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     Abstract— Cryptography is a method that has 

been developed to ensure the secrecy of messages 

and transfer data securely. Advanced Encryption 

Standard (AES) has been made as the first choice 

for many critical applications because of the high 

level of security and the fast hardware and 

software implementations, many of which are 

power and resource constrained and requires 

reliable and efficient hardware implementations. 

Naturally occurring and maliciously injected faults 

reduce the reliability of Advanced Encryption 

Standard (AES) and may leak confidential 

information. In this paper, a lightweight 

concurrent fault detection scheme for the AES is 

presented. In the proposed approach, the 

composite field S-box and inverse S-box are 

divided into blocks and the predicted parities of 

these blocks are obtained. For high speed 

applications, S-box implementation based on 

lookup tables is avoided. Instead, logic gate 

implementations based on composite fields are 

utilized. A compact architecture for the AES Mix-

columns operation and its inverse is also presented. 

This parity-based fault detection scheme reaches 

the maximum fault coverage when compared to 

other methods of fault detection. The proposed 

fault detection technique for AES encryption and 

decryption has the least area and power 

consumption compared to their counterparts with 

similar fault detection capabilities.  

 

  Index terms — AES, composite fields, parity 

prediction, fault detection, S-box. 

 

I. INTRODUCTION 

    The Advanced Encryption Standard (AES) has been 

accepted by NIST [1] as the symmetric key standard 

as a replacement for the previous standards because of 

its good characteristics in terms of security, cost, and 

efficient implementations for encryption and 

decryption of blocks of data. In encryption, under the 

influence of a key, a 128-bit block is encrypted by 

transforming it in a unique way into a new block of 

the same size. AES is symmetric since the same key is 

used for encryption and the reverse transformation, 

decryption. The only secret necessary to keep for 

security is the key. AES may be configured to use 

different key-lengths, the standard defines 3 lengths 

and the resulting algorithms are named AES-128, 

AES-192 and AES-256 respectively to indicate the 

length in bits of the key. After 10 rounds, the cipher 

text is generated where each encryption round (except 

for the final round) consists of four transformations. 

The four transformations of round of encryption are 

explained below. 

The 128 bits of input (and output) of each 

transformation are considered as a four by four matrix, 

called state, whose entries are eight bits. Except for 

the last round, the first transformation in each round is 

the bytes substitution, called SubBytes, which is 

implemented by 16 S-boxes. Shift-Rows is the second 

transformation in which the four bytes of the last three 

rows of the input state are cyclically shifted. The third 

transformation is Mixcolumns in which the columns 

are considered as polynomials over GF(2
8
) and 

multiplied by a fixed polynomial. The final 

transformation is AddRoundKey in which a roundkey 

is added to the input by 128 two-input XOR gates.  

Among the transformations in the AES, the S-boxes 

in the encryption and the inverse S-boxes in the 

decryption are alone nonlinear. Fault detection in the 

AES hardware implementation is important in order to 

make the standard robust to the internal and malicious 

faults. There exists various fault detection schemes for 

the AES hardware implementation. For fault detection 

of the encryption or decryption in AES redundant 

units may be used [12], [14], where algorithm-level, 

round-level and operation-level concurrent error 

detection for the AES is used. A number of fault 

detection schemes based on the error detecting codes, 

also exists. For high performance AES 

implementations, using ROMs may not be preferable. 

The proposed fault detection approach is applied to 

the composite field AES encryption and decryption. 

There exist a number of fault detection approaches 

which are specific to composite field S-boxes and 

inverse S-boxes. In the scheme of [13], the fault 

detection of the multiplicative inversion of the S-box 

is considered. In [12], predicted parities have been 

used for the multiplicative inversion of a specific S-

box using composite field and polynomial basis. 

Furthermore, the transformation matrices are also 

considered. In [12] and [6], the composite field S-

boxes and inverse S-boxes (using polynomial basis) 

have been divided into sub-blocks and parity 

predictions are used for their fault detection.  
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In the schemes proposed in [15] and [22], all the 

search space of composite fields is considered for 

presenting optimum lightweight fault detection 

schemes. The scheme presented in [8] is for all the 

transformations in the AES encryption/decryption 

independent of the ways these transformations are 

implemented. Moreover, the scheme presented in [7] 

uses double-data-rate computation for counteracting 

the fault attacks. Additionally, a fault detection 

scheme based on the Hamming and Reed-Solomon 

codes for protecting the storage elements within the 

AES is proposed in [11]. It is also noted that, for the 

logic elements, the scheme in [2] and the use of the 

partial duplication of the most vulnerable elements are 

proposed in [11].  

 

 

Fig. 1. The S-box (the inverse S-box) using composite fields and polynomial basis and their fault detection blocks. 
 

 

Fig. 2. The S-box (the inverse S-box) using composite fields and normal basis and their fault detection blocks. 

