn. 22.  

      Fig.4 shows the variation of flexural and 

distortional displacements along the length of the 

girder as described by eqn. (24). It should be recalled 

that flexural strain mode has interaction with 

distortional strain mode only on the non symmetric 

axis of the box girder structure. The results show that 

on this non symmetric axis, the maximum (mid span) 

distortional deformation (12.5mm) was one and half 

times that of flexural deformation (8.5mm), for a 

simply supported box girder structure of 50m span.   

 

10. Conclusions 

     In a mono symmetric box girder section flexural 

strain mode does not interact with distortional strain 

mode along the axis of symmetry. However, along the 

non symmetric axis, flexure interacts with distortion 

giving rise to coupled differential equations of flexural-

cross section 

Fig.4: Variation of flexural and distortional displacements along the length of the 

girder  
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distortional equilibrium, eqn. (22) which when solved 

for a particular cross sectional profile yields the 

flexural and distortional deformations. For the double 

cell mono symmetric example frame we established 

that distortional deformation at mid span of the girder 

was about one and half times that of flexural 

deformation.  
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