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Abstract— Recent developments in Artificial Neural Networks 

(ANNs) have opened up new possibilities in the domain of 

inverse problems. Inverse problems are extensively used for 

identification of crack in large structures (such as bridges) , 

which may lead to premature damage, has been detected at 

earlier stage. This study has presented a method for estimating 

the damage intensities of bridge like structures using a back-

propagation based artificial intelligence techniques. This paper 

presents a novel application of genetically programmed artificial 

features, which are computer crafted, data driven, and possibly 

without physical interpretation, to the problem of fault 

detection. Natural frequencies of the beam under the effect of 

crack have been studied to compare the results with those of a 

beam without crack. It is observed that the presence of crack 

results in change of natural frequency and alters beam response 

patterns.  In this paper a design tool ANSYS is used to monitor 

various changes in vibrational characteristics of thin transverse 

cracks on a cantilever beam for detecting the crack position and 

depth and was compared using artificial intelligence techniques. 

The usage of neural networks is the key point of development in 

this paper. The three neural networks used are cascade forward 

back propagation (CFBP) network, feed forward back 

propagation (FFBP) network, and radial basis function (RBF) 

network. In the first phase of this paper theoretical analysis has 

been made and then the finite element analysis has been carried 

out using commercial software, ANSYS. In the second phase of 

this paper the neural networks are trained using the values 

obtained from a simulated model of the actual cantilever beam 

using ANSYS. At the last phase a comparative study has been 

made between the data obtained from neural network technique 

and finite element analysis. 
 

Keywords— Vibration, Mode Shapes, Stress intensity factor, 

ANSYS. 

1.  INTRODUCTION 

Crack is one of the most common defects in structures that 

may result in adverse effects on the behavior and ill 

performance of structures, which can eventually lead to their 

collapse. Cracks induce changes in the structure’s stiffness, 

also reducing its natural frequency. Crack has the tendency to 

open and close in time depending on the load on beam. The 

main factor for causing crack is the static deflection on the 

structures body weight, which may cause the beam to open at 

all the time or partially leading to premature damage to the 

beam. The major factor that affects the crack is vibrational 

amplitude. If the static deflection is larger than the vibrational 

amplitude then the crack remains open, and vice versa. 

Various studies over the last decade have indicated that a 

beam with a breathing crack, i.e., one which opens and closes 

during oscillation, shows nonlinear dynamic behavior because 

of the variation in the structural stiffness which occurs during 

the response cycle. On the other hand, the effect of moving 

loads and masses on structures and machines is an important 

problem both in the field of transportation and in the design of 

machining processes. A moving load (or moving mass) 

produces larger deflections and higher stresses than does an 

equivalent load applied statically. These deflections and 

stresses are functions of both time and speed of the moving 

loads. It is, therefore, essential to detect and control damages 

in structures subjected to a moving mass. Very few studies 

have been reported in the literatures that deal with moving 

load or moving mass problems under the effect of cracks. The 

purpose of the present work is to establish a method for 

predicting the location and depth of a crack in a cantilever 

beam using vibration data.  

Diagnosing a cracked component by examining the vibration 

signals is the most commonly used method for detecting this 

fault. The fault detection is possible by comparing the signals 

of a machine running in normal and faulty conditions. 

Depending on the crack’s size and location, the stiffness of the 

structure is reduced and, therefore, so are its natural 

frequencies compared to the original crack-free structure. This 

shift in natural frequencies has been commonly used to 

investigate the crack’s location and size.  

Vibration analysis can also be carried out using Fourier 

transform techniques like Fourier series expansion (FSE), 

Fourier integral transform (FIT) and discrete Fourier 

transform (DFT). Identification and diagnosis of crack in 

inaccessible machine member has gained importance in now a 

day using vibrational analysis and artificial intelligence 

technologies. Using modern technology sensor is placed near 

inaccessible internal machine component. The piezoelectric 

transducer of sensor produces vibrational signal which is 

transformed using Wavelet Transformation technology. These 

signals are time & frequency dependent. After extracting fault 

features, a proper artificial neural network is implemented for 
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aiding of the fault classification. An intelligent fault diagnosis 

system is performed throughout combing the approach to fault 

diagnosis with an artificial neural network. An artificial neural 

network is proved as a reliable technique to diagnose the 

condition of a rotating member. In general, the cracks present 

in beams are not always open or close condition. It always 

varies time to time depending upon the situation. If the loads 

are static like load due to dead weight, load of the beam etc. 

and if the deflection is more than the vibration amplitude then 

the crack becomes a open crack, otherwise it will be breathing 

crack. 