 
 

       All the S-boxes (respectively the inverse S-boxes) 

occupy much of the total AES encryption 

(respectively decryption) area and their power 

consumption is around three fourths of that of the 

entire AES [16].  LUTs can be utilized for the AES S-

boxes and inverse S-boxes in hardware 

implementation. This work involves low-area 

implementation of the AES encryption and decryption 

using composite fields.  

The contributions of this paper are as follows. 

 The S-box and the inverse S-box has been 

designed to obtain low power and low area.  

 An alternative lightweight design for both 

forward and inverse mixcolumns operation 

required in the AES hardware implementation is 

also presented. 

 A low-cost parity-based fault detection scheme 

for the S-box and the inverse S-box using 

composite fields is presented, for increasing the 

error coverage. The predicted parities of the five 

blocks of the S-box and the inverse S-box are 

obtained (three predicted parities for the 

multiplicative inversion and two for the 

transformation and affine matrices). 

 The actual parity is obtained from the blocks 

using XOR gates. The predicted parity is 

compared with the actual parity. The error gets 

indicated using the error indication flag.  

 The proposed fault detection scheme is simulated 

and maximum error coverage is obtained 

compared to existing methods.  

 

It is shown that the power and area of the proposed 

technique is least compared to the schemes that have 

the same fault detection capabilities. 

II. S-BOX AND INVERSE S-BOX IN COMPOSITE FIELDS 

        In this section, the S-box and the inverse S-box 

operations and their composite-field realizations are 

described. The S-box and the Inverse S-box are 

nonlinear operations which take 8-bit inputs and 

generate 8-bit outputs. In the S-box, the  irreducible 

polynomial of  P(x) = x
8
 + x

4
 + x

3
 + x +1 is used to 

construct the binary field GF(2
8
). Let 𝑋 =   𝑥7

𝑖=0 iα
i  

∈ 𝐺𝐹(2
8
) and 𝑌 =   𝑦7

𝑖=0 iα
i  ∈ 𝐺𝐹(2

8
) be the input and 
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the output of the S-box, respectively, where α is a root 

of  P(x), i.e. P(α)=0. Then, the S-box consists of the 

multiplicative inversion, i.e., X
-1

 ∈ GF(2
8
), followed 

by an affine transformation. Moreover, let Y
-1

 ∈
 GF(2

8
) and X

-1
 ∈ GF(2

8
) be the input and the output 

of the Inverse S-box, respectively. Then, the Inverse 

S-box consists of an inverse affine transformation 

followed by the multiplicative inversion. 

         The composite fields can be represented using 

normal basis or polynomial basis. The S-box and 

inverse S-box for the polynomial and normal bases are 

shown in Figs. 1 and 2, respectively. For the S-box 

using polynomial basis (respectively normal basis), 

the transformation matrix ψ (respectively ψ') 

transforms a field element X in the binary field GF(2
8
) 

to the corresponding representation in the composite 

fields GF(2
8
) / GF(2

4
). It is noted that the result of X= 

ηh u+ ηl is obtained using the irreducible polynomial      

u
2
+ τu + υ for polynomial basis method in Fig.1 and            

X= η'h u
16

+ η'lu is obtained using the irreducible 

polynomial u
2
+ τ'u + υ for normal basis method in 

Fig.2. 

The multiplicative inversion in Fig.1 consists of 

composite field multiplications, additions and an 

inversion in the sub-field GF(2
4
) over GF(2) / x

4 
+ x + 

1.The decomposition can be further applied to 

represent GF(2
4
) as a linear polynomial over GF(2

2
) 

and then GF(2) using the irreducible polynomial 

υ
2
+Ωυ+υ and w

2
+w+1, respectively. As a result, it is 

understood that the implementation of the 

multiplicative inversion can be performed using the 

field represented by GF((2
4
)

2
) or the field represented 

by GF(((2
2
)

2
)

2
). For normal basis, the decomposition 

is performed using the irreducible polynomials of  υ
2 
+ 

Ω'υ + υ'  and w
2 
+ w + 1, respectively. 

For calculating the multiplicative inversion, the 

most efficient choice is to let Ω = τ = 1 (Ω' = τ' = 1) 

in the above irreducible polynomials. Then, the 

multiplicative inversion of the S-box using polynomial 

basis  and normal basis are respectively,  

 ( ηh u +  ηl )
-1  

=  [(( ηh+ ηl ) + ηh
2
 υ )

-1
 ηh] u  

     + (( ηh+ ηl ) + ηh
2
 υ )

-1 
( ηh+ ηl )          

(1)  

( η'h u
16

 +  η'l u )
-1 

=  [(  η'h η'l + (η'h
2 

+ ƞ'l
2
) υ')

-1
) η'h] 

u
16 

   + [( η'h η'l + (η'h
2 

+ ƞ'l
2
) υ')

-1
) η'l] u         

(2) 

It is noted that one can replace ƞ(ƞ') with σ(σ') to 

obtain (1) and (2) for the inverse S-box.  

