
Fault Detection For AES Cryptographic Design

 Abstract— Cryptography is a method that has

been developed to ensure the secrecy of messages

and transfer data securely. Advanced Encryption

Standard (AES) has been made as the first choice

for many critical applications because of the high

level of security and the fast hardware and

software implementations, many of which are

power and resource constrained and requires

reliable and efficient hardware implementations.

Naturally occurring and maliciously injected faults

reduce the reliability of Advanced Encryption

Standard (AES) and may leak confidential

information. In this paper, a lightweight

concurrent fault detection scheme for the AES is

presented. In the proposed approach, the

composite field S-box and inverse S-box are

divided into blocks and the predicted parities of

these blocks are obtained. For high speed

applications, S-box implementation based on

lookup tables is avoided. Instead, logic gate

implementations based on composite fields are

utilized. A compact architecture for the AES Mix-

columns operation and its inverse is also presented.

This parity-based fault detection scheme reaches

the maximum fault coverage when compared to

other methods of fault detection. The proposed

fault detection technique for AES encryption and

decryption has the least area and power

consumption compared to their counterparts with

similar fault detection capabilities.

 Index terms — AES, composite fields, parity

prediction, fault detection, S-box.

I. INTRODUCTION

 The Advanced Encryption Standard (AES) has been

accepted by NIST [1] as the symmetric key standard

as a replacement for the previous standards because of

its good characteristics in terms of security, cost, and

efficient implementations for encryption and

decryption of blocks of data. In encryption, under the

influence of a key, a 128-bit block is encrypted by

transforming it in a unique way into a new block of

the same size. AES is symmetric since the same key is

used for encryption and the reverse transformation,

decryption. The only secret necessary to keep for

security is the key. AES may be configured to use

different key-lengths, the standard defines 3 lengths

and the resulting algorithms are named AES-128,

AES-192 and AES-256 respectively to indicate the

length in bits of the key. After 10 rounds, the cipher

text is generated where each encryption round (except

for the final round) consists of four transformations.

The four transformations of round of encryption are

explained below.

The 128 bits of input (and output) of each

transformation are considered as a four by four matrix,

called state, whose entries are eight bits. Except for

the last round, the first transformation in each round is

the bytes substitution, called SubBytes, which is

implemented by 16 S-boxes. Shift-Rows is the second

transformation in which the four bytes of the last three

rows of the input state are cyclically shifted. The third

transformation is Mixcolumns in which the columns

are considered as polynomials over GF(2
8
) and

multiplied by a fixed polynomial. The final

transformation is AddRoundKey in which a roundkey

is added to the input by 128 two-input XOR gates.

Among the transformations in the AES, the S-boxes

in the encryption and the inverse S-boxes in the

decryption are alone nonlinear. Fault detection in the

AES hardware implementation is important in order to

make the standard robust to the internal and malicious

faults. There exists various fault detection schemes for

the AES hardware implementation. For fault detection

of the encryption or decryption in AES redundant

units may be used [12], [14], where algorithm-level,

round-level and operation-level concurrent error

detection for the AES is used. A number of fault

detection schemes based on the error detecting codes,

also exists. For high performance AES

implementations, using ROMs may not be preferable.

The proposed fault detection approach is applied to

the composite field AES encryption and decryption.

There exist a number of fault detection approaches

which are specific to composite field S-boxes and

inverse S-boxes. In the scheme of [13], the fault

detection of the multiplicative inversion of the S-box

is considered. In [12], predicted parities have been

used for the multiplicative inversion of a specific S-

box using composite field and polynomial basis.

Furthermore, the transformation matrices are also

considered. In [12] and [6], the composite field S-

boxes and inverse S-boxes (using polynomial basis)

have been divided into sub-blocks and parity

predictions are used for their fault detection.

Nahala Basheer
1

PG Scholar

ECE Department

Younus College of Engineering

and Technology

Kerala

Ms. Nisha Lali R
2

Asst. Professor

ECE Department

Younus College of Engineering

and Technology

Kerala

Mr. Rajeev S K
3

Head of the Department

ECE Department

Younus College of Engineering

and Technology

Kerala

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1801

In the schemes proposed in [15] and [22], all the

search space of composite fields is considered for

presenting optimum lightweight fault detection

schemes. The scheme presented in [8] is for all the

transformations in the AES encryption/decryption

independent of the ways these transformations are

implemented. Moreover, the scheme presented in [7]

uses double-data-rate computation for counteracting

the fault attacks. Additionally, a fault detection

scheme based on the Hamming and Reed-Solomon

codes for protecting the storage elements within the

AES is proposed in [11]. It is also noted that, for the

logic elements, the scheme in [2] and the use of the

partial duplication of the most vulnerable elements are

proposed in [11].

Fig. 1. The S-box (the inverse S-box) using composite fields and polynomial basis and their fault detection blocks.

Fig. 2. The S-box (the inverse S-box) using composite fields and normal basis and their fault detection blocks.

 All the S-boxes (respectively the inverse S-boxes)

occupy much of the total AES encryption

(respectively decryption) area and their power

consumption is around three fourths of that of the

entire AES [16]. LUTs can be utilized for the AES S-

boxes and inverse S-boxes in hardware

implementation. This work involves low-area

implementation of the AES encryption and decryption

using composite fields.

The contributions of this paper are as follows.

 The S-box and the inverse S-box has been

designed to obtain low power and low area.

