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Abstracr: Secure facial identification systems compare am
input face to a protected list of subjects. If this list were to
be made public, there would be a @ severe
privacy/confidentiality breach. A common approach to
protect these lists of faces is to store a representation
(descriptor or vector) of the face that is not directly map
able to its original form. In this, we consider a recently
developed secure identification system, Secure Computation
of Face ldentification (SCiFI) [1], A facial descriptor of this
sysfem does not allow for a complete reverse mapping.
However, we show that it a malicious user is able to obtain a
facial descriptor, it is possible that he/she can reconstruct
an identifiable human face. In particular, we present 1) a
cryptographic attack that allows a dishonest user to
undetectably obtain a coded representation of faces, and 2)
a visualization approach that exploits this breach, Whereas
prior work considered security in the setting of honest
inputs and protocol execotion, the success of our approach
underscores the risk posed by malicions adversaries to to-
days autematic Tace recognition systems
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I INTRODUCTION

Face recognition research has wremendous implications
for surveillance and security, and in recent years the field has
seen much progress in terms ol representations, learning
algorithms, and challenging new datasets [25, 16]. At the same
time,  automatic systems  fo recogmize  faces  (and  other
biometrics) natrally raise privacy concerns. Not only do
individuals captred in surveillance images sacrifice some
privacy about their activities, but systern  implementation
choices can also jeopardize privacy—rfor example, if the list of
persons of interest on a face recognition system ought to remain
confidential, but the system stores image exemplars. Recent
wirk o sccurity and  computer  vision  explores how to
simullancously meet the privacy, cificiency, and robusiness
requiremnents in such problems [22]. While secure facial
malching 15 theoretically feasible by combining any recognition
algorithm with general technigues for secure computation |24,
8], these methods are typically too slow to be deployed in real-
time, Thus, researchers have investigated ways 1o embed secure
multiparty computation protocols into specific face recognition
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[7, 17, 15] and detection [1, 2] algorithms, noise resistant one-
way hashes for biometric daw [21, 5], revocable biomelrics
[4], and obscuring sensitive content in video [19, 3]. On the
security side, much effort has also been put into improving
the efficiency of general, secure two-party protocals [14, 10,
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Figure 1. T present an attack on a secure face identification
sys-tem using both cryptographic and computer vision tools.
While the system ought to maintain the privacy of both the
suspect list and passengers, our attack recovers coded
versions of their faces and sketches human-understandable
images from those codes,

In this work, we take on the role of a malicious adversary
who intends 1o break the privacy of a secure face
identification system. In doing so, we demonstrate how
computer vision techmigques can actually  accentuate the
impact of a successful attack, In particular, we examine the
recently  introduced  Secure  Computation  of  Face
[dentification (SCIFT) [15] approach. SCIiFT is an elegant
system that allows two mutally untrusting parties to securely
compute whether their two respective input face images
match. One compelling application of the system is fir a
client surveillance camera o lest images against a sel of
images on a server [15]. The parties will want 1o learn il there
are any matches, bur nothing more, For example, imagine a
watch list of suspected terrorists for an aicport security
system: the airport authorities should be able to submit face
images of passengers as queries, and learn only if they are on
the list or not. However, no one should be able to find out
which individuals are on the list, nor should the database
authority be able to ereate travel profiles of innocent parties.
The SCiFT protocol meets the desired propertics under the
“honest-but-curious™ model of security | 13], where security is
guaranteed if cach party follows the protocol.