Beams are one of the most commonly used structural elements 

in several engineering applications and experience a wide 

variety of static and dynamic loads. Cracks may develop in 

beam-like structures due to such loads. Considering the crack 

as a significant form of such damage, its modeling is an 

important step in studying the behavior of damaged structures. 

Knowing the effect of crack on stiffness, the beam or shaft can 

be modeled using either Euler-Bernoulli or Timoshenko beam 

theories. The beam boundary conditions are used along with 

the crack compatibility relations to derive the characteristic 

equation relating the natural frequency, the crack depth and 

location with the other beam properties. 
 

 
Mode I:Opening Mode II :In-Shear plane Mode III: Out of 

Shear plane 

           Fig 1. Different Mode of Crack propagation 
 

Thatoi.et.al [1] suggested that, Condition monitoring and fault 

detection through vibration analysis applying a pool of 

analytical and experimental techniques is of continuous 

attention of researchers. The effectiveness and applicability of 

each technique has both advantages and limitations. There are 

various methods being employed for the detection of cracks 

such as Finite Element Method (FEM), Wavelet analysis, 

Experimental and Numerical methods, Artificial Intelligence 

(AI) techniques, other optimization algorithm methods such as 

Particle Swarm Optimization (PSO) algorithm, Ant Colony 

Optimization technique (ACO) and Bee Colony Optimization 

(BCO) algorithm. AI technique will continue to remain one of 

the favorite analytical tools to extract features automatically in 

fault diagnosis due to its precise, reliable and low cost solution 

nature. Cao et al. [2] suggested that, the principle of the model 

was demonstrated using an Euler–Bernoulli beam component 

(EBC). As proof-of-concept validation, a fine crack in an EBC 

was identified with satisfactory precision using the model, in 

both numerical simulation and experiment. Pawar et al.[3] 

have performed a composite matrix cracking model, which is 

implemented in a thin-walled hollow circular cantilever beam 

using an effective stiffness approach. Using these changes in 

frequencies due to matrix cracking.  

Taghi et al.[4] have proposed a method in which damage in a 

cracked structure was analyzed using genetic algorithm 

technique. For modeling the cracked-beam structure an 

analytical model of a cracked cantilever beam was utilized and 

natural frequencies were obtained through numerical methods. 

A genetic algorithm is utilized to monitor the possible changes 

in the natural frequencies of the structure. The identification of 

the crack location and depth in the cantilever beam was 

formulated as an optimization problem. Maity and Saha [5] 

have presented a method called damage assessment in 

structures from changes in static parameter using neural 

network. The basic strategy applied in this study was to train a 

neural network to recognize the behavior of the undamaged 

structure as well as of the structure with various possible 

damaged states. When this trained network was subjected to 

the measured response; it was able to detect any existing 

damage. The idea was applied on a simple cantilever beam. 

Strain and displacement were used as possible candidates for 

damage identification by a back propagation neural network 

and the superiority of strain over displacement for 

identification of damage has been observed. Structural 

damage detection using neural network with learning rate 

improvement performed by Fang et al.[6] In this study, he has 

been explore the structural damage detection using frequency 

response functions (FRFs) as input data to the back-

propagation neural network (BPNN).Neural network based 

damage detection generally consists of a training phase and a 

recognition phase. Perera et al. [7] used genetic algorithm for 

solving multi objective optimization to detect damage. They 

compared GA optimization based on aggregating functions 

with pare to optimality. Sahoo and Maity [8] stated that 

artificial neural networks (ANN) have been proved to be an 

effective alternative for solving the inverse problems because 

of the pattern-matching capability. But there is no specific 

recommendation on suitable design of network for different 

structures and generally the parameters are selected by trial 

and error, which restricts the approach context dependent. A 

hybrid neuro-genetic algorithm is proposed in order to 

automate the design of neural network for different type of 

structures. The neural network is trained considering the 

frequency and strain as input parameter and the location and 

amount of damage as output parameter. Damage detection 

methods of structures based on changes in their vibration 

properties have been widely employed during the last two 

decades. Existing methods include those based on 

examination of changes in natural frequencies, mode shapes or 

mode shape curvatures. An identification procedure to 

determine the crack characteristics (location and size of the 

crack) from dynamic measurements has been developed and 

tested by Shen and Taylor [9]. This procedure is based on 

minimization of either the “mean-square” or the “max” 

measure of difference between measurement data (natural 

frequencies and mode shapes) and the corresponding 

predictions obtained from the computational model. Necessary 

conditions are obtained for both formulations. The method is 

tested for simulated damage in the form of one-side or 

symmetric cracks in a simply supported Bernoulli-Euler beam. 
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The sensitivity of the solution of damage identification to the 

values of parameters that characterize damage is discussed. 

