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Abstract— In our daily life we use no of electronic devices such 

as calculators, computers etc. Every device needs arithmetic 

operations. This may create the complexity in the components. 

Now a days we have no of arithmetic operations which may 

reduce the complexity like Kogge-Stone, spars Kogge-Stone, and 

spanning tree adder and compares them to the simple Ripple 

Carry Adder (RCA) and Carry Skip Adder (CSA). This paper 

presents an attractive structure of parallel adders which gives the 

better delay performance and area utilization. This structure and 

fast performance makes them particularly attractive for VLSI 

implementations.  

Keywords—adder, kogge-stone adder, spars kogge- stone adder, 

delay performance. 

I    INTRODUCTION 

Arithmetic operations in every electronic device 

are major operation for the performance. Arithmetic 

operations such as addition, subtraction, 

multiplication, division, etc. addition operation are 

the major issue for every performance. So, no of 

adders have been implemented by which the 

complexity of the systems reduces such as area 

utilization, time delay. These are the main problems 

in each and every electronic device. 

  Area and Time consumed by the circuit are the 

basic and important requirements. Numbers can be 

represented in digital circuits in various ways. 

Hence, developing efficient adder architecture is 

crucial to improving the efficiency of the design. 

Generally ripple carry adder uses for binary 

addition. After the design of ripple carry adder 

several techniques are used for the computation of 

parallel adders. Carry look ahead adders are based 

on parallel prefix computation gives the better 

performance than ripple carry adder. After many 

years research continuous to be focused on 

improving the delay performance of the adder. As 

such, extensive research continues to be focused on 

improving the delay performance of the adder. 

Next, Brent and Kung (BK) design parallel prefix-

computation graph In an area-optimal way and the 

kogge-stone (KS) architecture is optimized for 

timing. This architecture is proposed based on KS 

and BK structures. 

In this paper propose a new structure for parallel 

adders. Our proposed adder shows marginally faster 

performance than the regular kogge-stone adder 

with area saving.  

 

II   ADDERS 

1.  Kogge-Stone Adder 

 The 8-bit Kogge-Stone adder will be 

explained in detail in this subsection. An 8-bit 

Kogge-Stone adder is built from eight generate and 

propagate (GP) blocks, eight black cells (BC) 

blocks, eight gray cell (GC) blocks, and nine sum 

blocks as shown in the Figure. The details of the 

various blocks used in the structure of Kogge-Stone 

adder are discussed below. 

 

GP block 

  The generate and propagate block takes a 

pair of operand bits (a, b) as inputs and computes a 

pair of generate and propagate signals (g, p) as 

output, as depicted in Figure. The output from this a 

block is shown in figure.   

                         a             b 

                                                      

 

                                (g, p) 

Fig. Generate and propagate block 

 

 

                              

GP block 
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BC block 

  The black cell takes two pairs of generate 

and propagate signals (gi, pi) and (gj ,pj)  as input 

and computes a pair of generate and propagate 

signals (g,p) as output. It is shown in Figure.  

                                   ( gi, pi)       ( gj,pj) 

 

 

   

                                                                   

                                                                     

 

             (g,p) 

    Fig. black cell 

GC block   

The gray cell takes two pairs of generate and 

propagate signals (gi,pi) and (gj,pj) as input and 

computes a pair of generate signal only. The output 

from this block is shown in figure. 

 

                          (gi, pi)             (gj,  pj) 

 

                                                       g 

                                       

 

                                        g 

Fig. gray cell 

 

Kogge-Stone adder design procedure 
 
Step 1: First to generate propagation and generation 

signals for each bit. 

Step 2: To generate black cell and gray cell 

equations. 

Step 3: In each step gray cells are generated. 

Step 4: By using gray cell equation to generate the 

carry bits directly. 

Step 5: To combine propagation and carry bits for 

each step to generate sum. 

The Kogge-Stone adder is a parallel prefix 

form Carry-look ahead adder. It generates the carry 

signals in (log n) time, and is widely considered the 

fastest adder design possible. It is the common 

design for high-performance adders. An example of 

a 8-bit, 16-bit Kogge-Stone adder structures are 

shown in the figures. Each vertical stage produces a 

"propagate" and a "generate" bits as shown. In each 

step radix-2 gray cells are generated. By using the 

gray cells directly generate the carry values. The 

culminating generate bits (the carries) are produced 

in the last stage (vertically), and these bits are XOR 

with the initial propagate after the input to produce 

the sum bits. E.g., the first (least-significant) sum 

bit is calculated by XOR ing the propagate in the 

farthest-right black box (a "1") with the carry-in (a 

"0"), producing a "1". The second bit is calculated 

by XOR ing the propagate in second box from the 

right (a "0") with C0 (a "0"), producing a "0". It 

takes more area to implement than the Brent-Kung 

adder, but has a lower fan-out at each stage, which 

increases performance. Wiring congestion is often a 

problem for Kogge-Stone adders as well. 

