Fire Behaviour of Composite Structure

A. S. Zanzari Civil Engineering Department, JSPM's Rajarshi Shahu College of Engineering, Maharashtra, India. D. S. Yerudkar Civil Engineering Department, JSPM's Rajarshi Shahu College of Engineering, Maharashtra, India. M. R. Sharma Civil Engineering Department, JSPM's Rajarshi Shahu College of Engineering, Maharashtra, India.

Abstract— In recent years, the use of steel concrete structure has increased significantly due to its advantages such as speed in construction, improvement in performance, protection from corrosion etc. Several research are carried out to understand the behaviour of such structure in earthquake but not many on fire. This research mainly concentrates on the effect of temperature on the composite structure. A single storey structure consisting of encased steel column and concrete filled steel column with composite beam with solid and filled deck were analyzed for gravity and temperature changes. The analysis were carried out by finite element method and American institute of steel construction 2016 method. The result of the analysis shows that at ambient temperature both the column system behave similar to each other but as the temperature increases the encased steel column system has better behaviour also the beams behaviour was similar irrespective to the solid or deck slab system.

Keywords— Composite column, composite beam, composite frame, fire.

I. INTRODUCTION

In recent years, the use of composite structure has increased significantly in India. Composite structure/member are member that are made up of two or more different material. The main advantage of composite elements is that the properties of every material are often combined to make one unit that performs better overall than its separate constituent parts. The most common kind of composite element in construction could also be a steel-concrete composite, however, other kinds of composites include; steel-timber, timber-concrete, plastic-concrete, and so on. As a material, concrete works well in compression, but it's less resistance in tension. Steel, however, is extremely strong in tension, even when used only in relatively small amounts. Steel-concrete composite elements use concrete's compressive strength alongside steel's resistance to tension, and when tied together this leads to a highly efficient and light-weight unit that's commonly used for structures such as multi-story buildings and bridges.

The main composite elements in buildings are column, steel concrete beams and slabs.

Composite columns can have high strength for a relatively small cross-sectional area, meaning that useable floor space can be maximized. There are several differing types of composite columns; the foremost common being an open steel section encased in concrete or a hollow section steel tube which is filled with concrete. Steel reinforced concrete column also known as concrete encased steel composite column were studied extensively experimentally and numerically over the decade. However the study focused on the structural behaviour

in fire condition [1-3] and post fire [4-5]. For example the effect of eccentric load[5], load [3], restrain to thermal elongation[6], axial restrain [7-8], effect of 3 sided heating [9]. Further the SRC were compared with steel reinforced toughness cementitious column[10].Concrete filled steel tube fire resistance is influenced by cross section shape, size[11] axial load[12],3side heating[13], strength of concrete[14]. Hai Han et al [15] studied the flexural and compression behaviour of CFST. Various type of CFST such as concrete filled double skin column, Double tube hollow steel column [16-17], CFST with steel core[18], concrete filled Rectangular hollow section [13], elliptical concrete filled steel column[19], RCC confined with steel tube[20] were studied. Yang et al [21] studied the post fire behaviour of CFST column. Analytical modelling [22], numerical modelling [23-24], and nonlinear analysis [25, 26] were studied for SRC and CFST column

Composite beams are normally hot rolled or fabricated steel sections that act compositely with the slab. The composite interaction is achieved by the attachment of shear connectors to the highest flange of the beam. These connectors generally take the form of headed studs. Most of the study of composite beam focused on the effect of restrain [27-29], and shear tab/connector [30-33] in the fire condition. Composite beam were studied experimentally [34-35] and by OPENSEES [36].Castellated beam [37] and cellular beam [38] were also study for effect of fire load on them. Modelling of composite beam is studied rom [39-4]

Composite slabs are typically constructed from reinforced concrete sew top of profiled steel decking, (re-entrant or trapezoidal). The decking is capable of acting as formwork and a working platform during the construction stage, also as acting as external reinforcement at the composite stage. Studies showing the fire behaviour of composite slab to fire [41-54] were reviewed. Composite structure consisting of various orientation and condition were studied [55-64] for fire. The study aims to model a composite structure using analytical and numerical method for gravity load and temperature changes. The software used for the analysis is E-Tabs 2018 and numerically by AISC (American institute of steel construction) 360-16. After the analysis both the results are compared.