Two approaches are herein presented: The solution of the 

inverse problem with a power series technique (PST) and the 

use of artificial neural networks (ANNs). Cracks in a 

cantilever Bernoulli Euler (BE) beam and a rotating beam are 

detected by means of an algorithm that solves the governing 

vibration problem of the beam with the PST. The ANNs 

technique does not need a previous model, but a training set of 

data is required. It is applied to the crack detection in the 

cantilever beam with a transverse crack. The first 

methodology is very simple and straightforward, though no 

optimization is included. It yields relative small errors in both 

the location and depth detection. When using one network for 

the detection of the two parameters, the ANNs behave 

adequately and not as an independent document. Please do 

not revise any of the current designations. 

 

2. MATHEMATICAL FORMULATION 

Computation of flexibility matrix of a damaged beam 
subjected to complex loading. A beam with cracks has smaller 
stiffness than a normal beam. This decreased local stiffness 
can be formulated as a matrix. The dimension of the matrix 
would depend on the degrees of freedom in the problem. 
Figure 1 shows a cantilever beam of width W and height T, 
having a transverse surface crack of depth b1. The beam 
experiences combined longitudinal and transverse motion due 
to the axial force P1 and bending moment P2. Here we 
consider two degrees of freedom, leading to a 2*2 local 
stiffness matrix. 

 

 

                          Fig. 2: Beam Model 

The relationship between strain energy release rate J (b) 
and stress intensity factors ( ) at the crack section is given 

by Tada et al. (69) as; 

J(b) =     (1) 

Where, , for plane strain condition and , 

for plane stress                    (2) 

G11 = Stress intensity factor for opening mode I due to load P1 

G12 = Stress intensity factor for opening mode I due to load P2 

From earlier studies (Tada et al.,[69]), the values of stress 
intensity factors are; 

    (3)

  

Where,  

Where the experimentally determined functions F1 and F2 
are expressed as follows 

 

The strain energy release rate (also called strain energy 
density function) at the crack location is defined as 

J (b) = Where (b  W) is the newly created surface 

area of the crack.   (4) 

     (5) 
  

Since the width of the cross section of the beam is 
constant. 

     (6) 

So the strain energy release (Ut) due to the crack of depth 
b1 is calculated as, then from Castigliano’s theorem, the 
additional displacement along the force  is: 

   (7) 

 

From (1) and (2), thus we have 

 (8) 

 (9)
  

The flexibility influence co-efficient Cij will be, by 
definition Substituting equation (1) in equation (5), we have 

 (10) 

Putting  

We get db = Td  and when b = 0, δ = 0, b=b1 δ =  = δ1 

From the above condition equation (6) converts to, 
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  (11) 

Equation (7) will give different expressions of flexibility 
influence coefficient Cij.  

Cij = flexibility influence coefficient in i direction (x-
direction or y-direction) due to the load   in j direction (P1 or 
P2)  

Calculating ,  

 
(12) 

        (13) 

 (14) 

The local stiffness matrix can be obtained by taking the 
inversion of compliance matrix i.e. , 

 

 

Converting the influence co-efficient into dimensionless 
form we get 

 

Governing equations for vibration mode of the cracked 
beam 

The cantilever beam as mentioned in section 2.1 is being 
considered for free vibration analysis. A cantilever beam of 
length ‘L’ width ‘W’ and depth ‘T’, with a crack of depth ‘b1’ 
at a distance ‘Lc’ from the fixed end is considered as shown in 
Figure 1. Taking S1(x, t) and S2(x, t) as the amplitudes of 
longitudinal vibration for the sections before and after the 
crack position and V1(x, t), V2(x, t) are the amplitudes of 
bending vibration for the same sections as shown in Figure 2. 