We investigate the consequences of a dishonest user
that uses malformed inpuls to attack the SCIFT protocol, 1 Our
work consists of two phases: a cryprographic attack phase and

www.ijert.org



a visnalization phase, For the first phase, we show that by
submitting an dl-formed input, an attacker can learn f a
particular feature is present in a target image, By repeating this
attack multiple times, an entire vector encoding the facial parts’
appearance and layout of a target person can be recovered.
While recovering the facial vector alone constitutes an atack, it
iz not necessarly usable by a human observer, since the result
is a sparse set of patches with coarse lavout. Thus, n the second
phase, we show how Lo reconstruct an image of the underlying
laes vig computer vision lechniques. Specifically, we draw on
ideas in subspace analvsis [6, 11, 18, 9, 23] to infer parts of the
face not exphicitly available in the recovered facial encoding,
The resuliing image is roughly comparable to a police sketch of
a suspect, visualizing the identity our attack discovered.,

2. BACKGROUND: THE SCIFI 5YSTEM

The SCiFl (Secure  Computation  of  Face
Tdentification) system [20] {which matches images taken by a
client camera 1o a list of images {of polential suspeets) which
are held by a server.) is comprised of two parties, a client and a
server, The server stores a list of faces and the client inputs a
single face into the sysiem. The goal of the sysiem is lo
securely fest whether the face input by the chent is present in
the server's list, The ypical settimg has the server's hist
comprised of faces of suspects or criminals, while the client
inputs a face of a passer-by from a surveillance eamera. The
face acquired by the client might be from a person in the
database: however, in general these faces will not match
exactly. Thus, the SCIiFT identification algorithm must be robust
enough to match different photographs of the same person's
face. Tn addition, SCIFT aims o do the matching computation
while preserving the privacy of boih the client and the server.
This requires that neither the server nor the client learmn any
mformation. The only exception to this 15 that the server will
learn if the client's input matches a tace in the Server’s list,

Face Representation Given a public database Y of face
images, a standard set of p facial parts is extracted from each
image (e.g., corners of the nose, mouth, eyes). For the i-th part,
the system gquantizes the associated image patches in Y to
establish an appearance vocabulary V ' = (Vi . . . V' }
comprised of N prototvpical examples (“visual words™) for that
parl. Mole there are p such vocabularies. In addition. each part
has a corresponding spatial vocabulary D = D/, D g}
consisting of ) quantized distances of the feature from the
center of the face,

Comparing Faces To compare two taces, SCiFl nses the
symmetric difference between their two respective sets— that
i, the number of elements which are in either of the sets and
not in their intersection. The distance is computed separately
for the appearance and spatial components, and then summed.
If the total distance is under a given thresh-old. the two laces
are considered a match.

Then, the full representation for a given face is the
concatenation of all these vectors: w= [ w1 ... ow®, Wb
. wp®l. In the following we refer to such a vecior as a “face
vector” or “facial code™ This conversion s valuable because
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the Hamming distance can be computed securely using
cryptographic algorithms, as we briefly review next.

Secure Protocol The input 1o the SCIFl (Secure
Computation of face ldentification)protocol is a single face
vector w firom the client and a list of M face vectors
Wi o on s wiy and thresholds t, | . . .ty trom the server. Let H
denote the Hamming distance. The output of the protocol is
“match™, if Hiwi, w) = t lor some 1, and “no match”
otherwise,

The client shares the public key with the server and
keeps the private Key to irself. Encryption 18 done over &, for
some m = rq, where rand g are primes, while exploiting an
exclusive-or implementation of the Hamming distance, Onee
the client has decrvpted the server’s message, an ohlivious
transfer protocol [13] s inttiated. In shoit, bath the client and
server learn only if the Hamming distance between any pair
of their vectors exceeds a threshold. See [15] for details,
including novel optimizations that improve the efficiency.

3. CRYPTOGRAPHIC MALFORMED INPUT ATTACK

Cryptographic Malformed Input Attack The propuosed
attack on SCIiFL allows the anacker to obtain a face code (w)
that was tmeant to remain private, The attack relies on the fact
that a dishonest adversary is able to input vectors of any form,
not just vectors that are properly formatted.