 An alternative lightweight design for both

forward and inverse mixcolumns operation

required in the AES hardware implementation is

also presented.

 A low-cost parity-based fault detection scheme

for the S-box and the inverse S-box using

composite fields is presented, for increasing the

error coverage. The predicted parities of the five

blocks of the S-box and the inverse S-box are

obtained (three predicted parities for the

multiplicative inversion and two for the

transformation and affine matrices).

 The actual parity is obtained from the blocks

using XOR gates. The predicted parity is

compared with the actual parity. The error gets

indicated using the error indication flag.

 The proposed fault detection scheme is simulated

and maximum error coverage is obtained

compared to existing methods.

It is shown that the power and area of the proposed

technique is least compared to the schemes that have

the same fault detection capabilities.

II. S-BOX AND INVERSE S-BOX IN COMPOSITE FIELDS

 In this section, the S-box and the inverse S-box

operations and their composite-field realizations are

described. The S-box and the Inverse S-box are

nonlinear operations which take 8-bit inputs and

generate 8-bit outputs. In the S-box, the irreducible

polynomial of P(x) = x
8
 + x

4
 + x

3
 + x +1 is used to

construct the binary field GF(2
8
). Let 𝑋 = 𝑥7

𝑖=0 iα
i

∈ 𝐺𝐹(2
8
) and 𝑌 = 𝑦7

𝑖=0 iα
i ∈ 𝐺𝐹(2

8
) be the input and

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1802

the output of the S-box, respectively, where α is a root

of P(x), i.e. P(α)=0. Then, the S-box consists of the

multiplicative inversion, i.e., X
-1

 ∈ GF(2
8
), followed

by an affine transformation. Moreover, let Y
-1

 ∈
 GF(2

8
) and X

-1
 ∈ GF(2

8
) be the input and the output

of the Inverse S-box, respectively. Then, the Inverse

S-box consists of an inverse affine transformation

followed by the multiplicative inversion.

 The composite fields can be represented using

normal basis or polynomial basis. The S-box and

inverse S-box for the polynomial and normal bases are

shown in Figs. 1 and 2, respectively. For the S-box

using polynomial basis (respectively normal basis),

the transformation matrix ψ (respectively ψ')

transforms a field element X in the binary field GF(2
8
)

to the corresponding representation in the composite

fields GF(2
8
) / GF(2

4
). It is noted that the result of X=

ηh u+ ηl is obtained using the irreducible polynomial

u
2
+ τu + υ for polynomial basis method in Fig.1 and

X= η'h u
16

+ η'lu is obtained using the irreducible

polynomial u
2
+ τ'u + υ for normal basis method in

Fig.2.

The multiplicative inversion in Fig.1 consists of

composite field multiplications, additions and an

inversion in the sub-field GF(2
4
) over GF(2) / x

4
+ x +

1.The decomposition can be further applied to

represent GF(2
4
) as a linear polynomial over GF(2

2
)

and then GF(2) using the irreducible polynomial

υ
2
+Ωυ+υ and w

2
+w+1, respectively. As a result, it is

understood that the implementation of the

multiplicative inversion can be performed using the

field represented by GF((2
4
)

2
) or the field represented

by GF(((2
2
)

2
)

2
). For normal basis, the decomposition

is performed using the irreducible polynomials of υ
2
+

Ω'υ + υ' and w
2
+ w + 1, respectively.

For calculating the multiplicative inversion, the

most efficient choice is to let Ω = τ = 1 (Ω' = τ' = 1)

in the above irreducible polynomials. Then, the

multiplicative inversion of the S-box using polynomial

basis and normal basis are respectively,

 (ηh u + ηl)
-1

= [((ηh+ ηl) + ηh
2
 υ)

-1
 ηh] u

 + ((ηh+ ηl) + ηh
2
 υ)

-1
(ηh+ ηl)

(1)

(η'h u
16

 + η'l u)
-1

= [(η'h η'l + (η'h
2

+ ƞ'l
2
) υ')

-1
) η'h]

u
16

 + [(η'h η'l + (η'h
2

+ ƞ'l
2
) υ')

-1
) η'l] u

(2)

It is noted that one can replace ƞ(ƞ') with σ(σ') to

obtain (1) and (2) for the inverse S-box.

III. MIX COLUMN IMPLEMENTATION USING

POLYNOMIALS

The forward mix column transformation (in

encryption process), called mix columns, operates on

each column individually. Each byte of a column is

mapped into a new value that is a function of all four

bytes in that column. The transformation can be

defined by the following matrix multiplication on

State.

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

𝑠0,0 s0,1 𝑠0,2 𝑠0.3
𝑠1.0 𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,0 𝑠3,1 𝑠3,2 𝑠3,3

=

𝑠′0,0 s′0,1 𝑠′0,2 𝑠′0.3
𝑠′1.0 𝑠′1,1 𝑠′1,2 𝑠′1,3
𝑠′2,0 𝑠′2,1 𝑠′2,2 𝑠′2,3
𝑠′3,0 𝑠′3,1 𝑠′3,2 𝑠′3,3

Each element in the product matrix is the sum of

products of elements of one row and one column. In

this case, the individual additions and multiplications

are performed in GF (2
8
). The mix columns

transformation on a single column j (0≤ j≤ 3) of State

can be expressed as

𝑠′0, 𝑗 = 2 ∗ 𝑠0, 𝑗 ⊕ 3 ∗ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ 𝑠3, 𝑗
𝑠′1, 𝑗 = 𝑠0, 𝑗 ⊕ 2 ∗ 𝑠1, 𝑗 ⊕(3*𝑠2, 𝑗) ⊕ 𝑠3,
𝑠′2, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑠1, 𝑗 ⊕ 2 ∗ 𝑠2, 𝑗 ⊕ 3 ∗ 𝑠3, 𝑗