 

Fig. 3: Beam model with deflection 

 

Fig. 4 : Front view of beam model with deflection 

The free vibration of an Euler-Bernoulli beam of a 
constant rectangular cross section is given by the following 
differential equations as: 

 

 

The normal functions for the cracked beam in non-
dimensional form for both the longitudinal and bending 
vibration in steady state can be defined as; 

(15)                                                         

                   (16) 

                                                                  (17)     

                 (18)        

 

 

Bi (i=1,2)constants are to be determined ,from boundary   
conditions. 

The boundary condition of cantilever beam in 
consideration is 

  

At the cracked section: 

 

Also at the cracked section, we have: 

 

Multiplying both sides of the above equation by  

we get; 

 

Similarly, 

S1 

S2 

V1 

V2 

P1 

P2 

S2 

V2 
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               (19) 

Multiplying both sides of the above equation by  

,we get, 

 

Where, 

 

 

 

The normal functions, equation (11) along with the boundary 
conditions as mentioned above, yield the characteristic 
equation of the system as: 

|Q| = 0 

Where Q is a 12 12 matrix whose determinant is a 
function of natural circular frequency ( ), the relative location 
of the crack (  and the local stiffness matrix (K) which in 

turn is a function of the relative crack depth Matrix 

is given below:  

 

Where,  

, ,  

 ,  

   ,  , 

 ,   

, ,  

, ,  

 ,  , 

   , 
 

  

   

 ,  

 

3 . PROCESS OF DETECTING CRACK BY 

ARTIFICIAL NEURAL   NETWORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5:  Basic flow diagram of Artificial Neural Network 

4. CRACKED BEAM ANALYSIS USING ANSYS 
 

The vibrational analysis of a continuous beam by 
analytical procedures is quite appropriate and less 
complicated. How- ever, with the introduction of crack in a 
beam the analysis of the beam for its vibrational 
characteristics becomes more complicated. Since the equation 
of motion of the continuous beam is a partial differential 
equation and we have with us various initial and boundary 
conditions we use the finite element method (FEM), which 
translates the complex partial differential equations into linear 
algebraic equations and hence the mode of solution becomes 
simpler.  

In the present research the ANSYS is used as a tool to 
model and simulate a beam with a crack, to monitor the 
variation in its vibrational characteristics. ANSYS offers 
engineering simulation solution sets in engineering simulation 
that a design process requires. Companies in a wide variety of 
industries use ANSYS software. The tools put a virtual 
product through a rigorous testing procedure (such as crashing 
a car into a brick wall, or running for several years on a tarmac 
road) before it becomes a physical object. 

 

DATA 

COLLECTION 

PREPROCESSING DATA 

BUILDING NETWORK 

TRAINING NETWORK 

TESTING NETWORK 

FAULT DETECTION 
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 The beam is modeled using design software such as solid 
work and it is imported to ANSYS for the analysis of 
dimension 800x50x8mmof material generated steel. A crack 
was inserted in the beam at different locations and of different 
depths as mentioned below. That cracked beam was subjected 
to vibration and the frequency for mode-1, mode-2, and mode-
3 were noted. Graphs for mode-1, mode-2, and mode-3 were 
plotted as given below. 
 

5. INTRODUCTION TO NEURAL NETWORK 
In order to determine the crack parameters from the 

frequency data we take the help of artificial intelligence in the 
form of neural network. The structure of a neural net is very 
similar to the exact biological structure of a human brain cell. 
In order to be precise,                             neural network can be 
stated as a network model whose functionality is similar to 
that of the brain. In other words, a neural network is at first 
trained to recognize a predefined pattern or an already known 
relationship from certain pre found values. It works by taking 
certain number of inputs and computing the output after 
carefully adjusting the weights, which are attached with the 
input values to differentiate these input values on the basis of 
importance and priority in processing. These weight values are 
utilized to obtain the final output. For example, if we have two 
inputs  ,then a simple neural network can be 
designed and the net input can be found out as 

    
                (20) 

where are the activations of the input neurons 
 that is, the output of the input signals. The output  

of the output neuron �can be obtained by applying activations 
over the net input, that is, the function of the net input: 

Y = ( ), Output = Function (net input calculated). 