III.  MIX COLUMN IMPLEMENTATION USING 

POLYNOMIALS 

The forward mix column transformation (in 

encryption process), called mix columns, operates on 

each column individually. Each byte of a column is 

mapped into a new value that is a function of all four 

bytes in that column. The transformation can be 

defined by the following matrix multiplication on 

State. 

 

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

  

𝑠0,0 s0,1 𝑠0,2 𝑠0.3
𝑠1.0 𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,0 𝑠3,1 𝑠3,2 𝑠3,3

 

=  

𝑠′0,0 s′0,1 𝑠′0,2 𝑠′0.3
𝑠′1.0 𝑠′1,1 𝑠′1,2 𝑠′1,3
𝑠′2,0 𝑠′2,1 𝑠′2,2 𝑠′2,3
𝑠′3,0 𝑠′3,1 𝑠′3,2 𝑠′3,3

  

Each element in the product matrix is the sum of 

products of elements of one row and one column. In 

this case, the individual additions and multiplications 

are performed in     GF (2
8
). The mix columns 

transformation on a single column j (0≤ j≤ 3) of State 

can be expressed as 

𝑠′0, 𝑗 =  2 ∗ 𝑠0, 𝑗 ⊕  3 ∗ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ 𝑠3, 𝑗 
𝑠′1, 𝑗 = 𝑠0, 𝑗 ⊕  2 ∗ 𝑠1, 𝑗 ⊕(3*𝑠2, 𝑗) ⊕ 𝑠3, 
𝑠′2, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑠1, 𝑗 ⊕  2 ∗ 𝑠2, 𝑗 ⊕  3 ∗ 𝑠3, 𝑗  

𝑠′3, 𝑗 =  3 ∗ 𝑠0, 𝑗 ⊕ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ (2 ∗ 𝑠3, 𝑗)        

(3) 

As mix columns only requires multiplication by {02} 

and {03}, which, as we have seen, involved simple 

shifts, conditional XORs, and XORs. This can be 

implemented in a more efficient way that eliminates 

the shifts and conditional XORs. Equation Set (3) 

shows the equations for the mix columns 

transformation on a single column. Using the identity 

{03} ・ x = ({02} ・ x) x, we can rewrite equation Set 

(3) as follows: 

𝑇𝑚𝑝 = 𝑠0, 𝑗 ⊕  𝑠1, 𝑗 ⊕  𝑠2, 𝑗 ⊕  𝑠3, 𝑗  
𝑠′0, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [ 2 ∗   𝑠0, 𝑗 ⊕  𝑠1, 𝑗 ] 
𝑠′1, 𝑗 = 𝑠1, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [ 2 ∗   𝑠1, 𝑗 ⊕  𝑠2, 𝑗 ] 
𝑠′2, 𝑗 = 𝑠2, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [ 2 ∗   𝑠2, 𝑗 ⊕  𝑠3, 𝑗 ] 
𝑠′3, 𝑗 = 𝑠3, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [ 2 ∗   𝑠3, 𝑗 ⊕  𝑠0, 𝑗 ]        

(4) 

Multiplication by 02 equivalents to multiply by x [2]. 

The gate count of this implementation (using 

combinational circuits only) is as shown in fig.(4) is as 

follows: 8 XORs to calculate ( s0,j ⊕ s1,j) in equation 

(4.1), so 32 XORs are required for the same 

calculations in equations 4. 

Additional 8 XORs are needed to calculate Tmp. 3 

XORs are required to calculate 2*(s0,j s1,j) in 

equation (4.1) so we need 12 XORs for the same 

calculations in equations 4. Finally we need an 8 

XORs (with 3 inputs) OR 16 XORs (with 2 inputs) to 

calculate (s’0,j) in equation (4.1), so we need 32 

XORs (with 3 inputs) OR 64 XORs (with 2 inputs) to 

calculate equations 4. Finally we can implement 

Forward mix columns transformation using 

32+8+12+64 = 116 XORs with 2 inputs, OR (52 

XORs with 2 inputs + 32 XORs with 3 inputs with 

total 84 XORs).  
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               Fig. 3. Forward mix columns operation 

 

         Additional 8 XORs are needed to calculate Tmp. 

3 XORs are required to calculate 2*(s0,j s1,j) in 

equation (4.1) so we need 12 XORs for the same 

calculations in equations 4. Finally we need an 8 

XORs (with 3 inputs) OR 16 XORs (with 2 inputs) to 

calculate (s’0,j) in equation (4.1), so we need 32 

XORs (with 3 inputs) OR 64 XORs (with 2 inputs) to 

calculate equations 4. Finally we can implement 

Forward mix columns transformation using 

32+8+12+64 = 116 XORs with 2 inputs, OR (52 

XORs with 2 inputs + 32 XORs with 3 inputs with 

total 84 XORs).  