𝑠′3, 𝑗 = 3 ∗ 𝑠0, 𝑗 ⊕ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ (2 ∗ 𝑠3, 𝑗)

(3)

As mix columns only requires multiplication by {02}

and {03}, which, as we have seen, involved simple

shifts, conditional XORs, and XORs. This can be

implemented in a more efficient way that eliminates

the shifts and conditional XORs. Equation Set (3)

shows the equations for the mix columns

transformation on a single column. Using the identity

{03} ・ x = ({02} ・ x) x, we can rewrite equation Set

(3) as follows:

𝑇𝑚𝑝 = 𝑠0, 𝑗 ⊕ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ 𝑠3, 𝑗
𝑠′0, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [2 ∗ 𝑠0, 𝑗 ⊕ 𝑠1, 𝑗]
𝑠′1, 𝑗 = 𝑠1, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [2 ∗ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗]
𝑠′2, 𝑗 = 𝑠2, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [2 ∗ 𝑠2, 𝑗 ⊕ 𝑠3, 𝑗]
𝑠′3, 𝑗 = 𝑠3, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [2 ∗ 𝑠3, 𝑗 ⊕ 𝑠0, 𝑗]

(4)

Multiplication by 02 equivalents to multiply by x [2].

The gate count of this implementation (using

combinational circuits only) is as shown in fig.(4) is as

follows: 8 XORs to calculate (s0,j ⊕ s1,j) in equation

(4.1), so 32 XORs are required for the same

calculations in equations 4.

Additional 8 XORs are needed to calculate Tmp. 3

XORs are required to calculate 2*(s0,j s1,j) in

equation (4.1) so we need 12 XORs for the same

calculations in equations 4. Finally we need an 8

XORs (with 3 inputs) OR 16 XORs (with 2 inputs) to

calculate (s’0,j) in equation (4.1), so we need 32

XORs (with 3 inputs) OR 64 XORs (with 2 inputs) to

calculate equations 4. Finally we can implement

Forward mix columns transformation using

32+8+12+64 = 116 XORs with 2 inputs, OR (52

XORs with 2 inputs + 32 XORs with 3 inputs with

total 84 XORs).

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1803

 Fig. 3. Forward mix columns operation

 Additional 8 XORs are needed to calculate Tmp.

3 XORs are required to calculate 2*(s0,j s1,j) in

equation (4.1) so we need 12 XORs for the same

calculations in equations 4. Finally we need an 8

XORs (with 3 inputs) OR 16 XORs (with 2 inputs) to

calculate (s’0,j) in equation (4.1), so we need 32

XORs (with 3 inputs) OR 64 XORs (with 2 inputs) to

calculate equations 4. Finally we can implement

Forward mix columns transformation using

32+8+12+64 = 116 XORs with 2 inputs, OR (52

XORs with 2 inputs + 32 XORs with 3 inputs with

total 84 XORs).

 In fig. 3, the block labeled Mul by (2) means

multiply its input by 2 using the implementation

shown in [2]. Each arrow represent 8 bits and each

block such as s’1,j represent 8 wires holds values of

s’1,j. The inverse mix column transformation (in

decryption process), called InvMix Columns, is

defined by the following matrix multiplication:

0𝐸 0𝐵 0𝐷 09
09 0𝐸 0𝐵 0𝐷
0𝐷 09 0𝐸 0𝐵
0𝐵 0𝐷 09 0𝐸

𝑠0,0 s0,1 𝑠0,2 𝑠0.3
𝑠1.0 𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,0 𝑠3,1 𝑠3,2 𝑠3,3

=

𝑠′0,0 s′0,1 𝑠′0,2 𝑠′0.3
𝑠′1.0 𝑠′1,1 𝑠′1,2 𝑠′1,3
𝑠′2,0 𝑠′2,1 𝑠′2,2 𝑠′2,3
𝑠′3,0 𝑠′3,1 𝑠′3,2 𝑠′3,3

Each element in the product matrix is the sum of

products of elements of one row and one column. In

this case, the individual additions and multiplications

are performed in GF (2
8
). The mix Columns

transformation on a single column j (0≤ j≤ 3) of State

can be expressed as:-

𝑠 ′0, 𝑗 = 0𝐸 ∗ 𝑠0, 𝑗 ⊕ 0𝐵 ∗ 𝑠1, 𝑗 ⊕ 0𝐷 ∗ 𝑠2, 𝑗 ⊕ (09 ∗
𝑠3, 𝑗)
𝑠 ′1, 𝑗 = 09 ∗ 𝑠0, 𝑗 ⊕ 0𝐸 ∗ 𝑠1, 𝑗 ⊕ 0𝐵 ∗ 𝑠2, 𝑗 ⊕ (0𝐷 ∗
𝑠3, 𝑗)
𝑠 ′2, 𝑗 = 0𝐷 ∗ 𝑠0, 𝑗 ⊕ 09 ∗ 𝑠1, 𝑗 ⊕ 0𝐸 ∗ 𝑠2, 𝑗 ⊕ (0𝐵 ∗
𝑠3, 𝑗)
𝑠 ′3, 𝑗 = 0𝐵 ∗ 𝑠0, 𝑗 ⊕ 0𝐷 ∗ 𝑠1, 𝑗 ⊕ 09 ∗ 𝑠2, 𝑗 ⊕ (0𝐸 ∗
𝑠3, 𝑗) (5)

