International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

Fast Performance of Parallel Adders using VLSI

Md Javeed Ahammed
Dept. of Electronics and Communication Engineering
Nimra College of Engineering and Technology, Student
Vijayawada, India

Abstract— In our daily life we use no of electronic devices such
as calculators, computers etc. Every device needs arithmetic
operations. This may create the complexity in the components.
Now a days we have no of arithmetic operations which may
reduce the complexity like Kogge-Stone, spars Kogge-Stone, and
spanning tree adder and compares them to the simple Ripple
Carry Adder (RCA) and Carry Skip Adder (CSA). This paper
presents an attractive structure of parallel adders which gives the
better delay performance and area utilization. This structure and
fast performance makes them particularly attractive for VLSI
implementations.

Keywords—adder, kogge-stone adder, spars kogge- stone adder,
delay performance.

I INTRODUCTION

Arithmetic operations in every electronic device
are major operation for the performance. Arithmetic
operations such as addition, subtraction,
multiplication, division, etc. addition operation are
the major issue for every performance. So, no of
adders have been implemented by which the
complexity of the systems reduces such as area
utilization, time delay. These are the main problems
in each and every electronic device.

Area and Time consumed by the circuit are the
basic and important requirements. Numbers can be
represented in digital circuits in various ways.
Hence, developing efficient adder architecture is
crucial to improving the efficiency of the design.
Generally ripple carry adder uses for binary
addition. After the design of ripple carry adder
several techniques are used for the computation of
parallel adders. Carry look ahead adders are based
on parallel prefix computation gives the better
performance than ripple carry adder. After many
years research continuous to be focused on
improving the delay performance of the adder. As
such, extensive research continues to be focused on
improving the delay performance of the adder.
Next, Brent and Kung (BK) design parallel prefix-
computation graph In an area-optimal way and the
kogge-stone (KS) architecture is optimized for

1JERTV 315100349

M. Muzammil Parvez
Dept. of Electronics and Communication Engineering
Nimra College of Engineering and Technology, Assistant
Professor
Vijayawada, India

timing. This architecture is proposed based on KS
and BK structures.

In this paper propose a new structure for parallel
adders. Our proposed adder shows marginally faster
performance than the regular kogge-stone adder
with area saving.

Il ADDERS
1. Kogge-Stone Adder

The 8-bit Kogge-Stone adder will be
explained in detail in this subsection. An 8-bit
Kogge-Stone adder is built from eight generate and
propagate (GP) blocks, eight black cells (BC)
blocks, eight gray cell (GC) blocks, and nine sum
blocks as shown in the Figure. The details of the
various blocks used in the structure of Kogge-Stone
adder are discussed below.

GP block

The generate and propagate block takes a
pair of operand bits (a, b) as inputs and computes a
pair of generate and propagate signals (g, p) as
output, as depicted in Figure. The output from this a
block is shown in figure.

2y b

(9, p)

Fig. Generate and propagate block

www.ijert.org 356

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

BC block

The black cell takes two pairs of generate
and propagate signals (gi, pi) and (gj ,pj) as input
and computes a pair of generate and propagate
signals (g,p) as output. It is shown in Figure.

(gi,pi) (gj.pi)

‘

!

(9.p)
Fig. black cell

GC block

The gray cell takes two pairs of generate and
propagate signals (gi,pi) and (gj,pj) as input and
computes a pair of generate signal only. The output
from this block is shown in figure.

(9, pi)

(9i, pi)

g
Fig. gray cell

Kogge-Stone adder design procedure

Step 1: First to generate propagation and generation
signals for each bit.
Step 2: To generate black cell and gray cell

equations.

Step 3: In each step gray cells are generated.

Step 4: By using gray cell equation to generate the
carry bits directly.

Step 5: To combine propagation and carry bits for

each step to generate sum.