Suppose the client’s vector 1s w. A dishonest server can
add any wvectr wm to its suspect list, and choose each
corresponding threshold value, tm, arbitrarily. First, the server
inputs the veetor wm = [1, 0, .. .. 0], with a | in the frsl
position and zero everywhere else. MNext, the protocol
comparing w and wm is run as usual, By learning whether a
match was detected, the server actually learns information
about the first bit, wl, of the client’s input. We know that the
nonzero entries of the input client vector must sum to exactly
pintz), This creates rwo distingt possibilities in the outcome
of the protocol:
+wl = 1: In this case, the two input vectors will not differ
the first position. Therefore, they will only differ in the
remaining pin + ) — | positions where w 1s nonzero. Henee,
we know that the Hamming distance between the two vectors
15 Hiw,wm) = pintz)-1
« wl = (¢ In this case, the two input vectors will differ in the
first position, In addition, they will ditfer in all of the p{n + 2)
remaining places where w s nonzero, Hence, we know the
Hiw,wm) = pin + #) + 1. Taking advantage of these two
possible cutcomes, the dishonest server can fix the threshold
tm = pin+z). Then, if a match 15 found, it must be the case
that Hiw.wm)=p{n+z)— 1 | p(n + z), so wl = . If'a match
is not tound, then Hiw,wm) =pin+z) + 1 > pln + 2), so wl =
(. Thus, the dishonest server can learn the first bit of the
client’s mput.

Consequently, the attacker can learn the client’s entire
vector by creating | vectors wim . 1 01 O I, where the i-th bit
is set to 1, We have portrayed the aftack from the perspective
of the server, where the server recovers facial codes for the
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client. However, we can also adapt this attack for the client, in
which case the client learns the confidential faves on the server,

Figure 2. We first reconstruct the guantized patches based on
the binary encoding {lefl), and then expand the reconstruction
Lo hallueinate the full Tce given those patches {right).

4. FACIAL RECONSTRUCTION APPROACH

The cryptographic attack wields a binary vector encoding
the appearance of some individual. However, the code irself is
lossy [ lost dam and quabity from the omginal version.)
compared to the original image, and spatially it covers only
about 40% of the face. Thus, we next propose an approach to
form a human-interpretable visualization from the recovered
binary encoding. The main idea is 1o first use the recovered
indices of the most similar proloivpical patches and spatial
mformation for ecach facial part to render patches from the
public vocabulary, placing cach one according to the recoverad
approximate relative distance,

This vields a “patch face™ that focuses on the key facial
features. Given this patch face, we then estimate a full face
image using a  subspace recemstruction  approach.  This
“hallueinated face™ integrates both the back projected patches
obtained from the attack as well as the learned statistics of faces
in general. the two forms of reconstruction.

4.1. Offline Vocabulary and Subspace Learning

Belore reconstructing any face, we musl lirst perform two
olfline steps (1} prepare the facial fragment “vocabularies”,
and (2) construct a generic face subspace. As in the original
SCIFT system, the face tmages used o create the vocabulares
come from an external {possibly public) database Y, which can
be completely wnrelated 1o the people enrolled m the
recognition system. All faces are normalized to a canonical
scale, and the positions of key landmark features (ie., comers
of the eyes) are aligned. Given these face images; we use an
unsupervised clustering algorithm (k-means) to quantize image
patches and distances o form the appearance and spatial
vocabularies.

We also use Y to construct a generic face subspace, As has
been long known in the face recognition community |20, 12],
the space of all face images occupies a lower-dimensional
subspace within the space of all images. This fact can be
exploited to compute low-dimensional image representations,
While often used to perform nearest-neighbor face recognition
ie.g.. the Eigen face (a large set of images depicting difterent
human faces) approach [20]), we instead aim to exploit a face
subspace 1 order 1o “halluemate™ the portions of a
reconstructed (aee nol covered by any of the p patches.