       In fig. 3, the block labeled Mul by (2) means 

multiply its input by 2 using the implementation 

shown in [2]. Each arrow represent 8 bits and each 

block such as s’1,j represent 8 wires holds values of 

s’1,j. The inverse mix column transformation (in 

decryption process), called InvMix Columns, is 

defined by the following matrix multiplication: 

 

0𝐸 0𝐵 0𝐷 09
09 0𝐸 0𝐵 0𝐷
0𝐷 09 0𝐸 0𝐵
0𝐵 0𝐷 09 0𝐸

  

𝑠0,0 s0,1 𝑠0,2 𝑠0.3
𝑠1.0 𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,0 𝑠3,1 𝑠3,2 𝑠3,3

 

=  

𝑠′0,0 s′0,1 𝑠′0,2 𝑠′0.3
𝑠′1.0 𝑠′1,1 𝑠′1,2 𝑠′1,3
𝑠′2,0 𝑠′2,1 𝑠′2,2 𝑠′2,3
𝑠′3,0 𝑠′3,1 𝑠′3,2 𝑠′3,3

  

 

Each element in the product matrix is the sum of 

products of elements of one row and one column. In 

this case, the individual additions and multiplications 

are performed in GF (2
8
). The mix Columns 

transformation on a single column j (0≤ j≤ 3) of State 

can be expressed as:- 

 
𝑠 ′0, 𝑗 =  0𝐸 ∗ 𝑠0, 𝑗 ⊕  0𝐵 ∗ 𝑠1, 𝑗 ⊕  0𝐷 ∗ 𝑠2, 𝑗 ⊕ (09 ∗
𝑠3, 𝑗) 
𝑠 ′1, 𝑗 =  09 ∗ 𝑠0, 𝑗 ⊕  0𝐸 ∗ 𝑠1, 𝑗 ⊕  0𝐵 ∗ 𝑠2, 𝑗 ⊕ (0𝐷 ∗
𝑠3, 𝑗) 
𝑠 ′2, 𝑗 =  0𝐷 ∗ 𝑠0, 𝑗 ⊕  09 ∗ 𝑠1, 𝑗 ⊕  0𝐸 ∗ 𝑠2, 𝑗 ⊕ (0𝐵 ∗
𝑠3, 𝑗) 
𝑠 ′3, 𝑗 =  0𝐵 ∗ 𝑠0, 𝑗 ⊕  0𝐷 ∗ 𝑠1, 𝑗 ⊕  09 ∗ 𝑠2, 𝑗 ⊕ (0𝐸 ∗
𝑠3, 𝑗)  (5) 

 

Equation set (5) is formulated to simplify its hardware 

implementation as follows: 

 
𝑇𝑚𝑝 = 09 ∗ (𝑠0, 𝐽 ⊕  𝑠1, 𝑗 ⊕  𝑠2, 𝑗 ⊕  𝑠3, 𝑗) 

𝑠 ′0, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕   2 ∗   𝑠0, 𝑗 ⊕  𝑠2, 𝑗  ⊕ [2 ∗
 𝑠0, j ⊕ 𝑠1, 𝑗 ]  
𝑠 ′1, 𝑗 = 𝑠1, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕   2 ∗   𝑠1, 𝑗 ⊕  𝑠3, 𝑗  ⊕ [2 ∗
 𝑠1, j ⊕ 𝑠2, 𝑗 ]  

𝑠 ′2, 𝑗 = 𝑠2, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕   2 ∗   𝑠0, 𝑗 ⊕  𝑠2, 𝑗  ⊕ [2 ∗
 𝑠2, j ⊕ 𝑠3, 𝑗 ]  
𝑠 ′3, 𝑗 = 𝑠3, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕   2 ∗   𝑠1, 𝑗 ⊕  𝑠3, 𝑗  ⊕ [2 ∗
 𝑠3, j ⊕ 𝑠0, 𝑗      

 (6) 
 

As shown in fig. (4) the gate count of this 

implementation (using combinational circuits only) is 

as follows: We need 8 XORs to calculate ( s0,j⊕s1,j ) 

in equation (6.1), so 32 XORs are required for 

equations set 6. We need 3 XORs to calculate 2*( 

s0,j⊕s1,j ) in equation (6.1), so 12 XORs are required 

for the same calculations in equations 6. Additional 8 

XORs are required to calculate ( s0,j⊕s2,j ) in 

equation (6.1), so we need 16 XORs for the same 

calculations in equations 6.  

        We need 16 XORs for the same calculations in 

equations 6. We need additional 3 XORs to calculate 

2*(s0,j⊕s2,j) in equation (6.1), so 6 XORs are 

required for the same calculations in equations 6. We 

need additional 3 XORs to calculate 2*(2*(s0,j⊕ 

s2,j)) in equation (6.1) so 6 XORs are required for the 

same calculations in equations 6. We need additional 3 

XORs to calculate 2*(2*(2*( s0,j⊕s2,j ))) in equation 

(6.1), so 6 XORs are required for the same 

calculations in equations 6. Additional 8 XORs are 

required to calculate 09*(s0,j⊕ s2,j), 8 XORs to 

calculate 09*(s1,j⊕ s3,j), and 8 XORs to calculate 

Tmp. Finally we need 24 XORs to calculate s'0,j in 

equation (6.1), and 96 XORs for the same calculations 

in equations 6. Implementing inverse mix columns 

transformation uses 32+12+16+6+6+6+16+8+96 = 

198 XOR. Implementing forward and inverse mix 

columns transformation uses 116 +198 = 314 XOR 

gates. 
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Fig. 4. Inverse mix columns operation 

 

IV. FAULT DETECTION SCHEMES 

      The S-box and the inverse S-box structures are 

divided into five blocks as shown in Fig.1 and 2 to 

obtain the low-overhead parities. In these figures, the 

modulo-2 additions, consisting of 4 XOR gates, are 

shown by two concentric circles with a plus inside. 