The function to be applied over the net input is called an 
activation function. A neural network is classified on the basis 
of the model’s synaptic interconnections, the learning rule 
adapted and the activation functions used in the neural net. 
Based on the synaptic interconnections we choose a multilayer 
perceptron model for our research purpose. Now, depending 
on the process of learning a neural network, it is classified as 
supervised learning network, unsupervised learning network, 
and reinforced learning network. Supervised learning process 
requires a set of already known values to train the network and 
hence find out the output. From the set of values obtained after 
monitoring the vibrational characteristics of the cracked beam 
and subjecting it to finite element modeling, the corresponding 
values are trained to the network. The tan sigmoid hyperbolic 
function is chosen as the activation function. Finally the 
cascade forward back propagation (CFBP) network model, the 
feed forward back propagation (FFBP) network model, and 
the radial basic function (RBF) network model are used and 
the results are analyzed. 

 

5.1.  The CFBP Network. 
As stated earlier in the present study a CFBP network is 

used. This network is very similar to the feed forward back 
propagation networks with the difference being that the input 
values calculated after every hidden layer are back-propagated 
to the input layer and the weights adjusted subsequently. The 
input values are directly connected to the final output and a 
comparison occurs between the values obtained from the 

hidden layers and the values obtained from the input layers 
and weights are adjusted accordingly. Sahoo et al. [10] and 
Gopi krishnan et al. [11] observed that the results obtained 
from CFBP networks are much more efficient than the FFBP 
networks. Badde et al. [12] suggested that CFBP networks 
show better and efficient results in most cases. 

The algorithm followed in the present paper is given as 
follows. 

(1) Initialize the predefined input matrix. 

(2) Initialize the desired output or target matrix. 

(3) Initialize the network by using the net = newcf (Input, 
Output, Hidden layers,            Transfer Function, Training 
algorithm, Learning Function, Performance Function). 

(4) Define the various training parameters such as number 
of epochs, number of validation checks, and maximum and 
minimum gradient. 

(5) Test the new found weights and biases for accuracy. 

(6) Using the weights and biases determine the unknown 
results. 

The initial weight and bias values are taken as 0 (zero). 

In Figure 1, the inputs are connected to the hidden layer as 
well as the output layer. 

 

Fig. 6: Structure of CFBP Network 

5.2  The FFBP Network.  
Another network that we are using for our comparative 

study in the detection of cracks in a cantilever beam is the feed 
forward back propagation (FFBP) network (Figure 6). This 
network differs from the CFBP network on the basis that each 
subsequent layer has a weight coming from the previous layer 
and no connection is made between the layers and the first 
layer. All layers have biases. The last layer is the network 
output. In this study relevant information comparing the 
results of both networks as well as the result from a third 
network is presented. The algorithm used for CFBP network is 
also used in case of the FFBP network except for the network 
creation mode, which uses the keyword newff. 
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Fig 7: Structure of FFBP Network 

5.3 The RBF Network 
The radial basis function (RBF) network (Figure 7) is 

basically used to find the least number of hidden layers or 
neurons in a single hidden layer, until a minimum error value 
is reached. The RBF networks can be used to approximate 
functions. For network creation the keyword newrb adds 
neurons to the hidden layer of a radial basis network until it 
meets the specified mean squared error goal. 

 
Fig 8: Structure of RBF  Network 

 

6 . RESULT AND DISCUSSION 

A cantilever beam specimen with transverse crack is used 
to obtain the natural frequencies in ANSYS. Further the 
natural frequencies have been used as the training data for the 
neural network in MATLAB. The results obtained from both 
the techniques have been discussed and analyzed in this 
chapter. At the end of this chapter a comparative result has 
been shown and the errors have been found out. 

A cantilever beam of dimension 800x50x8 mm was 
created in ANSYS. Natural Frequencies of such beam was 
calculated at three different mode shapes. A total of 432 sets 
of readings were taken. These setup was arranged according to 
different sets of input and output for easy use of tool in 
MATLAB. An Artificial Neural network was created in 
MATLAB. Among 432 readings, 258 readings were used for 
training and rest for inspection. Different performance plots 
were found out and error curves were plotted and comparison 
were shown with reference to these sets of readings obtained 
from neural network such as Feed Forward Back Propagation 
(FFBP) and Radial Basis Feed Forward Back Propagation 
Network ( RBF). 