II. FEM ANALYSIS

A single storey composite structure of dimension 22 m×22.2m and Floor to floor height 3.6 m subjected to gravity and temperature change. The modelling is done using ETABS 2018 software Load considered are self-weight of member and a uniformly distributed load of 12 ken/m2 and a temperature

change from ambient temperature i.e. 25°C to 525°C with an interval of 100°C.Loads and its combinations are considered as per Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7). Two types of composite column is used viz. encased steel column and concrete filled steel column both of dimension 609mm×609 mm. The section used for composite girder is W24×94 and composite beam is W21×62. The slab is of 190mm thickness.

III. NUMERICAL ANALYSIS

Numerical analysis is carried out using AISC (American standard of steel construction) 360-16.

IV. RESULT AND DISCUSSION

A. FEM Result

The result after evaluating the system are as follows:

Table I: Behaviour of Composite Girder with Solid Deck to Fire

Temperature (°C)	Shear Ratio	Bending ratio	Total Deflection (mm)	Section
25	0.161	0.62	12.4	Pass
125	0.203	0.71	14.3	Pass
225	0.246	0.8	19.6	Pass
325	0.288	0.88	20.5	Pass
425	0.345	0.92	23.9	Pass
525	0.453	0.98	45.5	Fail

Table II: Behaviour of Composite Girder with Trapezoidal Deck to Fire

Temperature (°C)	Shear Ratio	Bending ratio	Total Deflection (mm)	Section
25	0.161	0.62	12.5	Pass
125	0.203	0.71	14.3	Pass
225	0.246	0.8	19.7	Pass
325	0.288	0.88	20.5	Pass
425	0.345	0.92	23.9	Pass
525	0.453	0.98	45.5	Fail

Fig 1: Shear and Bending Ratio of Composite Girder with Solid Deck

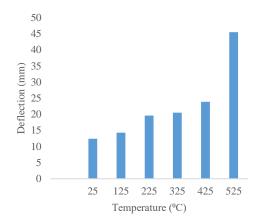


Fig 2: Deflection of Composite Girder with Solid Deck

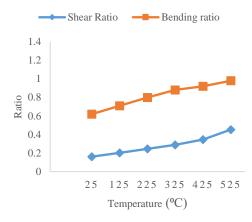


Fig 3: Shear and Bending Ratio of Composite Girder with Trapezoidal Deck

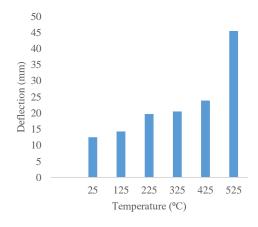


Fig 4: Deflection of Composite Girder with Trapezoidal Deck

Similarly calculation were carried out for composite beam with solid and trapezoidal deck.

Table III: Behaviour of Composite Column (C6) to Fire

	Demand/Capacity Ratio		
Temperature (°C)	Encased Steel Section Column	Concrete Filled Steel Column	
25	0.153	0.345	
125	0.383	0.657	
225	0.765	0.995	
325	0.814	1.346	
425	0.953	1.856	
525	1.751	2.345	

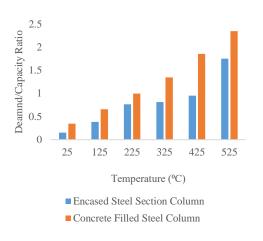


Fig 5: Demand/Capacity Ratio of Composite Column

B.Numerical Result

The result are as follows:

Table IV: Behaviour of Composite Girder to Fire Numerically

Temperature (°C)	Bending Ratio	Section
25	0.87	Pass
125	0.89	Pass
225	0.899	Pass
325	0.93	Pass
425	0.98	Pass
525	1.23	Fail

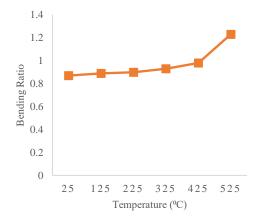


Fig 6: Bending Ratio of Composite Girder

Table V: Shear Ratio at 25°C

Table V. Bilear Ratio at 23 C		
Shear Ratio		
Beam	0.11	
Girder	0.2	

V. COMPARISON OF FEM AND NUMERICAL RESULT

The comparison between the FEM and numerical results were carried out in table VI and VII.