Furthermore, the multiplications in GF (2
4
) are shown 

by rectangles with crosses inside. Let bi be the output 

of block i denoted by dots in Fig.1 and 2 for S-box. 

The outputs of the five blocks for S-box using 

polynomial basis in Fig.1 are represented as b1 = ηh+ 

ηl , b2 =  γ, b3 =θ,     b4 = σ and b5 = Y. Similarly, for 

Fig.2 b1 = η'h+ η'l , b2 =  γ',   b3 =θ', b4 = σ' and b5 = Y. 

One can replace ƞ(ƞ') with σ(σ') and X with Y for the 

inverse S-box. In the following, the least overhead 

parity are denoted by Ṕb1 - Ṕb5 in Figs. 1 and 2. 

A. The S-Box and the Inverse S-Box using Polynomial 

Basis 

The implementation complexities of different 

blocks of the S-box and the Inverse S-box and those 

for their predicted parities are dependent on the choice 

of the coefficients            υ ε GF(2
4
) and  υ ε GF(2

2
) in 

the irreducible polynomials           u
2
 + u + υ and v

2
 + 

v + υ used for the composite fields. The goal in the 

following is to find υ ε GF(2
4
) and υ ε GF(2

2
) for the 

composite fields GF(((2
2
)

2
)

2
) and υ ε GF(24) for the 

composite fields GF((2
4
)

2
) so that the area complexity 

of the entire fault detection implementations becomes 

optimum. According to [19], 16 the possible 

combinations for υ ε GF(2
4
) and υ ε GF(2

2
) exist. 

Moreover, for the composite fields GF((2
4
)

2
), the 

possible choices for υ making the polynomial  x
2
 + x 

+ υ irreducible has been exhaustively searched and 

found.  

The blocks are explained below: 

Blocks 1 and 5: Based on the possible values of υ and 

φ in GF(((2
2
)

2
)

2
) ( υ in GF((2

4
)

2
) ), the transformation 

matrices in Fig. 1 in blocks 1 and 5 of the S-box and 

the inverse S-box can be constructed using the 

algorithm presented in [21]. Using an exhaustive 

search, eight base elements in GF(((2
2
)

2
)

2
) 

( or GF((2
4
)

2
) ) to which eight base elements of  

GF(2
8
)  are mapped, are found to construct the 

transformation matrix. 

      In [22], the Hamming weights, i.e., the number of 

nonzero elements, of the transformation matrices for 

the case φ= {10}2 and different values of υ in 

GF(((2
2
)

2
)

2
) are obtained. It is noted that in [21], 

instead of considering the Hamming weights, sub 

expression sharing is suggested for obtaining the low-

complexity implementations for the S-box. Here, we 

have also considered these transformation matrices for 

φ= {11}2 as well as the transformation matrices for the 

inverse S-box for different values of υ and φ and have 

derived their area and delay complexities. Moreover, 

the gate count and the critical path delay for blocks 1 

and 5 and their predicted parities, i.e., Ṕb1 and  Ṕb5, of 

the S-box and the inverse S-box in have been 

obtained. 

Blocks 2 and 4: As shown in Fig. 1, block 2 of the S-

box and the inverse S-box consists of a multiplication, 

an addition, a squaring and a multiplication by 

constant υ in GF((2
4
)

2
) .The following lemma is 

presented for deriving the predicted parity of the 

multiplication in GF((2
4
)

2
), using which the predicted 

parities of blocks 2 and 4 in Fig. 1 are obtained. 

 

    Lemma 1: Let λ = ( λ3,λ2,λ1,λ0 ) and δ = ( δ3,δ2,δ1,δ0) 

be the inputs of the multiplier in GF((2
2
)

2
). The 

predicted parities of the result of the multiplication of  

λ and δ in GF((2
2
)

2
)  for    φ= {10}2 and φ= {11}2 are 

as follows, respectively 

 

        Ṕπ = λ3( δ3+δ2+δ0 )+ λ2( δ3+δ2+δ0 )+ λ1( δ2+δ0 )+  

         λ0( δ3+ δ0 +δ2+δ0) if φ= {10}2       (7)   

       Ṕπ = λ3( δ3 +δ0 )+ λ2( δ2+δ1+δ0 )+ λ1( δ2+δ0 )+  

         λ0( δ3+ δ0 +δ2+δ0) if φ= {11}2       (8) 

 

  The predicted parity of block 2 of the S-box and the 

inverse S-box, i.e., Ṕ in Fig.1, depends on the choice 

of the coefficients υ ε GF ((2
2
)

2
) and υ ε GF(2

2
) []. 