1JERTV 315100349

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

The Kogge-Stone adder is a parallel prefix
form Carry-look ahead adder. It generates the carry
signals in (log n) time, and is widely considered the
fastest adder design possible. It is the common
design for high-performance adders. An example of
a 8-bit, 16-bit Kogge-Stone adder structures are
shown in the figures. Each vertical stage produces a
"propagate™ and a "generate™ bits as shown. In each
step radix-2 gray cells are generated. By using the
gray cells directly generate the carry values. The
culminating generate bits (the carries) are produced
in the last stage (vertically), and these bits are XOR
with the initial propagate after the input to produce
the sum bits. E.g., the first (least-significant) sum
bit is calculated by XOR ing the propagate in the
farthest-right black box (a "1") with the carry-in (a
"0"), producing a "1". The second bit is calculated
by XOR ing the propagate in second box from the
right (a "0") with CO (a "0"), producing a "0". It
takes more area to implement than the Brent-Kung
adder, but has a lower fan-out at each stage, which
increases performance. Wiring congestion is often a
problem for Kogge-Stone adders as well.

i b & b6 &S b5 a4 b4 @ b3 2 b g bl 30 b0

VAL L]

G pl 66 pb @5 p5 G4 p4 63 m G2 p2 61 pt 60 p0

an

2. Sparse Kogge-Stone Adder

Enhancements to the original
implementation include increasing the radix and

www.ijert.org 357

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

sparsity of the adder. The radix of the adder refers
to how many results from the previous level of
computation are used to generate the next one. The
original implementation uses radix-2, although it's
possible to create radix-4 and higher. Doing so
increases the power and delay of each stage, but
reduces the number of required stages. While a
complete adder would produce the output of all bits,
this just outputs a series of carry bits at fixed
intervals. These can be used as the carry-in bits for
a series of smaller adders. This is useful in
particular for FPGAs, where small ripple carry
adders can be much faster than general-purpose
logic thanks to fast connections between
neighboring slices. This allows a large adder to be
composed of many smaller adders by generating the
intermediate carries quickly. The sparsity of the
adder refers to how many carry bits are generated
by the carry-tree. Generating every carry bit is
called sparsity-1, where as generating every other is
sparsity-2 and every fourth is sparsity-4. The
resulting carries are then used as the carry-in inputs
for much shorter ripple carry adders or some other
adder design, which generates the final sum bits.
Increasing sparsity reduces the total needed
computation and can reduce the amount of routing
congestion. Above is an example of a Kogge-Stone
adder with sparsity-4 are shown in figure. It uses the
combination of kogge-stone and ripple carry adder
structures’.

The Sparse Kogge-Stone adder consists of
several smaller ripple carry adders (RCASs) on its
lower half and a carry tree on its upper half. Thus,
the Sparse Kogge-Stone adder terminates with
RCAs. The number of carries generated is less in a
Sparse Kogge-Stone adder compared to the regular
Kogge-Stone adder. The functionality of the GP
block, black cell and the gray cell remains exactly
the same as in the regular Kogge-Stone adder. The
schematic for a 16-bit Sparse Kogge-Stone adder is
shown in Figure. Sparse and regular Kogge-Stone
adders have essentially the same delay when
implemented on an FPGA although the former
utilizes much less resources.

1JERTV 315100349

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

I iGansrge and propmte senels

Fig. Sparse Kogge-Stone adder

Proposed Adder

The proposed adder is based on the
combination of Brent-Kung adder and Kogge-
Stone adder. The Kogge-Stone adder has maximum
area and Brent-Kung adder has maximum delay.
These two drawbacks are occurred in previously
used adders. Proposed adder has to remove these
drawbacks and it gives better area and delay results
compared to kogge-stone adder. Flowchart for
proposed adder is shown in figure.

www.ijert.org 358

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

®

The block diagram of proposed adder is shown in
figure. In this diagram First taken the given inputs
up to (ao, al....... ale) and (bo, b1........ blﬁ)- By
using these inputs to calculate the generation and
propagation signals for (90,po),
(91,P1) -+ veeenen (g16,p16). After the calculation of
generation and propagation signals using Kogge-
Stone ((KS) and Brent-Kung (BK) structures to
perform Black cell and gray cell equations. In
Kogge-stone structure each step 2% gray cells are

generated. Brent-Kung structure uses half of the
gray cells are generated. To perform the generation
of black cell and gray cell values to generate the
carry values by using Kogge-Stone and Brent-Kung
structures. After the calculation of all carry values
these are combine with propagation signals with
XOR operation to get sum(S)
bitS(So,Sl,Sz,Sg Sle)

RESULTS
The synthesis results for proposed adder.
Proposed adder uses no of slices, no of LUTS and
no of bounded I0Bs. The results for ripple carry
adder, carry-look ahead adder, carry-tree adders and
our proposed adder.

