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Abstract — For the static analysis of composite deep beam a 

refined beam theory is developed in the present study, considering 

transverse shear deformation effect. Using the principle of virtual 

work done governing equations and boundary conditions of the 

theory are obtained. The results of displacements and stresses 

obtained from static flexure for various boundary condition of the 

beam are represented and compared with those of other refined 

theories and available in literature.  

Keywords: Hyperbolic Shear Deformation Theory, Static Flexure, 

General Solution of Beam.  
 

I.   INTRODUCTION 
Many modern technologies require materials with unusual 

combinations of properties that cannot be met by the 
conventional metal alloys, ceramics, and polymeric materials 
alone. The composite materials is the solution to these 
problems which has various properties such as high 
strength/stiffness for lower weight, superior fatigue response 
characteristics, facility to vary the fiber orientation, material 
and stacking pattern, resistance to electrochemical corrosion 
and other superior material properties of composites. The wide 
spread use of shear flexible materials in aircraft, automotive, 
shipbuilding and other industries has stimulated interest in the 
accurate prediction of structural behavior of deep beams. The 
deep beam is basically a two dimensional problem of elasticity 
theory. The two dimensional theory can be derived by making 
suitable assumptions concerning the kinematics of deformation 
or state of stress through the thickness of beam.  

The transverse shear deformation effect plays an important 
role in the structural analysis of shear flexible structures. The 
flexural analysis of thick beams led to the development of 
refined theories in order to address the correct structural 
behavior. Euler-Bernoulli theory of beam (ETB) bending is 
based on hypothesis that the plane section which is 
perpendicular to the neutral axis before bending remains plane 
and perpendicular to the neutral axis after bending. When 
elementary theory of beam (ETB) is used for the analysis thick 
beams, deflections are underestimated and natural frequencies 
and buckling loads are overestimated. This is the consequence 
of neglecting transverse shear deformations in ETB.  

 

The classical beam theory (ETB) is based on Bernoulli-
Euler hypothesis, but this theory is used for analysis of thin 
beams. As this theory is based on the assumption that the 
transverse normal to the neutral axis remains so during bending 
and after bending, implying that the transverse shear strain is 

zero. As this theory neglects the transverse shear deformation, 
it under estimates deflections and overestimates the natural 
frequencies in case of thick beam. As the analysis of thick 
composite and shear deformable beams is complicated by the 
two dimensional nature of stress and strain state. The use of 
elasticity theory is practically unfeasible due to mathematical 
difficulties and the complexity of shear flexible systems. This 
led to the development of refined shear deformation theories 
for beams which approximate the two dimensional solutions 
with reasonable accuracy. To overcome this drawback First 
Order Shear Deformation (FSDT) theory was developed by 
Timoshenko. It was based on the assumption that the normal to 
the mid-surface before deformation remain straight but not 
necessary normal to the mid-plane after deformation. In this 
theory the transverse shear deformation was assumed to be 
constant through the thickness and thus shear correction factor 
was required to take into account appropriate strain energy due 
to shear deformation. 

 
Ghugal and Shimpi [1] showed various methods used for 

analysis of composite beam right from elementary theory of 
beam to first order shear deformation theory. Raman and 
Davalos [2] has used energy equivalence principle, to derive a 
general expression for the shear correction factor of laminated 
rectangular beams with arbitrary lay-up configurations. Sayyad 
[3] has focused on refined shear deformation theory which is 
developed for static flexural and free vibrati0nal analysis of 
thick isotropic beams, considering sinusoidal, hyperbolic and 
exponential functions in terms of thickness co-ordinate 
associated with transverse shear deformation effect. The results 
in the paper of displacements and stresses obtained from static 
flexure and results of free vibration frequencies for simply 
supported beam are presented and compared with those of 
other refined theories and exact solution from theory of 
elasticity. Thuc and Huu [4] have presented static behavior of 
composite beams with arbitrary lay-ups using various refined 
shear deformation theories. Bhimaraddi and Chandrashekhara 
[5] had considered the effect of shear deformation on the static 
response of beams of rectangular cross section using various 
distribution functions for shear strain.. Ghugal and Sharma [6] 
had used hyperbolic shear deformation theory for isotropic 
beam and by using the general solution they had given results 
for various boundary conditions. From all the literature 
available it can be stated that the higher order shear 
deformation theories with more than three unknown are more 
in demand. Also use of shear deformation theories using 
various displacement functions is not explored and there is 
need to evaluate such theories critically. Refined beam theory 
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for non-rectangular cross-section beams as well as beams 
subjected to load at top and bottom are rarely available. Ghugal 
and Waghe [7] had used trigonometric shear deformation 
theory for analysis of thick beams. The number of unknown in 
the theory is same as that of first order shear deformation 
theory  
 