Table VI: Comparison of FEM and Numerical Bending Ratio of Girder

Temperature	Bending Ratio		
(°C)	FEM result	Numerical Result	
25	0.62	0.87	
125	0.71	0.89	
225	0.8	0.899	
325	0.88	0.93	
425	0.92	0.98	
525	0.98	1.23	

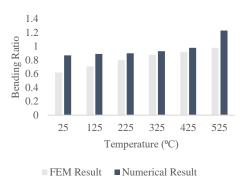


Fig 6: Comparison of Bending Ratio

Table VII: Comparison of Analytical and Numerical Shear Ratio at 25°C

		Beam	Girder
Shear	FEM	0.12	0.16
Ratio	Numerical	0.11	0.2

Fig 7: Comparison of Shear Ratio

From the above table we can say that the bending ratio of Composite beam and Composite Girder subjected to temperature change of analytical result are slightly different from numerical result. The decrease in the moment carrying capacity at elevated temperature is calculated by using the retention factor whereas in analytical method the decrease in capacity is calculated using DM which gives more accurate result. This can be due to more conservative values i.e. retention factor used in numerical analysis. At 25°C the

ISSN: 2278-0181

difference between shear ratios is equal for composite beam but difference is more for girder. The difference between the analytical and experimental is approximately 20% for composite beam and girder.

V. CONCLUSION

Considering above result following conclusion may be drawn:

1. Irrespective of the slab type i.e. solid slab deck or

- trapezoidal filled deck slab the shear ratio, deflection ratio and deflection for composite slab and girder is similar.
- 2. At 25°C the difference in the shear ratio is low for composite beam but it is more for composite girder.
- 3. For encased column system, the demand/capacity ratio at ambient temperature is low i.e. 0.153 and as the temperature increases, the demand/capacity ratio also increases to 1.751 at 525°C.
- 4. For encased column system, the demand/capacity ratio at ambient temperature is 0.345 and as the temperature increases, the demand/capacity ratio also increases to 2.345 at 525°C.
- 5. For given load condition, the encased column system is more thermally resistant then the concrete filled steel column.

REFERENCES

- [1] João Paulo C. Rodrigues, Antonio J.M. Correia, Tiago A.C. Pires "Behaviour of composite columns made of totally encased steel sections in fire" Journal of Constructional Steel Research 105 (2015) 97–106 http://dx.doi.org/10.1016/j.jcsr.2014.10.030
