
 Flexray Protocol in Automotive Network

Communications

1.
 Anjan Kumar B S,

2.
 Arpitha Rani R,

3.
 Keya Priyambada,

4.
 Arti Kumari

1.
 Asst.Professor, Department of Instrumentation Technology, Bangalore Institute of Technology, K R. Road, Bangalore-560 004

2,3,4.
 Department of Instrumentation Technology, Bangalore Institute of Technology, K R. Road, Bangalore-560 004

Abstract— Automotive systems play a vital part of life all over

the world. Driven by the ongoing shift from mechanical to

electrical systems in vehicles, the Flexray consortium defined

communication systems which made many automotive industries

to become their members to bring out changes in their

production. Flexray is developed to fulfil the increasing demand

in automotives for higher safety and comfort. The main feature

for which it overtook CAN, and LIN protocols are because of the

following: high speed serial communication, wake on bus

command feature common to both controllers and to active stars,

and the ability to have a redundant bus, which offers increased

fault tolerance communication between electronic devices. In

addition this gateway communication can realize bidirectional

data transmission on Flexray bus and henceforth this protocol is

widely being implemented in leading automobile industries.

Flexray is focussed around a set of core needs which will be

outlined in this paper.

I. INTRODUCTION

 Flexray is a fast, deterministic and fault-tolerant bus system

for automotive use, based on the experience of well-known

OEMs (Original Equipment Manufacturer) with the

development of prototype applications and the byteflight

communication system. Byteflight was developed especially

for use in passive safety systems (airbags). In order to fulfil

the requirements of active safety systems, byteflight was

further developed by the Flexray consortium in particular in

relation to time-determinism and fault tolerance. CAN

(controller area network) was first developed for use in the

automotive industry but was found to be useful in other areas

such as industrial control applications. The CAN networking

scheme uses a priority driven bus arbitration system. This

means that a message with a higher priority message ID will

be given access to the network if a lower priority message is

also looking for access to the bus. The resulting message

transmission delays can lead to problems for safety systems

and because of this a TDMA (time division multiple access)

method was chosen for the Flexray protocol. [1][2]

II. ARCHITECTURE

Figure 1: Flexray architecture levels

A. Topology Level

The Flexray protocol defines a two channel network, Channel

A and channel B. A node can be attached to one or both of

these channels. If a node is attached to a single channel it does

not matter if it is channel A or channel B. The Flexray

protocol allows for various bus topologies. These can be a

point to point connection, passive star, linear passive bus,

active star network, cascaded active stars, hybrid topologies

and dual channel topologies. The Flexray protocol will support

hybrid topologies as long as the limits of each topology which

makes up the hybrid topology (i.e. the star and bus topologies)

are not exceeded. [3]

2588

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20927

Figure 2: Network Topology Overview

Figure 3: Flexray Timing Hierarchy

B. Interface Level

Flexray supports bus guardian at physical interface. It enforces

error containment in the time domain, and performs error

detection in the time domain. Bus guardian interacts with

communication controller (signal monitoring and

synchronization) and host processor (configuration,

activation/deactivation, error signalling) [4].

The Bus Guardian- The bus guardian is used in Flexray to

protect the communication channel against faulty behaviours

of communication controllers. Each communication controller

has a bus guardian. On the one side, the bus guardian should

prevent the communication controller from accessing the

communication channel outside its pre-allocated slots. On the

other side, the bus guardian should

Guarantee that messages from non-faulty communication

controllers are correctly relayed. We identify four properties

of the bus guardian:

• Correct Relay. If a correct communication controller sends a

message, its non-faulty bus guardian relays the message.

• Validity. If a non-faulty bus guardian relays a message, then

all correct communication controllers receive the message.

• Agreement. If a non-faulty communication controller

receives a message, then all non-faulty communication

controllers receive the message.

• Integrity. If a message is received by a non-faulty

communication controller, the message must have been sent

by another non-faulty communication controller.

C. Protocol Engine Level

Static Segment

 The static segment is broken down into smaller Sections

called static slots. Every static slot is of the same duration.

During transmission each slot is assigned to a specific

message and only that message can transmit during that slot

time.

Dynamic Segment

 The Dynamic segment is an optional section of the

Communication cycle. It is broken down into smaller sections

known as mini slots. If a node wishes to communicate it must

wait until its mini slot comes around. If no transmission occurs

after a given period the mini slot counter is incremented and

the node with the next message/frame id may begin

transmission of data. The data to be sent will only be sent if

there is enough time left in the dynamic segment. In this way

the dynamic segment is priority driven with the message with

the lowest ID having the highest priority, just like CAN.
Symbol Window

 A symbol is used to signal a need to wake up a cluster

amongst other things. This depends on the symbol sent and the

status of the controller at the time. Within the symbol window

a single symbol may be sent. If there is more than one symbol

to be sent then a higher level protocol must determine which

symbol gets priority as the Flexray protocol provides no

arbitration for the symbol window.