cach of the p facial parts, This encoding specifies the indices
inte the public vocabularies, revealing which protolypical
appearances (and distances) were most similar o those that
occurred in the original face.
Thus, we retrieve the corresponding quantized parches and
distance values for each part, and map them into an image
buffer. To reconstruct the appearance of a part i, we take the n
quantized patches and simply average them, since the code
does not reveal which among the n was the closest. We place
the resulting average into the buller relative 1o its center,
displaced according to the direction and the amount given by
the recovered guantized distance bin,
4.3, Full Face Reconstruction

The second stage of our approach estimates the
remainder of the face image based on the constraints given by
the initial patch face. While these regions are outside of the
original SCIFT representation, we can exploit the structure in
the generic face subspace to hypothesize wvalues for the
remaining pixels. Relaled uses of subspace methods have
been explored for dealing with partially occluded images in
face recognition—rtor example, to recognize a person wearing
sunglasses, a hood, or some other strong occlusion [6, 11, 18,
9, 23], In contrasl, in our case, we specifically want to
reconstinet portions of the face we know to be missing, with
the end goal of berter visnalization for a human observer. We
adapt a recursive PCA  technique previously shown to
compensate tor an occluded eye region within an otherwise
complete facial image [23]. The main idea is to initialize the
result with our patch face, and then iteratively project into and
reconstruet from the public face subspace, sach time adjusting
the face with our known patches. Relative o experiments in
|23, our scenario makes substantally greater demands on the
hallucination, since about 60% of the total face area has no
initial information, Given a novel face %, we project it onto
the top K eigenvectors to obtain its  lower-dimensional
coordinates in face space. Specifically, the i-th projection
coordinate is:

Figure 3. [lustration ol iterative PCA reconstruction. Alier
initializing  with the patch face reconstruction (leftmost
image), we tteratively refine the estimale using suceessive
projections onto the face subspace. lerations shown are 1 = 0,
A, 100, 506, and 1000

5. RESULTS
The underlying goal of the experiments is to show that
our reconstricted faces are recognizable and therefore com-
promise confidentiality. We test four aspects:

4.2. Patch Face Reconstruction 1. What do the reconstructed face images look Like?

Now we can define the “patch face” reconstruction process. 2 Quantitatively, how :M:Il dir they approximate the appearance
The crypiographic attack delined above vields the n selecied of the true (hidden) faces? . X
appearance vocabulary words and z selected distance words, for 3+ How easily can a machine vision system recognize the faces
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wie reconsiet’

How well van a human viewer recognize the faces we
reconstruct?

Experimental Setup We use two public datasets: the PUT
Faces [14], which has p = 30 annotated landmarks, and a subset
of Face Tracer [13], which consists of a highly diverse set of
people and p = 10 landmarks (6 provided. 4 estimated by us).
For both, we use only cropped frontal faces m order to be
consistent with SCIFL This lelt us with 83 total individuals and
205 images for PUT, and «- 600 individuals and 701 images for
Face Tracer. The PUT dataset is less diverse, but provides well
aligned high-guality images that arc good for building the face
subspaces. In contrast, Face Tracer’s diversily vields richer
vocabularies, but 15 more challenging,

We use K = 194 cigenvectors based on analyzing the
cigenvalues (An cigenvector of a sguare matrix s a non-zero
veetor that, when the matrix 15 moltiplied by, vields a constant
multiple of, the multiphier being commonly denoted by |, That
is: The number is called the eigenvalue of corresponding to) Lo
capture 95% of the variance. Finally, we run the iterative PCA
algorithm with = = 0001 and a maximum of 2000 1teranons.
(We did not tune these values.) On average. il takes aboul 5
seconds to converge on a full reconstruction..