1JERTV 315100349

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

Synthesis report for proposed adder

Selected Device: xa3s500eftg256-4

Number of Slices: 145 out of 4656 3%
Number of 4 input LUTs: 252 out of 9312 2%
Number of 10s: 443

Number of bonded 10Bs: 443 out of 190 233%
Maximum combinational path delay: 12.178ns

Adder Delay(ns) No of
name Area(slices logic
) levels
Ripple carry adder 15 30.586 16
16- bit
Carry-look ahead 32 29..613 16
adder 16-bit
Sparse Kogge-stone 45 14.85 10
adder 16-bit
Spanning tree adder 42 13.55 10
16-bit
Kogge-Stone adder 80 10.72 8
16-bit
Proposed adder 16-bit 60 9.45 7
Ripple carry adder 35 42.69 33
32-bit
Carry-look ahead 70 41.52 33
adder 32-bit
Sparse Kogge-stone 105 14.35 11
adder 32-bit
Spanning tree adder 100 12.65 11
32-bit
Kogge-Stone adder 190 11.45 8
32-bit
Proposed adder 32- 142 10.85 7
bit

These are Synthesis results for proposed adder. This
report tells about selected device, Number of slices,
Number of Look up tables (LUTs) and Delay. Area
is represented in Number of slices and Delay is
measured in nanoseconds (ns).

www.ijert.org 359

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

CONCLUSION
In this paper we have seen that the area

utilization and delay performance of the field
programming gate array (FPGA) kit has been
reduced when compared to the proposed adders.

10.

1JERTV 315100349

REFERENCES
N.H.E.Weste and D.Harris;, CMOS VLSI Design,
4thedition, Pearson—-Addison-Wesley, 2011.
K. Vitoroulis and A. J. Al-Khalili, “Performance of
Parallel Prefix Adders Implemented with Technology,”
IEEE Northeast Workshop on Circuits and Systems, pp.
498-501, Aug. 2007.
P. Ndai, S. Lu, D. Somesekhar, and K. Roy, “Fine-
Grained Redundancy in Adders,” Int. Symp. On Quality
Electronic Design, pp. 317-321, March 2007.
M.Beévai and P.Stukjunger, “Fixed-Point Arithmetic in
FPGA,” Acta Polytechnic, vol. 45, no. 2, pp. 67-72, 2005.
D. Gizopoulos, M. Psarakis, A. Paschalis, and Y.Zorian,
“Easily Testable Cellular Carry Look ahead Adders,”
Journal of Electronic Testing: Theory and Applications
19, 285-298, 2003.
D. Harris, “A Taxonomy of Parallel Prefix Networks,” in
Proc. 37th Asilomar Conf. Signals Systems and
Computers, pp. 2213-2217, 2003.
S. Xing and W. W. H. Yu, “FPGA Adders: Performance
Evaluation and Optimal Design,” IEEE Design & Test of
Computers, vol. 15, no. 1, pp. 24-29,Jan. 1998.
T. Lynch and E. E. Swartzlander, “A Spanning Tree
Carry Look ahead Adder,” IEEE Trans. ~on
Computers,vol. 41, no. 8, pp. 931-939, Aug. 1992.
R. P. Brent and H. T. Kung, “A regular layout for parallel
adders,” IEEE Trans. Comput., vol. C-31, pp.260- 264,
1982.
P. M. Kogge and H. S. Stone, “A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations,” IEEE Trans. on Computers, VVol. C-22, No 8,
August 1973.

Www.ijert.org

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

360

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