 

Different modes of vibration of Beam: 

 

             Fig. 9: Mode Shape 1 vibration 

 

Fig. 10: Mode Shape 2 vibration 

 

Fig. 11: Mode Shape 3 vibration 
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Table 1: Observation of frequencies of vibrating beam in mode shape 1 for different location and depth of crack 

     

 

 

Depth 

   

 

  

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

 

50 10.241 10.26 10.229 10.258 10.239 10.226 10.221 10.185 10.182 10.158 10.18 10.11 

 

70 10.27 10.25 10.24 10.236 10.259 10.25 10.196 10.195 10.177 10.242 10.127 10.18 

 

90 10.256 10.245 10.242 10.242 10.233 10.23 10.249 10.194 10.196 10.193 10.112 10.082 

 

110 10.279 10.249 10.25 10.243 10.235 10.221 10.204 10.19 10.194 10.184 10.153 10.129 

 

130 10.283 10.264 10.248 10.242 10.244 10.236 10.23 10.194 10.188 10.188 10.159 10.136 

 

150 10.28 10.25 10.251 10.245 10.242 10.238 10.226 10.207 10.195 10.176 10.143 10.176 

 

170 10.271 10.251 10.247 10.251 10.247 10.24 10.23 10.232 10.233 10.189 10.233 10.154 

 

190 10.273 10.25 10.746 10.253 10.258 10.258 10.235 10.213 10.213 10.239 10.218 10.119 

Loc 210 10.253 10.252 10.26 10.249 10.26 10.238 10.238 10.238 10.215 10.189 10.189 10.168 

 

230 10.263 10.25 10.265 10.255 10.256 10.253 10.232 10.223 10.219 10.176 10.176 10.176 

 

250 10.266 10.252 10.251 10.252 10.25 10.252 10.241 10.23 10.208 10.208 10.183 10.21 

 

270 10.253 10.252 10.261 10.247 10.247 10.249 10.246 10.231 10.228 10.221 10.224 10.191 

 

290 10.253 10.264 10.247 10.248 10.25 10.243 10.24 10.23 10.223 10.213 10.227 10.219 

 

310 10.255 10.251 10.257 10.249 10.246 10.242 10.243 10.232 10.227 10.223 10.217 10.21 

 

330 10.254 10.251 10.248 10.249 10.245 10.241 10.238 10.234 10.232 10.222 10.223 10.217 

 

350 10.253 10.252 10.254 10.274 10.253 10.252 10.24 10.24 10.233 10.262 10.215 10.216 

 

370 10.274 10.251 10.25 10.251 10.255 10.253 10.24 10.239 10.235 10.231 10.225 10.216 

 

390 10.253 10.252 10.253 10.249 10.249 10.25 10.244 10.24 10.234 10.231 10.232 10.226 

 

Table 2: Observation of frequencies of vibrating beam in mode shape 2 for different location and depth of crack 
 

 

 

    

 

 

Depth 

      

  

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

 

50 64.144 64.17 64.083 64.215 64.165 64.087 64.095 63.958 63.947 63.855 64.134 63.655 

 

70 64.262 64.197 64.168 64.111 64.254 64.227 63.991 64.002 63.956 64.308 63.796 64.022 

 

90 64.189 64.164 64.165 64.161 64.138 64.208 64.21 64.073 64.015 64.118 64.057 64.903 

 

110 64.249 64.205 64.223 64.323 64.312 64.187 64.164 64.147 64.152 64.118 64.07 64.047 

 

130 64.223 64.191 64.208 64.224 64.178 64.352 64.351 64.176 64.173 64.17 64.153 64.139 

 

150 64.224 64.212 64.207 64.224 64.33 64.202 64.2 64.197 64.197 6.419 64.185 64.193 
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170 64.196 64.195 64.195 64.196 64.249 64.249 64.248 64.25 64.417 64.248 64.417 64.217 

Loc 190 64.216 64.216 64.704 64.283 64.317 64.218 64.213 64.201 64.2 64.413 64.221 64.219 

 

210 64.2 64.199 64.193 64.192 64.214 64.187 64.187 64.187 64.177 64.165 64.165 64.155 

 

230 64.224 64.215 64.346 64.343 64.257 64.247 64.202 64.305 64.299 64.249 64.249 64.249 

 

250 64.245 64.204 64.2 64.199 64.212 64.213 64.193 64.154 64.101 64.101 64.108 64.105 

 

270 64.22 64.212 64.271 64.197 64.208 64.213 64.206 64.13 64.119 64.092 64.381 63.978 

 