Network Idle Time

The network idle time is used to calculate clock adjustments

and correct the node’s view of the global time. It also

performs communication specific tasks and uses up the

remaining time of the communication cycle.

Conceptual hierarchy of the communications system layers

Figure 4: Interface to application processes executed on the host

2589

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20927

The central layer of this hierarchy is the protocol execution

layer. Within the protocol execution layer outgoing frame data

is sent to the physical layer according to the time-driven media

access strategy defined for media access control (MAC).

Frame data contains not only 0-254 bytes of message data that

is held in the payload section of the frame, but also 5 bytes of

protocol related data that is held in the header section of the

frame. The frame is secured using a 24 bit cyclic redundancy

check (CRC) that is stored in the trailer segment of the frame.

Incoming frame data is checked by frame / symbol processing

(FSP) against a set of syntactical and semantical acceptance

criteria. The message contained in an accepted frame is passed

to the controller host interface (CHI) for storage while the

protocol related frame data is provided to the core processes of

the protocol execution layer. These core processes consist of

the protocol operation control (POC), the macrotick

generation (MTG), the clock synchronization start-up (CSS)

and the ongoing clock synchronization processing (CSP) that

executes the synchronization algorithm.

On the one hand the protocol execution layer interfaces to the

controller host interface layer that contains storage means for

all interface data and the controller host interface services, on

the other hand the protocol execution layer interfaces to the

coding / decoding layer that performs the non-return to zero

(NRZ) coding and decoding of frames. The frames are

exchanged among nodes on the physical layer, which forms

the lowest level of the hierarchy. The physical layer contains

the bus drivers, the bus guardians and the physical

interconnections including any star couplers or other hubs that

are located in the interconnection path.

Figure 5: Frame Format

Header

Figure 6: Bit-level breakdown of a Flexray Frame

The Frame ID defines the slot in which the frame should be

transmitted and is used for prioritizing event-triggered frames.

The Payload Length contains the number of words which are

transferred in the frame. The Header CRC is used to detect

errors during the transfer. The Cycle Count contains the value

of a counter that advances incrementally each time a

Communication Cycle starts.

Payload

Figure 7: Payload of a Flexray Frame

The payload contains the actual data transferred by the frame.

The length of the Flexray payload or data frame is up to 127

words (254 bytes), which is over 30 times greater compared to

CAN.

Trailer

Figure 8: Trailer

The trailer contains three 8-bit CRCs to detect errors.

D. Controller Host Interface Level and Host Level

Functions currently defined include a timer service, an

interrupt service, a message ID filtering service, and a network

management service. The timer service allows time-outs to be

defined for the application based on the synchronized time

base maintained by the protocol. Upon reaching a time-out the

interrupt service raises an interrupt to the host. The message

ID filtering service provides means for selecting receive

buffers based on a message ID that is exchanged in frames that

are enabled for message ID filtering. This allows using a

message selection concept such as in CAN, where message

IDs embed the semantical meaning of the associated message.

The network management service supports an application-

level functional network.

III. HARDWARE PARAMETERS

Hardware parameters let the integrator customize the design to

remove unused hardware. For a Flexray device, there could be

several system-dependent parameters like bus and data width,

and architectural parameters like the maximum number of

2590

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20927

message buffers and payload length. The maximum number of

message buffers (4 to 256) has a big impact on the area and

the clocking requirement of the CHI, whose frequency

requirement can range from 20 to 140 MHz The freedom to

implement only the required message buffers eases the way to

a design optimized for cost, area, power Optimization and

topology analysis validation.

IV. SOFTWARE DESCRIPTION

Vector supports the user with software components and

Individualized service for universal development of Flexray

systems up to series production. Development is simplified by

improved tools that are tuned to one another, like for instance

DaVinci Network Designer for all Flexray-typical design tasks

or CANoe.Flexray 6.0 for simulation and stimulation of a

network, integration tests and rest-of-bus simulation as well as

analysis of the finished Flexray network. CANape 6.0 is used

to access to all internal parameters of the Flexray ECU via the

standardized measurement and XCP-on-Flexray calibration

protocol. The Flexray Evaluation Bundle provides for quick

and flexible implementation of a Flexray network. This

integrated environment of software components and tools also

includes a sample application for a Flexray system with two

nodes.