II. METHODOLOGY 

A. Beam Under Consideration: 

The beam under consideration occupies the region 
 

 

Fig. 1:  Composite Beam Subjected To Uniformly Distributed Load 

Where x, y, z are Cartesian coordinates, L is the length of 
beam, b is the width and h is the total depth of beam.  The 
beam is subjected to transverse load of intensity  q(x) per unit 
length of the beam.  

B. Assumptions Made in Theoretical Formulation: 
1. The axial displacement consists of two parts:  
(a) Displacement given by elementary theory of beam 

bending.  
(b) Displacement due to shear deformation, which is 

assumed to be hyperbolic in nature with respect to thickness 
coordinate, such that maximum shear stress occurs at neutral 
axis as predicted by the elementary theory of bending of beam. 

2. The axial displacement u is such that the resultant of 
axial stress , acting over the cross-section should result 
in only bending moment and should not in force in x 
direction.  

3. The transverse displacement is assumed to be a 
function of longitudinal (length) co-ordinate ‘x’ 
direction. 

4. The body forces are ignored in the analysis. (The body 
forces can be effectively taken into account by adding 
them to the external forces.)  

5. One dimensional constitutive law is used.  

6. The beam is subjected to mechanical load.  

C. The Displacement Field: 

Based on the before mentioned assumptions, the displacement 

field of the present unified refined beam theory is given as 

below: 

   

 

0
0

0

(1)

(2)

, x

dw
u x z u z f z

dx

w w x

  



 

Here u and w are the axial and transverse displacements of the 

beam centre line. The functions f(z) assigned according to the 

shearing stress distribution through the thickness of the beam 

are as follows 

Present theory:  
h z

f z sin
h





 
  
 

 

The normal and transverse shear strains are obtained from 
linear theory of elasticity. 

 
2

0 0

2
(3)x

du du d w
z f z

dx dx dx
      

  (4)zx

u w d
f z

z x dz
 

 
  
 

 

One dimensional law is used to obtained normal bending 
and transverse shear stresses. 

   
2

0 0

2

(5)k k

x

du d w d
E z f z

dx dx dx


   

 
  

 

  (6)k k

zx
G

d
f z

dz
   

D. Governing Equations: 

Using the Eqns. (2) through (6) for strains, stresses and 

principle of virtual work, variationally consistent differential 

equations for the beam under consideration are obtained. The 

principle of virtual work when applied to the beam leads to: 

 

   

/ 2

0 /2

0
0 7

x L z h

x x zx xz
x z h

x L

b s
x

b dxdz

q w w dx

    

 

 

 





 

 

 


 

Where the symbol   denotes the variational operator. 

Employing the Green’s theorem in Eqn. (7) successively and 

collecting the coefficients of b sw and w   the governing 

equations obtained are as follows: 
4 3

0

4 3
0 (8)

d w d
D E

dx dx


   

3 2

0

3 2
0 (9)

d w d
E F H

dx dx


    

 

   

 

2 2

2
1 1

2 2

2 2
2

1 1

2 2

2
2

2

h/ h /

h / h /

h / h /

h / h /

h /

h /

C E f z dz;D E z dz;

E E zf z dz;F E f z dz;

H G f ' z dz

 

 



 

    

   

 

 



 

E. General Solution Scheme for Analysis of Composite Beam: 

 The general solution for transverse displacement 0w and 

warping function   is obtained using equations 8 and 9by 

solution of linear differential equations. 