Equation set (5) is formulated to simplify its hardware

implementation as follows:

𝑇𝑚𝑝 = 09 ∗ (𝑠0, 𝐽 ⊕ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ 𝑠3, 𝑗)

𝑠 ′0, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ 2 ∗ 𝑠0, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ [2 ∗
 𝑠0, j ⊕ 𝑠1, 𝑗]
𝑠 ′1, 𝑗 = 𝑠1, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ 2 ∗ 𝑠1, 𝑗 ⊕ 𝑠3, 𝑗 ⊕ [2 ∗
 𝑠1, j ⊕ 𝑠2, 𝑗]

𝑠 ′2, 𝑗 = 𝑠2, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ 2 ∗ 𝑠0, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ [2 ∗
 𝑠2, j ⊕ 𝑠3, 𝑗]
𝑠 ′3, 𝑗 = 𝑠3, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ 2 ∗ 𝑠1, 𝑗 ⊕ 𝑠3, 𝑗 ⊕ [2 ∗
 𝑠3, j ⊕ 𝑠0, 𝑗

 (6)

As shown in fig. (4) the gate count of this

implementation (using combinational circuits only) is

as follows: We need 8 XORs to calculate (s0,j⊕s1,j)

in equation (6.1), so 32 XORs are required for

equations set 6. We need 3 XORs to calculate 2*(

s0,j⊕s1,j) in equation (6.1), so 12 XORs are required

for the same calculations in equations 6. Additional 8

XORs are required to calculate (s0,j⊕s2,j) in

equation (6.1), so we need 16 XORs for the same

calculations in equations 6.

 We need 16 XORs for the same calculations in

equations 6. We need additional 3 XORs to calculate

2*(s0,j⊕s2,j) in equation (6.1), so 6 XORs are

required for the same calculations in equations 6. We

need additional 3 XORs to calculate 2*(2*(s0,j⊕

s2,j)) in equation (6.1) so 6 XORs are required for the

same calculations in equations 6. We need additional 3

XORs to calculate 2*(2*(2*(s0,j⊕s2,j))) in equation

(6.1), so 6 XORs are required for the same

calculations in equations 6. Additional 8 XORs are

required to calculate 09*(s0,j⊕ s2,j), 8 XORs to

calculate 09*(s1,j⊕ s3,j), and 8 XORs to calculate

Tmp. Finally we need 24 XORs to calculate s'0,j in

equation (6.1), and 96 XORs for the same calculations

in equations 6. Implementing inverse mix columns

transformation uses 32+12+16+6+6+6+16+8+96 =

198 XOR. Implementing forward and inverse mix

columns transformation uses 116 +198 = 314 XOR

gates.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1804

Fig. 4. Inverse mix columns operation

IV. FAULT DETECTION SCHEMES

 The S-box and the inverse S-box structures are

divided into five blocks as shown in Fig.1 and 2 to

obtain the low-overhead parities. In these figures, the

modulo-2 additions, consisting of 4 XOR gates, are

shown by two concentric circles with a plus inside.

Furthermore, the multiplications in GF (2
4
) are shown

by rectangles with crosses inside. Let bi be the output

of block i denoted by dots in Fig.1 and 2 for S-box.

The outputs of the five blocks for S-box using

polynomial basis in Fig.1 are represented as b1 = ηh+

ηl , b2 = γ, b3 =θ, b4 = σ and b5 = Y. Similarly, for

Fig.2 b1 = η'h+ η'l , b2 = γ', b3 =θ', b4 = σ' and b5 = Y.

One can replace ƞ(ƞ') with σ(σ') and X with Y for the

inverse S-box. In the following, the least overhead

parity are denoted by Ṕb1 - Ṕb5 in Figs. 1 and 2.

A. The S-Box and the Inverse S-Box using Polynomial

Basis

The implementation complexities of different

blocks of the S-box and the Inverse S-box and those

for their predicted parities are dependent on the choice

of the coefficients υ ε GF(2
4
) and υ ε GF(2

2
) in

the irreducible polynomials u
2
 + u + υ and v

2
 +

v + υ used for the composite fields. The goal in the

following is to find υ ε GF(2
4
) and υ ε GF(2

2
) for the

composite fields GF(((2
2
)

2
)

2
) and υ ε GF(24) for the

composite fields GF((2
4
)

2
) so that the area complexity

of the entire fault detection implementations becomes

optimum. According to [19], 16 the possible

combinations for υ ε GF(2
4
) and υ ε GF(2

2
) exist.

Moreover, for the composite fields GF((2
4
)

2
), the

possible choices for υ making the polynomial x
2
 + x

+ υ irreducible has been exhaustively searched and

found.

The blocks are explained below:

Blocks 1 and 5: Based on the possible values of υ and

φ in GF(((2
2
)

2
)

2
) (υ in GF((2

4
)

2
)), the transformation

matrices in Fig. 1 in blocks 1 and 5 of the S-box and

the inverse S-box can be constructed using the

algorithm presented in [21]. Using an exhaustive

search, eight base elements in GF(((2
2
)

2
)

2
)

(or GF((2
4
)

2
)) to which eight base elements of

GF(2
8
) are mapped, are found to construct the

transformation matrix.