- [2] Linhai Han, Qinghua Tan, Tianyi Song "Fire performance of steelreinforced concrete (SRC) structures" The 9th Asia-Oceania Symposium on Fire Science and Technology doi:10.1016/j.proeng.2013.08.043
- [3] Zhan-Fei Huang, Kang-Hai Tan, Wee-Siang Toh, Guan-Hwee Phng "Fire resistance of composite columns with embedded I-section steel — Effects of section size and load level", Journal of Constructional Steel Research 64 (2008) 312–325 l. doi:10.1016/j.jcsr.2007.07.002
- [4] Lin-Hai Han, Kan Zhou, Qing-Hua Tan, Tian-Yi Song Performance of steel-reinforced concrete columns after exposure to fire: Numerical analysis and application, journal engineering structure2020 https://doi.org/10.1016/j.engstruct.2020.110421
- [5] Chao Zhang, Guang-Yong Wang, Su-Duo Xue, and Hong-Xia Yu "Experimental Research on the Behaviour of Eccentrically loaded SRC Columns Subjected to the ISO-834 Standard Fire Including a Cooling Phase" International Journal of Steel Structures 16(2): 425-439 (2016) DOI 10.1007/s13296-016-6014-0
- [6] António J.P. Moura Correia, João Paulo C. Rodrigues "Fire resistance of partially encased steel columns with restrained thermal elongation", Journal of Constructional Steel Research 67 (2011) 593– 601. doi:10.1016/j.jcsr.2010.12.002
- [7] Ben Young, Ehab Ellobody "Performance of axially restrained concrete encased steel composite columns at elevated temperatures", Engineering Structures 33 (2011) 245–254 doi:10.1016/j.engstruct.2010.10.019
- [8] Zhan-Fei Huang, Kang-Hai Tan, Guan-Hwee Phng "Axial restraint effects on the fire resistance of composite columns encasing I-section steel" Journal of Constructional Steel Research 63 (2007) 437–447 doi:10.1016/j.jcsr.2006.07.001
- [9] Xiaoyong Mao, V.K.R. Kodur "Fire resistance of concrete-encased steel columns under 3- and 4-side standard heating" Journal of Constructional Steel Research 67 (2011) 270–280 doi:10.1016/j.jcsr.2010.11.006
- [10] Qing-Hua Li; Chao-Jie Sun; Jun-Feng Lyu; Guan Quan; Bo-Tao Huang; and Shi-Lang Xu "Fire Performance of Steel-Reinforced Ultrahigh-Toughness Cementitious Composite Columns: Experimental Investigation and Numerical Analyses" Journal of Structural Engineering, © ASCE, ISSN 0733-9445 DOI: 10.1061/(ASCE)ST.1943-541X.0002567.
- [11] João Paulo C. Rodrigues; Antonio J. P. M. Correia; and Venkatesh Kodur "Influence of Cross-Section Type and Boundary Conditions on Structural Behaviour of concrete-filled Steel Tubular Columns