 
3 2

0

3 2
(10)

x
Qd w E d

dx D dx D


   

 

Where  x
Q  is the generalized shear force for beam and it is 

given by   1

0

x

x
Q qdx C  . 
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Now the equation number 9 is rearranged in the following form 
3 2

0

3 2
(11)

d w F d

dx E dx


   

 

A single equation in terms of  is obtained by using equation 

10 and 11 as: 

 
2

2

2

0

(12)
x

Qd

dx D


 


   

Where 20 0 0

0 0 0

,
F E H

and
E D E


  


     

The general solution of equation 12 is given by  

   
2 3

0

cosh sin (13)
x

Q
x C x C x

D
  


    

Transverse displacement w(x) can be obtained by substituting 

the value of  x  in equation 11 

 

 
3 2

1 0 4
2 3 5 6

0

cosh sin (14)
6 2

w x qdxdxdxdx

C x A C x
C x C x C x C

D
 





     

 
 

Where  C1–C6 are the arbitrary constants of integration and can 

be obtained by imposing natural (forced) and kinematic 
(geometric) boundary conditions of beam. 
 

F.  Illustrative Examples: 

As shown in figure a simply supported beam uniform beam of 

rectangular cross-section occupying the region given by figure1 

is considered for detailed numerical study. 

Example: 1  

A simply supported beam with rectangular cross-section (b × h) 

is subjected to uniformly distributed load (UDL) q over the 

span L at surface z = −h/2 acting in the downward z direction. 

The origin of beam is taken at left end support, i.e. at x = 0. 

The boundary conditions associated with simply supported 

beam are as follow. 
3 2

3 2

2

2

0 / 2 (15)

0 0 (16)

d w d dw
at x L

dx dx dx

d w d
w at x

dx dx






    

   

 

 

The boundary condition, 0   at x = L/2 is used from the 

condition of symmetry of deformation, in which the middle 
cross-section of the beam must remain plane without warping 

[Gere and Timoshenko (1986)]. From the general solution of 

beam, expressions for   and w are obtained as follows: 

 

   

 

 

 

 

0

4 34

0

2 2

2

0

2

sinh / 22
1 (17)

2 / 2 cosh / 2

2
24

1

18
cosh / 22 2

1
cosh / 2

L xqL x

D L L L

qL x x x
w

D L L L

x x

L LqL E

L xD H

LL




  





  
    

   

      
        

       

  
  

  
   

       

 

Example: 2  

A fixed supported beam with rectangular cross-section (b × h) 

is subjected to uniformly distributed load (UDL) q over the 

span L at surface z = −h/2 acting in the downward z direction. 

The origin of beam is taken at left end support, i.e. at x = 0. 

The boundary conditions associated with fixed supported beam 

are as follow. 

3 2

3 2

2 2

2

0 / 2 (19)

0 0, (20)

0 (21)
12

d w d dw
at x L

dx dx dx

dw
w at x L

dx

d w d qL
at x

d x dx







   

   

  

 

 

Using the boundary conditions above equations for w(x)  and 

 x  can be obtained as follow 

 

 

 

 

 

0

2 2

4 3 24

0

2

2 3 3

sinh / 2
2 1 (22)

2 sinh / 2

12 1 cosh / 2 cosh ( / 2 )

sinh / 2

2
24

cosh / 21 6 12

sinh / 2

x LqL x

D L L

F L L x

L H L L

qL x x x
w

D L L L

LF x x

H L L L




 

 

  



 

 
   

  

     
    

      

      
          

       

  
  

  

(23)

 
 
 
 
 
 
 
 
 

 
 
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Example 3: 

A cantilever  beam with rectangular cross-section (b × h) is 

subjected to uniformly distributed load (UDL) q over the span 

L at surface z = −h/2 acting in the downward z direction. The 

origin of beam is taken at left end support, i.e. at x = 0. The 

boundary conditions associated with cantilever  beam are as 

follow. 

3 2

3 2
0 (24)

0 0 (25)

d w d dw d
at x L

dx dx dx dx

dw
w at x

dx

 



    

   

 

Using the boundary conditions above equations for w(x)  and 

 x  can be obtained as follow 

   

 

 

0

4 34

0

2 2

2

0

2 2

sinh
cosh

cosh / 2
(26)

sinh 1

4 6
24

1
2

27
cosh sinh 1 cosh 1

cosh

x
Lx

L LqL

D x
x

L

qL x x x
w

D L L L

x x

L LqL E

HD x x x

L L L




 





  

  

 
  
 
 

  
 

      
        

       

  
  

  


     
            

 

 
 

III. RESULT AND DISCUSSIONS 

The result for of transverse displacement ( w ), axial stress 
x

  

and transverse shear stress 
zx

  for composite beam subjected 

uniform distributed load are presented in non-dimentional form 

for purpose of presenting the results in this paper. 
 