 In [22], the Hamming weights, i.e., the number of

nonzero elements, of the transformation matrices for

the case φ= {10}2 and different values of υ in

GF(((2
2
)

2
)

2
) are obtained. It is noted that in [21],

instead of considering the Hamming weights, sub

expression sharing is suggested for obtaining the low-

complexity implementations for the S-box. Here, we

have also considered these transformation matrices for

φ= {11}2 as well as the transformation matrices for the

inverse S-box for different values of υ and φ and have

derived their area and delay complexities. Moreover,

the gate count and the critical path delay for blocks 1

and 5 and their predicted parities, i.e., Ṕb1 and Ṕb5, of

the S-box and the inverse S-box in have been

obtained.

Blocks 2 and 4: As shown in Fig. 1, block 2 of the S-

box and the inverse S-box consists of a multiplication,

an addition, a squaring and a multiplication by

constant υ in GF((2
4
)

2
) .The following lemma is

presented for deriving the predicted parity of the

multiplication in GF((2
4
)

2
), using which the predicted

parities of blocks 2 and 4 in Fig. 1 are obtained.

 Lemma 1: Let λ = (λ3,λ2,λ1,λ0) and δ = (δ3,δ2,δ1,δ0)

be the inputs of the multiplier in GF((2
2
)

2
). The

predicted parities of the result of the multiplication of

λ and δ in GF((2
2
)

2
) for φ= {10}2 and φ= {11}2 are

as follows, respectively

 Ṕπ = λ3(δ3+δ2+δ0)+ λ2(δ3+δ2+δ0)+ λ1(δ2+δ0)+

 λ0(δ3+ δ0 +δ2+δ0) if φ= {10}2 (7)

 Ṕπ = λ3(δ3 +δ0)+ λ2(δ2+δ1+δ0)+ λ1(δ2+δ0)+

 λ0(δ3+ δ0 +δ2+δ0) if φ= {11}2 (8)

 The predicted parity of block 2 of the S-box and the

inverse S-box, i.e., Ṕ in Fig.1, depends on the choice

of the coefficients υ ε GF ((2
2
)

2
) and υ ε GF(2

2
) [].

Using Lemma 1, we have derived the complexity of

the predicted parity of block 2 for these coefficients.

Furthermore, for block 4 in Fig.1, which consists of

two multiplications in GF ((2
2
)

2
), one can also use

Lemma 1 to derive the predicted parity. For block 2 of

the S-box (respectively the inverse S-box) over

GF((2
4
)

2
) in Fig. 1, only the multiplication by

constant is affected for different values of υs. For this

block, we have exhaustively searched for and obtained

the optimum implementation for different values of υs.

Moreover, block 4 in Fig. 1 is independent of the

value of υ. Therefore, the complexity of the predicted

parity for this block is the same for all possible υs.

Block 3: We present the following theorem for block

3 of the

S-box and the inverse S-box over GF((2
2
)

2
) in Fig. 1.

 Theorem 1: Let γ = (γ3,γ2,γ1,γ0) be the input and

θ=(θ3,θ2,θ1,θ0) be the output of an inverter in

GF((2
2
)

2
). The predicted parities of the result of the

inversion in GF((2
2
)

2
), i.e., Ṕb3 , for φ= {10}2 and φ=

{11}2 are as follows, respectively

 Ṕθ= (͞γ2˅γ1)γ0+(γ1+γ0)γ3 if φ= {10}2

(9)

 Ṕθ= (γ2 γ1˅ γ0) + γ3 γ1 if φ= {10}2

(10)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1805

where, ˅ represents OR operation. It is noted that the

inversion in GF(2
4
) [] in Fig. 1 is independent of the

value of υ. Therefore, the complexity of the predicted

parity for this block is the same for any possible υs.

B. The S-Box and the Inverse S-Box Using Normal

Basis

The optimum fault detection S-box using normal

basis in Fig. 2 is derived. Here an exhaustive search

for finding the optimum predicted parities based on

the choice of the coefficients υ' ε GF(2
4
) and υ' ε

GF(2
2
) and for the five blocks of the inverse S-box

using normal basis. We have exhaustively searched

for the least overhead transformation matrices and

their parity predictions combined for the inverse S-box

and have derived the total complexity for the predicted

parities of blocks 1 and 5, i.e., Ṕb1 and Ṕb5, and the

delays associated with them. These are used to obtain

the optimum S-box inverse S-box and its parity

predictions in this section. It is also noted that as

shown in Fig. 2, blocks 2, 3, and 4 of the S-box and

the inverse S-box are the same. Therefore, considering

[15], the predicted parities of these blocks can be

obtained for the inverse S-box.

C. Optimum parity prediction techniques

i. For polynomial basis:

Considering the discussions presented for different

combinations of υ and φ for polynomial basis, the

following optimum parity prediction technique is

presented.

The fault detection S-Box using composite fields

GF(((2
2
)

2
)

2
) has the least area complexity for φ =

{11}2 and υ= {1010}2. For this optimum S-Box (PB1),

the following predicted parities for the five blocks in

Fig.1 are as given below:

 Ṕb1= x0

 Ṕb2 = ƞ3(ƞ͞7+ƞ4)+ƞ2(ƞ͞7+ Pƞh)+ƞ1(ƞ6+ƞ4)+ƞ0

P͞ƞh+ƞ6+ƞ7

 Ṕb3=(γ2γ1˅γ0)+γ1γ3

 Ṕb4 =ƞ3(θ3+θ0)+ƞ2(PΘ+θ3)+ƞ1(θ2+θ0)+ƞ0PΘ

 Ṕb5 =σ7+σ5+σ3+σ2+σ0

where, Ṕƞh=ƞ7+ƞ6+ƞ5+ƞ4 and ṔΘ =θ3+θ2+θ1+θ0.