A. Embedded Software for Flexray Systems

To fully exploit the advantages of Flexray-based

communication, it makes sense to fundamentally develop the

associated basic software according to the AUTOSAR

specification. AUTOSAR specifies a new development

methodology, software architecture and basic software. OEMs

may gradually introduce it step-by-step on new vehicle

models. The standard-conformant ECU-specific software is
modularly structured. This enables partitioning of the software

components above the RTE (Remote Terminal Emulator) and

the basic software below the RTE. The basic software has a

modular internal structure and is specified by clearly defined

interfaces, so that software from any source can be used in

integration. In addition, the standard defines which exchange

formats can be used and how the interfaces between individual

modules need to operate. This modularity makes it easier to

scale software features to the specific requirements of a

vehicle variant.

B. Flexray Software Examples Included in the SK-91F467-

Flexray Starter Kit

91460_template_91467d example

Within the delivery there is also an example called

“91460_template_91467d”. This template example should be

used, when starting a new project. All required files (e.g.

start-up file, header ...) and Tool settings (e.g. Assembler,

C/C++-Compiler, and Linker) are included. Also, two

Configurations are included, STANDALONE and

MONDEB_INTERNAL, to switch between Debugging and

final application. For details about the template example and

the Softune Workbench Monitor Debugger refer to the USER

GUIDE of the SK-91F467-FLEXRAY starter kit.

91460_templateFR_91467d

This template_FR example is a special template version for

Flexray application. In addition to the template example

following is prepared: The workspace contains two Projects,

called “Node1” and “Node2”. All additional files for the

DECOMSYS::COMSYSTACK are already inside the “src”

folder, “src_shared” or the “Generated_files” folder. The

start91460.asm file is already adapted to SK-91F467-

FLEXRAY

starter kit. CS1 enabled, 32-bit data width, address starting

0x80.0000 for external SRAM. CS3 enabled, 16-bit data

width, address staring at 0x50.0000 for Flexray CC

(MB88121) when starting a new Flexray application it is

recommend copying the template_FR workspace and

renaming the files accordingly. [6]

V. FEATURES

The main features of the Flexray protocol are as follows:

 Two channel each of which capable of 10 Mbps data

rate; the two channels can be used to implement a

redundancy mechanism or in stand-alone way,

reaching an aggregate data rate of 20Mbps (twenty

times as faster as CAN bus).

 Deterministic behaviour: during the Flexray system

configuration, it is necessary to set the

communication cycle period length, which is divided

in a static and in a dynamic time window. The first

one is reserved for synchronous communication and

is able to guarantee a specified frame latency and

jitter through a mechanism of fault tolerant clock

synchronization; in other words, static time windows

is suitable for time triggered messages. The latter one

is instead reserved for event triggered messages,

prioritized in a way similar to CAN bus, that is by

setting specific bits in the message header. Flexray

messages, moreover, can have a frame length from 2

to 254 bytes, which means a significant increase

compared to the 8 byte length of CAN bus. CAN

adopts priority arbitration for message delivery; that

means that low priority messages will always be

delayed by high priority messages, and only the

highest priority message has a guaranteed delivery.

Determinism means that nothing happens by chance:

the correct output is always determined by its input

and this behaviour can be extended to the entire

network, making it a predictable system. Clock

synchronization is very important in the Flexray

architecture to guarantee a deterministic behaviour.

Each communication cycle period, a synch message

is transmitted by each synchronization node on the

network (usually a Flexray network includes at least

four synchronization nodes). When each node

receives a synch message, compares its clock with

that transmitted by the synchronization node and

makes the necessary correction to match them. If

doing so one node fails, the others can continue to

work since all of them have been correctly

synchronized.

 Fault tolerance: it is achieved both implementing

redundancy at system configuration level and, on the

physical layer, with the Bus Guardian, an

2591

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20927

independent circuit which is able to protect a channel

from interference caused by data not aligned with the

protocol schedule. Fast error detection and signalling

is also provided, as well. Nevertheless, collisions on

bus are significantly reduced with Flexray.

 Support of electrical and optical physical layer.

 Support for bus, star, and multiple star topologies.[5]

VI. APPLICATIONS

The Flexray logo depicts the ray fish. With its characteristics,

Flexray makes it possible to apply the so called x-by-wire

technology (where x stands for drive, steer, and brake) to the

automotive world. By-wire means that the hydraulic systems

traditionally used to perform those tasks are eliminated and

replaced by lightweight, non toxic, more efficient and more

maintainable electro-mechanical systems.

Industrial applications

In the industrial area the industrial Ethernet is being

propagated to solve these problems. This interface suffers
from poor real time capability and an enormous overhead by

the needed hardware. Not to mention the extensive software

drivers and the huge variety of different available protocols.