- Subjected to Fire" Journal of Structural Engineering, ASCE, ISSN 0733-9445. DOI: 10.1061/(ASCE)ST.1943-541X.0002860.
- [12] Jingsi Huo, Guowang Huang, Yan Xiao "Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns", Journal of Constructional Steel Research 65 (2009) 1664–1676 doi:10.1016/j.jcsr.2009.04.022
- [13] Hua Yang, Faqi Liu, Leroy Gardner "Performance of concrete-filled RHS columns exposed to fire on 3 sides" Engineering Structures 56 (2013) 1986-2004 http://dx.doi.org/10.1016/j.engstruct.2013.08.019
- [14] Peter Schaumann, Venkatesh Kodur, Oliver Bahr "Fire behaviour of hollow structural section steel columns filled with high strength concrete", Journal of Constructional Steel Research 65 (2009) 1794– 1802 doi:10.1016/j.jcsr.2009.04.013
- [15] Lin-Hai Han, Jing-Si Huo, Yong-Chang Wang "Compressive and flexural behaviour of concrete-filled steel tubes after exposure to standard fire", Journal of Constructional Steel Research 61 (2005) 882–901 doi:10.1016/j.jcsr.2004.12.005
- [16] Aline L. Camargo; João Paulo C. Rodrigues; Ricardo H. Fakury; and Luis Laim "Fire Resistance of Axially and Rotationally Restrained Concrete-Filled Double-Skin and Double-Tube Hollow Steel Columns" the Journal of Structural Engineering, ASCE, ISSN 0733-9445DOI: 10.1061/(ASCE)ST.1943-541X.0002428.
- [17] Aline L. Camargo, João Paulo C. Rodrigues, Ricardo H. Fakurya, Ruben Lopes "Comparing the fire behaviour of composite columns made with concrete-filled double-skin and double-tube steel sections" EUROSTEEL 2017, September 13–15,2017, Copenhagen, Denmark https://doi.org/10.1002/cepa.320
- [18] Martin Neuenschwander; Markus Knobloch; and Mario Fontana, "ISO Standard Fire Tests of concrete-filled Steel Tube Columns with Solid Steel Core" Journal of Structural Engineering, ASCE, ISSN 0733-9445. DOI: 10.1061/(ASCE)ST.1943-541X.0001695.
- [19] Faqi Liu; Yuyin Wang; Leroy Gardner; and Amit H. Varma "Experimental and Numerical Studies of Reinforced Concrete Columns Confined by Circular Steel Tubes Exposed to Fire", Journal of Structural Engineering, ASCE, ISSN 0733-9445. DOI: 10.1061/(ASCE)ST.1943-541X.0002416
- [20] Ana Espinos, Leroy Gardner, Manuel L. Romero, Antonio Hospitaler "Fire behaviour of concrete-filled elliptical steel columns", Thin-Walled Structures 49 (2011) 239–255 doi:10.1016/j.tws.2010.10.008
- [21] Hua Yang, Lin-Hai Han, Yong-Chang Wang "Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns", Journal of Constructional Steel Research 64 (2008) 556–570 doi:10.1016/j.jcsr.2007.09.007
- [22] Sangdo Hong, Amit H. Varma "Analytical modelling of the standard fire behaviour of loaded CFT columns", Journal of Constructional Steel Research 65 (2009) 54–69 doi:10.1016/j.jcsr.2008.04.008
- [23] Martin Neuenschwander, Markus Knobloch, Mario Fontana "Modelling thermo-mechanical behaviour of concrete-filled steel tube columns with solid steel core subjected to fire" journal of Engineering Structures 136 (2017) 180–193 http://dx.doi.org/10.1016/j.engstruct.2017.01.017
- [24] Ana Espinos, Manuel L. Romero, Antonio Hospitaler "Advanced model for predicting the fire response of concrete-filled tubular columns", Journal of Constructional Steel Research 66 (2010) 1030– 1046 doi:10.1016/j.jcsr.2010.03.002
- [25] Jiang-Tao Yu, Zhou-Dao Lu, Qun Xie "Nonlinear analysis of SRC columns subjected to fire" Fire Safety Journal 42 (2007) 1–10 doi:10.1016/j.firesaf.2006.06.006
- [26] Ehab Ellobody "A consistent nonlinear approach for analysing steel, cold-formed steel, stainless steel, and composite columns at ambient and fire conditions" Thin-Walled Structures 68 (2013) 1–17 http://dx.doi.org/10.1016/j.tws.2013.02.016
- [27] Junli Lyu, Qichao Chen, Huizhong Xue, Yongyuan Cai, Jingjing Lyu and Shengnan Zhou "Fire Resistance of Composite Beams with Restrained Superposed Slabs", Hindawi Advances in Materials Science and Engineering Volume 2020, Article ID 7109382, https://doi.org/10.1155/2020/7109382
- [28] Mustesin Ali Khan; Katherine A. Cashell; and Asif S. Usman "Analysis of Restrained Composite Perforated Beams during Fire Using a Hybrid Simulation Approach", Journal of Structural Engineering, ASCE, ISSN 0733-9445 DOI: 10.1061/(ASCE) ST.1943-541X.0002528
- [29] Mustesin Ali Khan, Liming Jiang, Katherine A. Cashell, Asif Usmani "Analysis of restrained composite beams exposed to fire using a