290 64.223 64.268 64.188 64.189 64.316 64.181 64.162 64.114 64.044 63.986 64.107 64.046 

 

310 64.232 64.21 64.288 64.194 64.178 64.145 64.147 64.056 64.012 63.973 63.925 63.869 

 

330 64.254 64.205 64.184 64.236 64.186 64.102 64.073 64.025 64.001 63.879 63.915 63.852 

 

350 64.236 64.21 64.263 64.245 64.217 64.197 64.046 64.045 63.942 64.458 63.666 63.666 

 

370 64.48 64.216 64.209 64.246 64.305 64.266 64.054 64.019 63.916 63.837 63.715 63.596 

 

390 64.242 64.224 64.239 64.16 64.167 64.173 64.028 63.938 63.807 63.726 63.738 63.584 

  

Table 3: Observation of frequencies of vibrating beam in mode shape 3 for different location and depth of crack 
 

      

 Depth 

      

  

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

 

50 179.52 179.42 179.31 179.68 179.63 179.38 179.52 179.3 179.28 179.14 180.79 178.8 

 

70 179.75 179.67 179.62 179.42 179.84 179.82 179.3 179.37 179.32 180.17 179.11 179.52 

 

90 179.59 179.57 179.57 179.57 179.54 179.68 179.69 179.55 179.5 179.89 179.91 179.83 

 

110 179.72 179.72 179.71 179.85 179.85 179.71 179.71 179.71 179.72 179.73 179.76 179.73 

 

130 179.63 179.67 179.62 179.7 179.59 180.03 180.03 179.57 179.57 179.57 179.54 179.52 

 

150 179.79 179.74 179.66 179.69 179.82 179.63 179.6 179.52 179.46 179.44 179.31 179.41 

Loc 170 179.76 179.66 179.67 179.68 180.03 179.99 179.95 179.9 180.76 179.66 180.76 178.97 

 

190 179.93 179.93 179.73 179.72 179.87 179.88 179.58 179.25 179.25 180.73 179.51 179.19 

 

210 179.69 179.67 179.67 179.62 179.86 179.45 179.45 179.45 179.05 178.71 178.71 178.37 

 

230 179.93 179.71 179.92 179.79 179.83 179.74 179.3 179.18 179.09 178.28 178.28 178.28 

 

250 180.02 179.69 179.67 179.7 179.65 179.3 179.47 179.23 178.72 178.72 178.58 178.78 

 

270 179.75 179.73 179.93 179.62 179.61 179.65 179.58 179.22 179.15 179.98 180.47 178.29 

 

290 179.73 179.94 179.6 179.61 179.48 179.42 179.34 179.11 179.04 178.81 179.09 178.97 

 

310 179.8 179.73 179.8 179.66 179.58 179.49 179.54 179.31 179.2 179.13 179 178.86 
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330 179.7 179.66 179.64 180.03 179.96 179.52 179.46 179.4 179.38 179.17 179.22 179.17 

 

350 179.74 179.72 179.71 179.85 179.76 179.75 179.58 179.58 179.51 182.1 179.35 179.25 

 

370 181.12 179.69 179.74 180.08 180.14 180.13 180.03 180.03 179.63 179.61 179.58 179.93 

 

390 179.71 179.72 179.72 179.7 179.7 179.64 179.7 179.69 179.68 179.68 179.69 179.7 

 

 

Fig 12: Performance plot of Feed Forward Back Propagation 

 

The Levenberg-Marquardt (trainlm) training process was 
followed to train the neural network. The division of training 
data was done using the random (Dividerand) method. Since 
the number of values employed for testing was large in 
number, hence, few values were taken to depict the efficiency 
of the ANN model. 

A regression plot is also generated which is shown in 
Figure for the individual results obtained between the trained, 
tested, and validated points against a threshold value. On 
plotting the values obtained from ANSYS and ANN and 
comparing both, it was observed that minimum difference was 
obtained between both of the values thus validating our 
training process. It was observed that after running the CFBP 
network for a particular number of iterations a certain value of 
error between the ANSYS generated values and the network 
generated values was obtained.  

At epoch 13, the validation value matches with the best value. 