3

4

10
, ,x zx

x zx

Ebh w b b
w

q qql

 
   

 

 
1. Simply Supported Beam: 

Table 1: Comparison of transverse displacement  w  axial 

stress  x
 and transverse shear stress (

zx
 ) for simply 

supported beam subjected to uniformly distributed load. 
A.R Theory Model w  

x  CR

xz  

10 

Present HSBT 1.6016 76.0503 7.6580 

Ghughal and 
Sharma[6] 

HPSDT 
1.6020 75.2580 7.5600 

Timoshenko FSDT 1.5950 75.0000 4.999 

Euler and 

Bernoulli 
EBT 

1.5630 75.0000 ---- 

 

 
 

Fig. 2: Variation Of Transverse Shear Stress Through The Thickness Of 

Simply Supported Beam Subjected To Uniformly Distributed Load And 

Obtained Using Constritutive Relation For Aspect Ratio 10. 

 

 

Fig. 3: Variation Of Axial Stress Through The Thickness Of Simply Supported 

Beam Subjected To Uniformly Distributed Load For Aspect Ratio 10. 

 

2. Fixed Supported Beam: 

Table 2: Comparison of transverse displacement  w  axial 

stress  x
 and transverse shear stress (

zx
 ) for fixed supported 

beam subjected to uniformly distributed load. 

 
A.R Theory Model w  

x  CR

xz  

4 

Present HSBT 0.5845 15.1321 6.0763 

Ghughal and 

Sharma[6] 
HPSDT 

0.5412 16.7540 6.3503 

Timoshenko FSDT 0.5565 8.0000 3.0000 

Euler and 

Bernoulli 
EBT 

0.3125 8.0000 ---- 
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Fig. 4: Variation Of Axial Stress Through The Thickness Of Fixed Supported 

Beam Subjected To Uniformly Distributed Load For Aspect Ratio 4. 

 

 
 

Fig. 5: Variation of Transverse Shear Stress Through The Thickness Of Fixed 

Supported Beam Subjected To Uniformly Distributed Load For Aspect Ratio 4. 

 
 

3. Cantilever Supported Beam: 

Table 3: Comparison of transverse displacement  w  axial 

stress  x
 and transverse shear stress (

zx
 ) for cantilever 

supported beam subjected to uniformly distributed load. 

 
A.R Theory Model w  

x  CR

xz  

4 

Present HSBT 1.5840 65.58 0.7748 

Ghughal and 

Sharma[6] 
HPSDT 

1.5944 65.63  

Timoshenko FSDT 1.5975 48.00  

Euler and 

Bernoulli 
EBT 

1.5000 48.00 ---- 

 

 
 

Fig. 7: Variation Of Axial Stress Through The Thickness Of Cantilever 

Supported Beam Subjected To Uniformly Distributed Load For Aspect Ratio 4. 

 
 

Fig. 8: Variation Of Transverse Shear Stress Through The Thickness of 

Cantilever Supported Beam Subjected To Uniformly Distributed Load For 
Aspect Ratio 4. 

 

IV. CONCLUSIONS 

From the static flexural analysis of simply composite beams 
following conclusions are drawn. 

1. Transverse deflection predicted by the present theory 
validates with solutions of the above mentioned theories 
of EBT, Ghugal & Timoshenko’s.  

2. Transverse shear stress predicted by the present theory 
shows excellent results and matches with the exact 
values. 

3. The present theory evaluates the results in such a way 
that they are consistent variationally. 

4. The effect of shear and bending in the present theory is 
determined and evaluated in an effective manner. 

 
 
 
 
 
 
 

V. SCOPE OF FUTURE WORK 
 The present beam theory has good scope for future research 
work. Some of the research areas where this theory can be 
extended are as follows: 
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1. Dynamic analysis of shells, plates and beams can be 
carried out. 

2. Non-linear analysis of shells, plates and beams can be 
carried out. 

3. This theory can also be used for analysis of composite 
shells, plates and beams. 
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