Flexray is offering exactly the needed capabilities. Through a

redundant communication path, an extremely high security

can be achieved. The real time ability will be provided by a

time triggered system and data will be distributed to an exact

guaranteed time to the involved receiver. The needed

hardware and software expenditure is relatively small, which

allows using also lower cost controllers. The high

performance, the jitter and collision free transmission and the

little overhead allow an easy design of complex control

systems. A possible scenario could be a simple sensor/actor

satellite construct, which is linked to a powerful central

control unit. Such a system excellently suits motor control and

its synchronization. There are innumerable other applications

realizable with decentralized intelligence, which are not

conceivable with Ethernet or other field buses [7].

Flexray in Airplanes

This technology was firstly introduced in the avionics sector

(where it is known as flight-by-wire) to assist the pilot in the

flight of supersonic airplanes. On military airplanes such as

the F16, when flying at more than 1 mach with some g of

acceleration, the pilot does not have to push with strength on

the pedals or on the control stick: it can just control the

airplane by means of a joystick-like control electrically

connected to electro-mechanical actuator and sensors.

Flexray in Automobiles

Figure 9: Flexray/CAN Model of Automobile

In 2000, BMW, DaimlerChrysler, Motorola (now Free scale),

and Philips Semiconductors founded the Flexray Consortium

with the declared purpose to develop a high-speed, safe, and

reliable communication protocol for automotive applications,

and to make that technology available also to other

competitors (no royalties have to be paid for automotive

applications). Flexray is becoming a standard for advanced

power train, chassis, and x-by-wire systems. It is not going to

substitute current protocols and networks: CAN, LIN, MOST,

and J1850 will continue to exist, but they will be integrated

and work in conjunction with Flexray.

All these properties explain why Flexray is an excellent

solution for x-by-wire applications, where real-time, high

speed, and fault tolerance are mandatory requirements. As

mentioned before, a typical Flexray application is represented

by the brake-by-wire system. The idea beneath this solution is

to eliminate the dependence on hydraulic systems, increasing

the vehicle stability control and safety. ABS (Anti-lock

Braking System) is today adopted on many types of vehicles,

but stability control is still a complex and expensive option.

Brake-by-wire, also called as EMB (Electro-Mechanical

Braking), generates the braking force on each separated wheel

by means of powerful and efficient electric motors, connected

to an electrical control unit which receives the command from

an electronic brake pedal unit. In this application Flexray

plays a dominant role, providing the communication protocol

with fast-speed, fault-tolerant, and deterministic behaviour.

Since each wheel can be controlled independently, there are

potentially no limits to the stability control algorithm:

additional sensors could be added to detect, for instance, the

weight distribution, the passengers’ allocation, the tire

pressure, and the external terrain conformance, so that the

fastest, more precise and comfortable braking action might be

executed.

Moreover, hydraulic braking systems use toxic fluid, and their

faults are not easily detectable: a brake-by-wire solution is

more environment-friendly and permits the usage of test and

diagnostic tools. Flexray protocol has already been chosen to

implement some x-by-wire solutions on commercial

automobiles. For instance, the BMW flagship SUV X5 was

the first vehicle on which Flexray has been commercially

used; one application of Flexray on this car is the ability to

choose, in a real-time manner, the correct shock absorption

setting in order to achieve the best stability. [5]

VII. CONCLUSION

For automobiles to continue to improve safety, increase

performance, reduce environmental impact, and enhance

comfort, the speed, quantity and reliability of data

communicated between a car's electronic controls units (ECU)

must be improved. Advanced control and safety systems--

combining multiple sensors, actuators and electronic control

units--are beginning to require synchronization and

performance more than what the existing standard, Controller

Area Network (CAN), can provide. Coupled with growing

bandwidth requirements, today's advanced vehicles utilize

over five separate CAN busses, for which automotive

engineers are demanding a next-generation, embedded

network. After years of partnership with OEMs, tool suppliers

2592

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20927

and end users, the Flexray standard has emerged as the in-

vehicle communications bus to meet these new challenges.

REFERENCES

[1] Flexray Communications System – Protocol Specification, v2.1

Revision A, Flex Ray Consortium, Dec. 2005.

[2] Flex Ray Consortium, http:// www.flexray.com.
[3] http://repository.wit.ie/898/2/CF-005622.pdf.

[4] http://www.flexray.com/products/protocol%20overview.pdf

[5] http://dev.emcelettronica.com/flexray-protocol-x-wire-becomes-reality.
[6]

http://www.vector.com/portal/medien/cmc/press/Vector/FlexRayOS_Ele

ktronikAutomotive_200609_PressArticle_EN.pdf.
[7] IEEE Paper on Automotive Communications - Past, Current and Future

by Thomas Noltey, Hans Hanssony and Lucia Lo Belloz

2593

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20927