ISSN: 2278-0181

- hybrid simulation approach", Engineering Structures 172 (2018) 956-966 https://doi.org/10.1016/j.engstruct.2018.06.048
- [30] Lisa Choe; Selvarajah Ramesh; William Grosshandler; Matthew Hoehler, Mina Seif; John Gross; and Matthew Bundy "Behaviour and Limit States of Long-Span Composite Floor Beams with Simple Shear Connections Subject to Compartment Fires: Experimental Evaluation", Journal of Structural Engineering, ASCE, ISSN 0733-944. DOI: 10.1061/(ASCE)ST.1943-541X.0002627.
- [31] Kristi L. Selden; Erica C. Fischer; and Amit H. Varma "Experimental Investigation of Composite Beams with Shear Connections Subjected to Fire Loading" Journal of Structural Engineering, ASCE, ISSN 0733-9445/04015118(12) DOI: 10.1061/(ASCE)ST.1943-541X .0001381.
- [32] Kristi L. Selden, Erica C. Fischer, and Amit H. Varma "Advanced Fire Testing of a Composite Beam with Shear Tab Connections", Structures Congress 2014, ASCE 2014 page no.1170-1174
- [33] O. Mirza, B. Uy "Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures" Journal of Constructional Steel Research 65 (2009) 662–674 doi:10.1016/j.jcsr.2008.03.008
- [34] Lisa Choe; Selvarajah Ramesh; Matthew Hoehler; and John Gross "Experimental Study on Long-Span Composite Floor Beams Subject to Fire: Baseline Data at Ambient Temperature", Structures Congress 2018
- [35] R. B. Dharma and K. H. Tan "Experimental and Numerical Investigation on Ductility of Composite Beams in the Hogging Moment Regions under Fire Conditions" Journal of Structural Engineering, Vol. 134, No. 12, ASCE, ISSN 0733-9445/2008/12-1873–1886/DOI:10.1061/(ASCE)07339445(2008)134:12(1873)
- [36] Jian Jiang, Guo-Qiang Li and Asif Usmani "Analysis of Composite Steel concrete Beams Exposed to Fire using OpenSees", Journal of Structural Fire Engineering, Volume 6 · Number 1 · 2015
- [37] Ehab Ellobody, Ben Young "Nonlinear analysis of composite castellated beams with profiled steel sheeting exposed to different fire conditions", Journal of Constructional Steel Research113(2015)247– 260 http://dx.doi.org/10.1016/j.jcsr.2015.02.012 0143-974X/
- [38] Ali Nadjai, Olivier Vassart, Faris Ali, Didier Talamona, Ahmed Allam, Mike Hawes "Performance of cellular composite floor beams at elevated temperatures" Fire Safety Journal 42 (2007) 489–497 doi:10.1016/j.firesaf.2007.05.001
- [39] Amin Heidarpour and Mark Andrew Bradford "Nonlinear Analysis of Composite Beams with Partial Interaction in Steel Frame Structures at Elevated Temperature" Journal of Structural Engineering, Vol. 136, No. 8, ASCE, ISSN 0733- 9445/2010/8-968-977/ DOI: 10.1061/(ASCE)ST.1943-541X.0000189
- [40] Guillermo A. Cedeno, Amit H. Varma, Jay Gore "Predicting the Standard Fire Behaviour of Composite Steel Beams" COMPOSITE CONSTRUCTION IN STEEL AND CONCRETE VI, International Conference on Composite Construction in Steel and Concrete 2008 page no 642-656
- [41] Zhongcheng Ma and Pentti Makelainen "Behaviour of composite slim floor structures in fire" Journal of Structural Engineering, Vol. 126, No. 7, ASCE, ISSN 0733-9445/00/0007-0830- 0837
- [42] Jian Jiang; Joseph A. Main; Jonathan M. Weigand; and Fahim Sadek "Reduced-Order Modelling of Composite Floor Slabs in Fire. II: Thermal-Structural Analysis", Journal of Structural Engineering, ASCE, ISSN 0733-9445. DOI: 10.1061/(ASCE)ST.1943-541X.0002607.
- [43] Jian Jiang; Joseph A. Main; Jonathan M. Weigand; and Fahim Sadek, "Reduced-Order Modelling of Composite Floor Slabs in Fire. I: Heat-Transfer Analysis", Journal of Structural Engineering, ASCE, ISSN 0733-9445. DOI: 10.1061/ (ASCE)ST.1943-541X.0002650.
- [44] Negar Elhami Khorasani; Thomas Gernay; and Chenyang Fang "Parametric Study for Performance-Based Fire Design of US Prototype Composite Floor Systems" Journal of Structural Engineering, ASCE, ISSN 0733-9445. DOI: 10.1061/(ASCE)ST.1943-541X.0002315.
- [45] Daphne Pantousa and Euripidis Mistakidis "Advanced Modelling of Composite Slabs with Thin-Walled Steel Sheeting Submitted to Fire" Fire Technology, 49, 293–327, 2013 DOI: 10.1007/s10694-012-0265-x