Using Lemma 1, we have derived the complexity of 

the predicted parity of block 2 for these coefficients. 

Furthermore, for block 4 in Fig.1, which consists of 

two multiplications in GF ((2
2
)

2
), one can also use 

Lemma 1 to derive the predicted parity. For block 2 of 

the S-box (respectively the inverse S-box) over 

GF((2
4
)

2
)  in Fig. 1, only the multiplication by 

constant is affected for different values of υs. For this 

block, we have exhaustively searched for and obtained 

the optimum implementation for different values of υs. 

Moreover, block 4 in Fig. 1 is independent of the 

value of υ. Therefore, the complexity of the predicted 

parity for this block is the same for all possible υs. 

Block 3:  We present the following theorem for block 

3 of the 

S-box and the inverse S-box over  GF((2
2
)

2
)  in Fig. 1. 

     

   Theorem 1: Let γ = (γ3,γ2,γ1,γ0) be the input and 

θ=(θ3,θ2,θ1,θ0 )  be the output of an inverter in 

GF((2
2
)

2
). The predicted parities of the result of the 

inversion in GF((2
2
)

2
), i.e., Ṕb3 , for φ= {10}2 and φ= 

{11}2  are as follows, respectively 

 

        Ṕθ= (͞γ2˅γ1)γ0+(γ1+γ0)γ3                       if φ= {10}2        

(9)   

        Ṕθ= (γ2 γ1˅ γ0) + γ3 γ1                           if φ= {10}2      

(10) 
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where, ˅ represents OR operation. It is noted that the 

inversion in GF(2
4
) [] in Fig. 1 is independent of the 

value of  υ. Therefore, the complexity of the predicted 

parity for this block is the same for any possible υs. 

B. The S-Box and the Inverse S-Box Using Normal 

Basis 

The optimum fault detection S-box using normal 

basis in Fig. 2 is derived. Here  an exhaustive search 

for finding the optimum predicted parities based on 

the choice of the coefficients υ' ε GF(2
4
) and  υ' ε 

GF(2
2
)  and for the five blocks of the inverse S-box 

using normal basis. We have exhaustively searched 

for the least overhead transformation matrices and 

their parity predictions combined for the inverse S-box 

and have derived the total complexity for the predicted 

parities of blocks 1 and 5, i.e., Ṕb1 and  Ṕb5, and the 

delays associated with them. These are used to obtain 

the optimum S-box inverse S-box and its parity 

predictions in this section. It is also noted that as 

shown in Fig. 2, blocks 2, 3, and 4 of the S-box and 

the inverse S-box are the same. Therefore, considering 

[15], the predicted parities of these blocks can be 

obtained for the inverse S-box. 

C. Optimum parity prediction techniques 

i. For polynomial basis: 

Considering the discussions presented for different 

combinations of υ and φ for polynomial basis, the 

following optimum parity prediction technique is 

presented.   

The fault detection S-Box using composite fields 

GF(((2
2
)

2
)

2
) has the least area complexity for φ = 

{11}2 and υ= {1010}2. For this optimum S-Box (PB1), 

the following predicted parities for the five blocks in 

Fig.1 are as given below: 

 

      Ṕb1= x0 

      Ṕb2 = ƞ3(ƞ͞7+ƞ4)+ƞ2(ƞ͞7+ Pƞh)+ƞ1( ƞ6+ƞ4)+ƞ0 

P͞ƞh+ƞ6+ƞ7 

      Ṕb3=(γ2γ1˅γ0)+γ1γ3 

      Ṕb4 =ƞ3(θ3+θ0)+ƞ2(PΘ+θ3)+ƞ1(θ2+θ0)+ƞ0PΘ  

      Ṕb5 =σ7+σ5+σ3+σ2+σ0 

 

where, Ṕƞh=ƞ7+ƞ6+ƞ5+ƞ4 and ṔΘ =θ3+θ2+θ1+θ0. 