 

 

 

 

 

 

 

 

 

 

Fig 13:Performance plot of RBF Forward Back Propagation 

The Radial Basis Feed Forward Back Propagation network 
generated a performance plot on the grounds that in an Radial 
Basis Feed Forward Back Propagation network a particular 
goal is set to be reached but the number of iterations is not 
fixed. For this particular case it was observed that the errors 
generated in all cases are of the order of  and the RBF 
network certainly yields a better result at more frequent 
intervals than the CFBP and the FFBP network 

 

Fig 14: Output graph of RBF Forward Back Propagation 
 

 

This graph is plotted between the values of output for 
different sets of readings, shows the output values which was 
found in mat lab is Feed Forward Back Propagation for 
corresponding readings. 
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Fig 15: Output graph of RBF Forward Back   Propagation 
 

This graph is plotted between the values of output for 
different sets of readings, shows the output values which was 
found in mat lab in Radial Basis Feed Forward Back 
Propagation for corresponding set of readings. 

 

Fig16: Output graph RBF Forward Back Propagation (fewer neurons) 

 

This graph is plotted between the values of output for 
different sets of readings, shows the output values which was 
found in mat lab in Radial Basis Feed Forward Back 
Propagation (fewer neurons) for corresponding set of 
readings. 

 

Fig 17: Error graph of Feed Forward Back Propagation 

 

Here graph was plotted between the error in Feed Forward 
Back Propagation and number of instances.  It was found to be 
maximum.  Here this graph shows the value of error for 
different set of readings. 

 

Fig 18: Error graph of Radial Basis Feed Forward Back Propagation 

 

Here graph was plotted between the error in Radial Basis 
Feed Forward Back Propagation and number of instances.  
The error was found out to be constant for maximum sets of 
readings. Here this graph shows the value of error for different 
set of readings. 

 

Fig 19: error graph of Radial Basis Feed Forward Back Propagation 

(fewer neurons) 

 

Here graph was plotted between the error in Radial Basis 
Feed Forward Back Propagation (fewer neurons) and number 
of instances, here error is found out to be constant for 
maximum sets of readings. Here this graph shows the value of 
error for different set of readings. 
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Table 4: Comparison Table between FFBP, RBF and RBF (fewer neurons) 
LOCATION OUTPUT NETWORK ERROR NETWORK OUTPUT 

FFBP RBF(EXA

CT FIT) 

RBF(FEWER 

NEURONS) 

FFBP RBF(EXACT 

FIT) 

RBF(FEWER 

NEURONS) 

50 0.25 -0.7598 1.84E-07 7.31E-07 
 

1.009839 0.2499 0.2499 

70 0.5 -0.2972 3.82E-09 3.51E-08 

 

0.797201 0.4999 0.499 

90 0.75 -0.457 5.97E-08 6.99E-07 

 

0.707003 0.74999 0.7499 

110 1.0 -0.3739 8.87E-07 9.54E-07 

 

0.873951 0.9999 0.999 

130 1.25 -0.1702 -6.70E-08 4.32E-08 

 

0.920255 1.249999 1.2499 

150 1.5 -0.0207 -5.58E-08 1.61E-07 

 

1.020762 1.4999 1.4999 

170 1.75 0.245843 -1.50E-07 2.02E-07 

 

1.004157 1.7499 1.7499 

190 2.0 0.707923 5.79E-07 -1.95E-07 

 

0.792077 1.9999 1.999 

210 2.25 0.391951 2.29E-08 2.46E-07 

 

1.358049 2.24999 2.2499 

 

7. CONCLUSION 
The effects of transverse cracks on the vibrating uniform 

cracked cantilever beam have been presented in this paper. 
The main purpose of this research work has been to develop a 
proficient technique for diagnosis of crack in a vibrating 
structure in short span of time. The vibration analysis has been 
done using theoretical and also it has been carried out through 
using finite element method as per ANSYS. In this analysis 
natural frequency plays an important role in the identification 
of crack. Crack has been identified in terms of crack depth and 
crack location. The results obtained from ANSYS are used to 
develop artificial intelligence techniques using three neural 
networks (FFBP, RBF, and CFBP). The CFBP network shows 
a better result than the FFBP network; the CFBP network 
gives the best validation performance of 0.00178434, whereas 
the FFBP network gives 0.17245. 

It is observed that for some cases RBF network result out 
performs the results of the other two networks. But in general 
CFBP was found to be more efficient in terms of error and 
computational complexity. As it was observed that the 
predicted results of neural network technique are reasonably 
adequate and in agreement with the theoretical result, the 
developed models can be efficiently used for crack detection 
problems. 
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