- [46] S. Guo "Experimental and numerical study on the restrained composite slab during heating and cooling" Journal of Constructional Steel Research 69 (2012) 95–105 doi:10.1016/j.jcsr.2011.08.009
- [47] Emily I. Wellman; Amit H. Varma; Rustin Fike; and Venkatesh Kodur "Experimental Evaluation of Thin Composite Floor Assemblies under Fire Loading", Journal of Structural Engineering, Vol. 137, No. 9, ASCE, ISSN 0733-9445/2011/9- 1002–1016/ DOI: 10.1061/(ASCE)ST.1943-541X.0000451
- [48] Purushotham Pakala, Rustin Fike, Emily Wellman, Venkatesh Kodur and Amit Varma "Experimental Evaluation of Composite Floor Assemblies Under Fire Loading", Structures Congress 2011, ASCE 2011
- [49] H. Mostafaei, F. Alfawakhiri "Effects of Thermal Expansion and Support Restraints on Performance of Composite Floors in Fire", Structures Congress 2011, ASCE 2011
- [50] Xinmeng Yu, Zhaohui Huang, Ian Burgess, Roger Plank "Nonlinear analysis of orthotropic composite slabs in fire" Engineering Structures 30 (2008) 67–80 doi:10.1016/j.engstruct.2007.02.013
- [51] Linus Lim, Andrew Buchanan, Peter Moss, Jean-Marc Franssen "Numerical modelling of two-way reinforced concrete slabs in fire" Engineering Structures 26 (2004) 1081–1091 doi:10.1016/j.engstruct.2004.03.009
- [52] A.M. Sanad, S. Lamont, A.S. Usmani, J.M. Rotter "Structural behaviour in fire compartment under different heating regimes - part 2: (slab mean temperatures)" Fire Safety Journal 35 (2000) 117}130
- [53] A.M. Sanad, S. Lamont, A.S. Usmani, J.M. Rotter "Structural behaviour in fire compartment under different heating regimes - Part 1 (slab thermal gradients)" Fire Safety Journal 35 (2000) 99}116
- [54] A.Y. Elghazouli, B.A. Izzuddin "Response of idealised composite beam–slab systems under fire conditions" Journal of Constructional Steel Research 56 (2000) 199–224
- [55] Zhaohui Huang, Ian W. Burgess, Roger J. Plank "Effective stiffness modelling of composite concrete slabs in fire" Engineering Structures 22 (2000) 1133–1144
- [56] Yu-Li Dong; Xing-Qian Peng; Yuan-Yuan Fang; and Da-Shan Zhang "Behaviour of Sway Two-Bay, Two-Story Composite Steel Frames in Fire" Journal of Structural Engineering, ASCE, ISSN 0733-9445/04015119(14)/ DOI: 10.1061/(ASCE)ST.1943-541X.0001369.
- [57] Yuli Dong and Kuldeep Prasad "Experimental Study on the Behaviour of Full-Scale Composite Steel Frames under Furnace Loading" Journal of Structural Engineering, Vol. 135, No. 10, ASCE, ISSN 0733-9445/2009/10-1278–1289/ DOI: 10.1061/(ASCE)0733-9445(2009)135:10(1278)
- [58] Y.L. Dong, E.C. Zhu, K. Prasad "Thermal and structural response of two-story two-bay composite steel frames under furnace loading" Fire Safety Journal 44 (2009) 439–450. doi:10.1016/j.firesaf.2008.09.005
- [59] Samantha Foster, Magdalena Chladna´, Christina Hsieh, Ian Burgess, Roger Plank "Thermal and structural behaviour of a full-scale composite building subject to a severe compartment fire" Fire Safety Journal 42 (2007) 183–199 doi:10.1016/j.firesaf.2006.07.002
- [60] A. S. Usmani "Stability of the World Trade Centre Twin Towers Structural Frame in Multiple Floor Fires" Journal of Engineering Mechanics, Vol. 131, No. 6, ASCE, ISSN 0733-9399/2005/6-654– 657 DOI: 10.1061/(ASCE)0733-9399(2005)131:6(654)
- [61] S. Lamont, A.S. Usmani, M. Gillie "Behaviour of a small composite steel frame structure in a "long-cool" and a "short-hot" fire" Fire Safety Journal 39 (2004) 327–357 doi:10.1016/j.firesaf.2004.01.002
- [62] Zhaohui Huang, Ian W. Burgess and Roger J. Plank "The Influence of Tensile Membrane Action in Concrete Slabs on the Behaviour of Composite Steel-framed Buildings in Fire" Structures 2001
- [63] A.Y. Elghazouli, B.A. Izzuddin, A.J. Richardson "Numerical modelling of the structural fire behaviour of composite buildings" Fire Safety Journal 35 (2000) 279-297
- [64] Zhaohui Huang, Ian W. Burgess and Roger J. Plank "Three-dimensional analysis of composite steel-framed buildings in fire" Journal of Structural Engineering, Vol. 126, No. 3, ASCE, ISSN 0733-9445/00/0003-0389-0397
- [65] ASCE/SEI 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
- [66] ANSI/AISC 360-16 Specification for Structural Steel Buildings.
- [67] AISC Steel Construction Manual, 15th Edition