Additionally, among all the possible values for using 

composite fields      GF ((2
4
)

2
), υ= {1010}2 yields to 

the least complexity architecture for the optimum S-

box (PB2), respectively. Then, for the S-box we have: 

 

       Ṕb1= x7+x0 

      Ṕb2 = ƞ3ƞ4+ƞ2(ƞ5+ƞ4)+ƞ1(P͞ƞh+ƞ7)+ƞ0 P͞ƞh+ Pƞh +ƞ4 

      Ṕb3=γ͞3γ2͞γ0+γ0(͞γ1˅(͞γ͞͞2͞+γ͞3)) 

      Ṕb4 =ƞ3θ0+ƞ2(θ1+θ0)+ƞ1(PΘ+θ3)+ƞ0PΘ  

      Ṕb5 =σ4+σ3+σ2+σ1+σ0 

 

Furthermore, for the inverse S-box the following 

method is used. For the inverse S-box using composite 

field GF(((2
2
)

2
)

2
), choosing φ = {11}2 and υ = {1011}2 

and for the one using composite field  GF((2
4
)

2
) 

having υ = {1001}2 yields to the lowest area 

complexity architecture. It is noted that blocks 3 and 4 

have the same predicted parities as the S-box by 

swapping ƞ and σ. For other blocks of the optimum 

inverse S-box (PB1) we have: 

 

      Ṕb1= ͞x0 

      Ṕb2 = σ3(͞σ7+σ4)+σ2(͞σ7+ Pƞh)+σ1(σ6+σ4)+σ0 

P͞ƞh+σ6+σ7 

      Ṕb3=(γ2γ1˅γ0)+γ1γ3 

      Ṕb4 =ƞ3(θ3+θ0)+ƞ2(PΘ+θ3)+ƞ1(θ2+θ0)+ƞ0PΘ  

      Ṕb5 =ƞ7+ƞ5+ƞ3+ƞ2+ƞ0 

 

Additionally, for the optimum inverse S-box (PB2) we 

have: 

 

       Ṕb1=x͞7͞+x͞0 

      Ṕb2 = σ3σ4+σ2(σ5+σ4)+σ1(P͞ƞh+σ7)+σ0 P͞ƞh+ Pƞh +σ4 

      Ṕb3=γ͞3γ2 ͞γ0+γ0(͞γ1˅(͞γ͞͞2 ͞+γ͞3)) 

      Ṕb4 =ƞ3θ0+ƞ2(θ1+θ0)+ƞ1(PΘ+θ3)+ƞ0PΘ  

      Ṕb5 = ƞ0 

 

ii. For normal  basis: 

       For different combinations of υ' and φ' for normal 

basis, for the S-box and the inverse S-box, φ' = {10}2 

and υ' = {0001}2 have the least area for the operations 

and their fault detection circuits combined. The 

following is the predicted parities for the S-box: 

 

      Ṕb1= x7+x5 

      Ṕb2 = (ƞ'7˅ƞ'3)+(ƞ'6˅ƞ'2)+(ƞ'4˅ ƞ'0)+ƞ'5ƞ'1 

      Ṕb3= ͞γ͞'2͞γ͞'0(γ'3+ γ'1)+ γ'3 γ'1(γ'2+ γ'0) 

      Ṕb4 = (ƞ'7+ƞ'3) θ'3+(ƞ'6+ƞ'2) θ'2+(ƞ'5+ƞ'1) 

θ'1+(ƞ'4+ƞ'0) θ'0  

      Ṕb5 =σ'7+σ'5+σ'4+σ'3+σ'2 

 

Moreover, for the inverse S-box, Ṕb2 - Ṕb4 are the same 

as those for the S-box by swapping ƞ' and σ'. For the 

other blocks, the predicted parities are given as: Ṕb1= 

y7+y6+ y2+y1 and Ṕb5 =ƞ'7+ƞ'5+ƞ'4+ƞ'3+ƞ'2. 

 

     It is noted that the area overhead of the proposed 

scheme for the optimum structures consists of those of 

the optimum parity predictions. In addition, 23 XORs 

for the actual parities (3 XORs for adding the 

coordinates of each of  ƞ'h+ƞ'l, γ' and θ' and 7 XORs 

each for those of ζ' and Y ) are utilized. Moreover, the 

delay overhead of the predicted parities of five blocks 

can overlap the delays for the implementations of five 

blocks in Figs. 1 and 2. The only delay overhead for 

this scheme is the delay of the actual parity of block 5, 

which is 3TX, where TX, is the delay of an XOR gate. 

D. Error indication 

   In order to develop a fault detection structure, the 

predicted parity can be compared with the actual 

parity in order to obtain the error indication flag of the 

corresponding block . By ORing five indication flags 

of five blocks, the error indication of the entire S-box 

is obtained [15].  
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V. SIMULATION RESULTS 

        First the S-box and the inverse S-box using 

composite fields is constructed for low area and low 

power dissipation. Also the time delay is reduced 

compared to other techniques. Here S-Box and inverse 

S-Box are constructed using both polynomial and 

normal basis. Then, single Struck-At-Faults have been 

introduced to the S-box and the Inverse S-box and the 

corresponding output simulation is obtained. After that 

the circuit is tested for multiple Struck-At-Faults. If 

exactly one bit error appears at the output of the S-box 

(respectively inverse S-box), the presented fault 

detection scheme is able to detect it and the error 

coverage is about 100%. This is because in this case, 

the error indication flag of the corresponding block 

alarms the error. However, due to the technological 

constraints, single stuck-at error may not be applicable 

for an attacker to gain more information [23]. Thus, 

multiple bits will actually be flipped and hence 

multiple stuck-at errors are also considered in this 

paper covering both natural faults and fault attacks 

[23].  