Additionally, among all the possible values for using

composite fields GF ((2
4
)

2
), υ= {1010}2 yields to

the least complexity architecture for the optimum S-

box (PB2), respectively. Then, for the S-box we have:

 Ṕb1= x7+x0

 Ṕb2 = ƞ3ƞ4+ƞ2(ƞ5+ƞ4)+ƞ1(P͞ƞh+ƞ7)+ƞ0 P͞ƞh+ Pƞh +ƞ4

 Ṕb3=γ͞3γ2͞γ0+γ0(͞γ1˅(͞γ͞͞2͞+γ͞3))

 Ṕb4 =ƞ3θ0+ƞ2(θ1+θ0)+ƞ1(PΘ+θ3)+ƞ0PΘ

 Ṕb5 =σ4+σ3+σ2+σ1+σ0

Furthermore, for the inverse S-box the following

method is used. For the inverse S-box using composite

field GF(((2
2
)

2
)

2
), choosing φ = {11}2 and υ = {1011}2

and for the one using composite field GF((2
4
)

2
)

having υ = {1001}2 yields to the lowest area

complexity architecture. It is noted that blocks 3 and 4

have the same predicted parities as the S-box by

swapping ƞ and σ. For other blocks of the optimum

inverse S-box (PB1) we have:

 Ṕb1= ͞x0

 Ṕb2 = σ3(͞σ7+σ4)+σ2(͞σ7+ Pƞh)+σ1(σ6+σ4)+σ0

P͞ƞh+σ6+σ7

 Ṕb3=(γ2γ1˅γ0)+γ1γ3

 Ṕb4 =ƞ3(θ3+θ0)+ƞ2(PΘ+θ3)+ƞ1(θ2+θ0)+ƞ0PΘ

 Ṕb5 =ƞ7+ƞ5+ƞ3+ƞ2+ƞ0

Additionally, for the optimum inverse S-box (PB2) we

have:

 Ṕb1=x͞7͞+x͞0

 Ṕb2 = σ3σ4+σ2(σ5+σ4)+σ1(P͞ƞh+σ7)+σ0 P͞ƞh+ Pƞh +σ4

 Ṕb3=γ͞3γ2 ͞γ0+γ0(͞γ1˅(͞γ͞͞2 ͞+γ͞3))

 Ṕb4 =ƞ3θ0+ƞ2(θ1+θ0)+ƞ1(PΘ+θ3)+ƞ0PΘ

 Ṕb5 = ƞ0

ii. For normal basis:

 For different combinations of υ' and φ' for normal

basis, for the S-box and the inverse S-box, φ' = {10}2

and υ' = {0001}2 have the least area for the operations

and their fault detection circuits combined. The

following is the predicted parities for the S-box:

 Ṕb1= x7+x5

 Ṕb2 = (ƞ'7˅ƞ'3)+(ƞ'6˅ƞ'2)+(ƞ'4˅ ƞ'0)+ƞ'5ƞ'1

 Ṕb3= ͞γ͞'2͞γ͞'0(γ'3+ γ'1)+ γ'3 γ'1(γ'2+ γ'0)

 Ṕb4 = (ƞ'7+ƞ'3) θ'3+(ƞ'6+ƞ'2) θ'2+(ƞ'5+ƞ'1)

θ'1+(ƞ'4+ƞ'0) θ'0

 Ṕb5 =σ'7+σ'5+σ'4+σ'3+σ'2

Moreover, for the inverse S-box, Ṕb2 - Ṕb4 are the same

as those for the S-box by swapping ƞ' and σ'. For the

other blocks, the predicted parities are given as: Ṕb1=

y7+y6+ y2+y1 and Ṕb5 =ƞ'7+ƞ'5+ƞ'4+ƞ'3+ƞ'2.

 It is noted that the area overhead of the proposed

scheme for the optimum structures consists of those of

the optimum parity predictions. In addition, 23 XORs

for the actual parities (3 XORs for adding the

coordinates of each of ƞ'h+ƞ'l, γ' and θ' and 7 XORs

each for those of ζ' and Y) are utilized. Moreover, the

delay overhead of the predicted parities of five blocks

can overlap the delays for the implementations of five

blocks in Figs. 1 and 2. The only delay overhead for

this scheme is the delay of the actual parity of block 5,

which is 3TX, where TX, is the delay of an XOR gate.

D. Error indication

 In order to develop a fault detection structure, the

predicted parity can be compared with the actual

parity in order to obtain the error indication flag of the

corresponding block . By ORing five indication flags

of five blocks, the error indication of the entire S-box

is obtained [15].