Qualitative Results: Example Reconstructions Figure 4
displays example reconstructions., We see that the reconstructed
faces do torm  fairly representative sketches of the true
underlving faces. We emphasize that the reconstrucred image s
computed directly from the encoding recovered with our
cryptographic attack: our approach has no access to the original
face images shown on the far left of each triplet. The fact that
the full face reconstructions differ from instance to instance in
the regions outside of the patch locations demonstrates that we
are able to exploit the structure in the face subspace effectively;
that is, the surrcinding content depends on the appesrance of
the retrieved quantized paiches,

We noticed that quality is poorer for the female faces in
PUT. This is well-explained by that dataset’s gender imbalance,
where only 8 of the 83 individuals are female, This biases the
face subspace to account more tor the masculine
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(a ;'PLJT dataset

—

(b Face Tracer dataset
Figure 4. Reconstruction examples from each dataset. Each
triplet is comprised of the ground truth face, patch face, and our
reconstructed  face. Ouwr reconstructed  faces resemble  the
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grotnd truth, and are much more casily interpretable than the
sparse patch faces

Variations, and as a result, the reconstructed faces for a
temale’'s facial encoding tend to look more masculine.
Mevertheless, we can see that the general structure of the
internal features is reasonably preserved, OfF course, in a real
application one could easily ensure that the public set ¥ is
more balanced by gender.

Fimai Trinsir Dratasat
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Figure 5 Machine recognition results, Curves show the
recognition accuracy for a vision system that predicts the
identity of our method’s reconstructed laces

Machine Face Identification Experiment Next we Lest o
what extent the reconstructions are machine-recognizable. In
olr setting, this corresponds to how well a computer vision
svstemn would be able to exploit the seeurity breach to identifyv
the individuals who were meant to remain private,

We input into the recognifion system a reconstructed
face and a database, T, of original face images, The original
face associated with the reconstructed example is also in T
{though unavailable to our algorithm). We have the system
rank each database face from 1 to |T | according to its belief
that the reconsiructed image represents that person.

Figure 5 shows the results, comparing the leamed distancs
approach to both a simpler Euclidean distance base-line as
well as a random ranking, We plot the recognition rate as a
function of rank—a standard metric in face identification. We
see that the learmned distance outperforms the baselines,
showing the system benefits from learning how to associate
the sketches with “real” images. More importantly, we see
that the vision system can indeed automatically pinpoint the
identity of the reconstructed facial codes with moderate
accuracy.

AT BV Paoe Heoansiraetiaee.
Wb S E

Figure 6 Human subject expériment interface. The top row
shows the reconstructed face (repeated 4 times). The task for
the subject is to rank from 1 to 4 (1 being the best mateh) howy
close each face in the second row 15 o the first row.
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Figure 7. Human subject test resulis, Boxplots show accuracy
for 30 subjects on 30 test cases, compared to chance
performance (green dashes) and machine recognition (purple
dashes),

Human Subject Identification Experiment Finally, we

examing how well human subjects can identify the people
sketched by our method. We recruited 30 subjects—a mix of
students and non-students, and none myvolved with this project.
We generated a series ol 30 lesl questions, cach considering a
diflerent reconstruction result, and all using lemales rom Face
Tracer.
Figure 6Gshows a sereenshol for an example gquestion, We
display the reconstructed face 4 times, and below it we display
4 real tace images—one of which is the wue under-lying face
for that reconstruction. The subject must rank these choices
according to their perceived nearness to the reconstructed face,

Figure 7 shows the results, in terms of the accuracy based on
the first (left) or first two (right) guesses. The results are guite
promising: while chance performance would be 25% and 50%
for one and two altempts, respectively, the subjecls have
median accuracies of 41% and 62%. This plot also records the
machine recognition accuracy on the same 30 tests using the
learned metric defined above.

6, CONCLUSION

In this project we presented a novel attack on a
secure face identification system that leverages insight from
both security as well as computer vision technigues. While the
SCIFT system appropriately claims security only under the
honest but- curious model (and thus has no flaws in its claims),
it limits ol subspace-buased reconsiruction  algorithms  for
visialization of severely occluded faces, face recognition
accuracy can boosts using metric learning with synthetic sketch
images and it analyze the performance of our system with two
challenging datasets
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