     Here a lightweight Mixcolumns is also 

implemented using logic gates. The total number of 

gates required for implementing mix columns 

operation in the proposed design is 116+198 =314 

XOR gates[],[]. Since our design is implemented using 

combinational circuits only, each resultant mix 

column takes a single clock cycle. The proposed mix 

column implementation takes four clock cycles 

compared to 28 clock cycles in [4]. The circuit for 

both AES encryption and decryption is designed. 

Xilinx ISE 8.1 and ModelSim are the simulation tools 

used here. The target device is XC2S600E. Finally, 

the error coverage has been calculated from the 

obtained results. The design is also simulated for 

power, delay and area calculations. From the 

simulation result the following is inferred. 

TABLE I 

COMPARISON OF LUTS AND SLICES 

 
Operation Architecture No. of 4-input 

LUTs 

No. of 

slices 

 

 

S-Box 

LUT 250 158 

PB 87 31 

NB 83 31 

 

Inverse 

S-Box 

LUT 250 158 

PB 84 31 

NB 73 31 

 

A.  Low area and Low power 

From the synthesis report, the number of LUTs and 

slices needed to design the S-box and the Inverse S-

box is calculated. Table I gives the comparison of the 

number of LUTs and slices used for the design of S-

box and Inverse S-box using various techniques. 

     From the Table I the number of LUTs and Slices 

used for  S-box and Inverse S-box using composite 

fields is less when compared to S-box based on LUTs 

.  

    Table II illustrates the comparison results based on 

simulation in terms of power. 

 

TABLE II 

COMPARISON OF POWER 

Operation Architecture Power (mW) 

 

 

S-Box 

LUT 56 

PB 34 

NB 34 

 

Inverse 

S-Box 

LUT 56 

PB 34 

NB 34 

 

B. Fault detection 

The proposed architecture for the S-box and Inverse 

S-box is able to find all the single Struck-At faults. 

Faults are injected randomly on the input and output 

nodes of the logic gates. In the case of multiple 

Struck-At faults in S-box, also the faults have been 

identified. We have performed error simulations for 

the S-boxes and the inverse S-boxes using the 

optimum composite field obtained in the previous 

section to confirm our above theoretical computation. 

In our simulations, we use stuck-at error model at the 

outputs of the five blocks forcing one or multiple 

nodes to be stuck at logic one (for stuck-at one) or 

zero (for stuck-at zero) independent of the error-free 

values. We use Fibonacci implementation of the 

LFSRs for injecting random multiple errors, where, 

the numbers, the locations and the types of the errors 

are randomly chosen. In this regard, the maximum 

sequence length polynomial for the feedback is 

selected. The injected errors are transient, i.e., they 

last for one clock cycle. However, the results would be 

the same if permanent errors are considered. The 

results of the error simulation [] is shown in Table III. 

It is noted that in these tables, the optimum 

polynomial basis (PB) and normal basis (NB) are 

presented. As shown in the table, using five parity bits 

of the five blocks, the error coverage for random faults 

reaches 97% which is the same as our theoretical 

computation in this section. This error coverage will 

be increased if the outputs of more than one S-box 

(respectively inverse S-box) of the AES 

implementation are erroneous. In this case, the errors 

detected in any of 16 S-boxes (respectively inverse S-

boxes) contribute to the total error coverage. Thus, 

error coverage of very close to 100% is achieved. 
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     The optimum S-box and inverse S-box using 

normal basis have the least hardware complexity with 

the fault detection scheme. Moreover, the optimum 

structures using composite fields and polynomial basis 

have the least post place and route timing overhead 

among other schemes. It is noted that using sub-

pipelining for the presented fault detection scheme in 

this paper, one can reach much faster hardware 

implementations of the composite field fault detection 

structures. The AES encryption and decryption 

presented here using composite fields and forward mix 

columns method has least area compared to its 

counterparts. 

 

 TABLE III 
ERROR SIMULATION RESULTS 

Operation Architecture Error coverage  

 

         S-Box 

 (Inverse S-Box) 

PB 97.008 

NB 97.003 

 

VI. CONCLUSION  

In this paper, low power AES encryption and 

decryption has been designed. Parity based fault 

detection scheme for the low power S-box and the 

Inverse S-box are presented in order to find the faults 

in the hardware implementation of the S-box and the 

Inverse S-box. Instead of using the look-up table 

approach for the implementation of the S-box and its 

parity prediction, the composite field arithmetic with 

logical gates is used. Simulation results show that very 

high error coverage for the presented scheme is 

obtained when compared to other fault detection 

schemes like those based on LUTs and redundant 

units. Also low power and low area is achieved when 

compared to previous methods. An alternative 

lightweight design for both forward and inverse mix 

columns operation required also included in the AES 

hardware implementation. The comparisons indicate 

that the proposed mix-column design have less 

complexity than previous relevant work in gate size 

and no. of clock cycles. 
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