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1806

V. SIMULATION RESULTS

 First the S-box and the inverse S-box using

composite fields is constructed for low area and low

power dissipation. Also the time delay is reduced

compared to other techniques. Here S-Box and inverse

S-Box are constructed using both polynomial and

normal basis. Then, single Struck-At-Faults have been

introduced to the S-box and the Inverse S-box and the

corresponding output simulation is obtained. After that

the circuit is tested for multiple Struck-At-Faults. If

exactly one bit error appears at the output of the S-box

(respectively inverse S-box), the presented fault

detection scheme is able to detect it and the error

coverage is about 100%. This is because in this case,

the error indication flag of the corresponding block

alarms the error. However, due to the technological

constraints, single stuck-at error may not be applicable

for an attacker to gain more information [23]. Thus,

multiple bits will actually be flipped and hence

multiple stuck-at errors are also considered in this

paper covering both natural faults and fault attacks

[23].

 Here a lightweight Mixcolumns is also

implemented using logic gates. The total number of

gates required for implementing mix columns

operation in the proposed design is 116+198 =314

XOR gates[],[]. Since our design is implemented using

combinational circuits only, each resultant mix

column takes a single clock cycle. The proposed mix

column implementation takes four clock cycles

compared to 28 clock cycles in [4]. The circuit for

both AES encryption and decryption is designed.

Xilinx ISE 8.1 and ModelSim are the simulation tools

used here. The target device is XC2S600E. Finally,

the error coverage has been calculated from the

obtained results. The design is also simulated for

power, delay and area calculations. From the

simulation result the following is inferred.

TABLE I

COMPARISON OF LUTS AND SLICES

Operation Architecture No. of 4-input

LUTs

No. of

slices

S-Box

LUT 250 158

PB 87 31

NB 83 31

Inverse

S-Box

LUT 250 158

PB 84 31

NB 73 31

A. Low area and Low power

From the synthesis report, the number of LUTs and

slices needed to design the S-box and the Inverse S-

box is calculated. Table I gives the comparison of the

number of LUTs and slices used for the design of S-

box and Inverse S-box using various techniques.

 From the Table I the number of LUTs and Slices

used for S-box and Inverse S-box using composite

fields is less when compared to S-box based on LUTs

.

 Table II illustrates the comparison results based on

simulation in terms of power.

TABLE II

COMPARISON OF POWER

Operation Architecture Power (mW)

S-Box

LUT 56

PB 34

NB 34

Inverse

S-Box

LUT 56

PB 34

NB 34

B. Fault detection

The proposed architecture for the S-box and Inverse

S-box is able to find all the single Struck-At faults.

Faults are injected randomly on the input and output

nodes of the logic gates. In the case of multiple

Struck-At faults in S-box, also the faults have been

identified. We have performed error simulations for

the S-boxes and the inverse S-boxes using the

optimum composite field obtained in the previous

section to confirm our above theoretical computation.

In our simulations, we use stuck-at error model at the

outputs of the five blocks forcing one or multiple

nodes to be stuck at logic one (for stuck-at one) or

zero (for stuck-at zero) independent of the error-free

values. We use Fibonacci implementation of the

LFSRs for injecting random multiple errors, where,

the numbers, the locations and the types of the errors

are randomly chosen. In this regard, the maximum

sequence length polynomial for the feedback is

selected. The injected errors are transient, i.e., they

last for one clock cycle. However, the results would be

the same if permanent errors are considered. The

results of the error simulation [] is shown in Table III.

It is noted that in these tables, the optimum

polynomial basis (PB) and normal basis (NB) are

presented. As shown in the table, using five parity bits

of the five blocks, the error coverage for random faults

reaches 97% which is the same as our theoretical

computation in this section. This error coverage will

be increased if the outputs of more than one S-box

(respectively inverse S-box) of the AES

implementation are erroneous. In this case, the errors

detected in any of 16 S-boxes (respectively inverse S-

boxes) contribute to the total error coverage. Thus,

error coverage of very close to 100% is achieved.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1807

 The optimum S-box and inverse S-box using

normal basis have the least hardware complexity with

the fault detection scheme. Moreover, the optimum

structures using composite fields and polynomial basis

have the least post place and route timing overhead

among other schemes. It is noted that using sub-

pipelining for the presented fault detection scheme in

this paper, one can reach much faster hardware

implementations of the composite field fault detection

structures. The AES encryption and decryption

presented here using composite fields and forward mix

columns method has least area compared to its

counterparts.

 TABLE III
ERROR SIMULATION RESULTS

Operation Architecture Error coverage

 S-Box

 (Inverse S-Box)

PB 97.008

NB 97.003

VI. CONCLUSION

In this paper, low power AES encryption and

decryption has been designed. Parity based fault

detection scheme for the low power S-box and the

Inverse S-box are presented in order to find the faults

in the hardware implementation of the S-box and the

Inverse S-box. Instead of using the look-up table

approach for the implementation of the S-box and its

parity prediction, the composite field arithmetic with

logical gates is used. Simulation results show that very

high error coverage for the presented scheme is

obtained when compared to other fault detection

schemes like those based on LUTs and redundant

units. Also low power and low area is achieved when

compared to previous methods. An alternative

lightweight design for both forward and inverse mix

columns operation required also included in the AES

hardware implementation. The comparisons indicate

that the proposed mix-column design have less

complexity than previous relevant work in gate size

and no. of clock cycles.

ACKNOWLEDGMENT

 The authors would like to thank the

management, and Faculty Members of Department of

Electronics and Communication Engineering, Younus

College of Engineering and Technology, Kollam,

Kerala for many insightful discussions and the

facilities extended for completing the task.

REFERENCES

[1] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh, ―A

lightweight High-Performance Fault Detection Scheme for

the Advanced Encryption Standard Using Composite Fields‖
IEEE Trans. On Very Large Scale Integration (VLSI)

Syestems, vol. 19, no. 1, pp. 85–591,January 2011.

[2] National Institute of Standards and Technologies,

Announcing the Advanced Encryption Standard (AES) FIPS

197, Nov. 2001.

[3] R. Karri, K. Wu, P. Mishra, and K. Yongkook, ―Fault-based

side-channel cryptanalysis tolerant Rijndael symmetric block
cipher architecture,‖ in Proc. DFT, Oct. 2001, pp. 418–426..

[4] R. Karri, K. Wu, P. Mishra, and Y. Kim, ―Concurrent error

detection schemes for fault-based side-channel cryptanalysis
of symmetric block

ciphers,‖ IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 21, no. 12, pp. 1509–1517, Dec. 2002.
[5] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri,

―Error analysis and detection procedures for a hardware

implementation of the advanced encryption standard,‖ IEEE
Trans. Computers, vol. 52, no. 4, pp. 492–505, Apr. 2003.

[6] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri,

―A parity code based fault detection for an implementation of
the advanced encryption standard,‖ Proc. of IEEE Int’l S mp.,

Defect and Fault Toler n e in VLSI S stems (DFT ’02), pp.

51-59, Nov. 2002.
[7] M. Mozaffari Kermani, ―Fault Detection Schemes for High

Performance VLSI Implementations of the Advanced

Encryption Standard,‖ M.E.Sc. Thesis, Department of

Electrical and Computer Engineering, The University of

Western Ontario, London,Ontario, Canada, April 2007.

[8] M. Mozaffari-Kermani and A. Reyhani-Masoleh,
―Concurrent Structure-Independent Fault Detection Schemes

for the Advanced Encryption Standard,‖ IEEE Trans.
Computers, vol. 59, no. 5, pp. 608-622, May 2010.

[9] C. H. Yen and B. F.Wu, ―Simple error detection methods for

hardware implementation of advanced encryption standard,‖
IEEE Trans. Computers, vol. 55, no. 6, pp. 720–731, Jun.

2006.

[10] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri,
―A parity code based fault detection for an implementation of

the advanced encryption standard,‖ in Proc. DFT, Nov. 2002,

pp. 51–59.
[11] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri,

―Error analysis and detection procedures for a hardware

implementation of the advanced encryption standard,‖ IEEE
Trans. Computers, vol. 52, no. 4, pp. 492–505, Apr. 2003.

[12] C. Moratelli, F. Ghellar, E. Cota, and M. Lubaszewski, ―A

fault-tolerant DFA-resistant AES core,‖ in Proc. ISCAS,

2008, pp. 244–247.

[13] M. Mozaffari-Kermani and A. Reyhani-Masoleh, ―Parity-

based fault detection architecture of S-box for advanced
encryption standard,‖ in Proc. DFT, Oct. 2006, pp. 572–580.

[14] S.-Y. Wu and H.-T. Yen, ―On the S-box architectures with

concurrent error detection for the advanced encryption
standard,‖ IEICE Trans. Fundam. Electron., Commun.

Comput. Sci., vol. E89-A, no. 10, pp. 2583–2588, Oct. 2006.

[15] R. Karri, K. Wu, P. Mishra, and K. Yongkook, ―Fault-based
Side-Channel Cryptanalysis Tolerant Rijndael Symmetric

Block Cipher Architecture,‖ ro . IEEE Int’l Symp. Defect and

Fault Toler n e in VLSI S stems (DFT ’01), pp. 418-426,
Oct.2001

[16] M. Mozaffari-Kermani and A. Reyhani-Masoleh, ―A

lightweight concurrent fault detection scheme for the AES S-
boxes using normal

basis,‖ in Proc. CHES, Aug. 2008, pp. 113–129.

[17] D. Canright, ―A very compact S-box for AES,‖ in Proc.
CHES, Aug. 2005, pp. 441–455.

[18] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, ―A

compact Rijndael hardware architecture with S-box

optimization,‖ in Proc. ASIACRYPT, Dec. 2001, pp. 239–

254.

[19] J.Wolkerstorfer, E. Oswald, and M. Lamberger, ―An ASIC
implementation of the AES SBoxes,‖ in Proc. CT-RSA, 2002,

pp. 67–78.

[20] V. Rijmen, Dept. ESAT, Katholieke Universiteit Leuven,
Leuven, Belgium, Efficient Implementation of the Rijndael

S-Box, 2000.

[21] X. Zhang and K. K. Parhi, ―High-speed VLSI architectures
for the AES algorithm,‖ IEEE Trans. Very Large Scale

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1808

Integr. (VLSI) Syst., vol. VLSI-12, no. 9, pp. 957–967, Sep.

2004.

[22] X. Zhang and K. K. Parhi, ―On the optimum constructions of

composite field for the AES algorithm,‖ IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 53, no. 10, pp. 1153–1157,
Oct. 2006.

[23] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, ―A

systematic evaluation of compact hardware implementations

for the RijndaelS-box,‖ in Proc. CT-RSA, Feb. 2005, pp.

323–333.

[24] L. Breveglieri, I. Koren, and P. Maistri, ―An operation-

centered approach to fault detection in symmetric

cryptography ciphers,‖ IEEE Trans. Computers, vol. C-56,
no. 5, pp. 534–540, May 2007.

[25] Xilinx [Online]. Available: http://www.xilinx.com/

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1809