 
 

2.  Sparse Kogge-Stone Adder 

 

Enhancements to the original 

implementation include increasing the radix and 

                                         

GRAY CELL 

 

BLACK CELL 
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sparsity of the adder. The radix of the adder refers 

to how many results from the previous level of 

computation are used to generate the next one. The 

original implementation uses radix-2, although it's 

possible to create radix-4 and higher. Doing so 

increases the power and delay of each stage, but 

reduces the number of required stages. While a 

complete adder would produce the output of all bits, 

this just outputs a series of carry bits at fixed 

intervals. These can be used as the carry-in bits for 

a series of smaller adders. This is useful in 

particular for FPGAs, where small ripple carry 

adders can be much faster than general-purpose 

logic thanks to fast connections between 

neighboring slices. This allows a large adder to be 

composed of many smaller adders by generating the 

intermediate carries quickly. The sparsity of the 

adder refers to how many carry bits are generated 

by the carry-tree. Generating every carry bit is 

called sparsity-1, where as generating every other is 

sparsity-2 and every fourth is sparsity-4. The 

resulting carries are then used as the carry-in inputs 

for much shorter ripple carry adders or some other 

adder design, which generates the final sum bits. 

Increasing sparsity reduces the total needed 

computation and can reduce the amount of routing 

congestion. Above is an example of a Kogge-Stone 

adder with sparsity-4 are shown in figure. It uses the 

combination of kogge-stone and ripple carry adder 

structures’. 

The Sparse Kogge-Stone adder consists of 

several smaller ripple carry adders (RCAs) on its 

lower half and a carry tree on its upper half. Thus, 

the Sparse Kogge-Stone adder terminates with 

RCAs. The number of carries generated is less in a 

Sparse Kogge-Stone adder compared to the regular 

Kogge-Stone adder. The functionality of the GP 

block, black cell and the gray cell remains exactly 

the same as in the regular Kogge-Stone adder. The 

schematic for a 16-bit Sparse Kogge-Stone adder is 

shown in Figure. Sparse and regular Kogge-Stone 

adders have essentially the same delay when 

implemented on an FPGA although the former 

utilizes much less resources. 

 

 
 

Fig. Sparse Kogge-Stone adder 

 

Proposed Adder 
 
 The proposed adder is based on the 

combination of  Brent-Kung adder and Kogge-

Stone adder. The Kogge-Stone adder has maximum 

area and Brent-Kung adder has maximum delay. 

These two drawbacks are occurred in previously 

used adders. Proposed adder has to remove these 

drawbacks and it gives better area and delay results 

compared to kogge-stone adder. Flowchart for 

proposed adder is shown in figure. 
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The block diagram of proposed adder is shown in 

figure. In this diagram First taken the given inputs 

up to (a0, a1…….a16) and (b0, b1……..b16). By 

using these inputs to calculate the generation and 

propagation signals for (g0,p0), 

(g1,p1)………..(g16,p16). After the calculation of 

generation and propagation signals using Kogge-

Stone ((KS) and Brent-Kung (BK) structures to 

perform Black cell and gray cell equations. In 

Kogge-stone structure each step  gray cells are 

generated. Brent-Kung structure uses half of the 

gray cells are generated. To perform the generation 

of black cell and gray cell values to generate the 

carry values by using Kogge-Stone and Brent-Kung 

structures. After the calculation of all carry values 

these  are combine with propagation signals with 

XOR operation to get sum(S) 

bits(S0,S1,S2,S3……S16) 

 
RESULTS 

 The synthesis results for proposed adder. 

Proposed adder uses no of slices, no of LUTS and 

no of bounded IOBs. The results for ripple carry 

adder, carry-look ahead adder, carry-tree adders and 

our proposed adder. 

 

 

 

 

Synthesis report for proposed adder 

Selected Device:   xa3s500eftg256-4  

 Number of Slices:                145 out of   4656     3%   

 Number of 4 input LUTs:    252 out of   9312     2%   

 Number of IOs:                  443 

 Number of bonded IOBs: 443 out of    190   233%  

Maximum combinational path delay: 12.178ns 

  

These are Synthesis results for proposed adder. This 

report tells about selected device, Number of slices, 

Number of Look up tables (LUTs) and Delay. Area 

is represented in Number of slices and Delay is 

measured in nanoseconds (ns). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Adder 

name 

     

Area(slices

) 

         Delay(ns) No of 

logic 

levels 

Ripple carry adder 

16- bit 

15 30.586 16 

Carry-look ahead 

adder 16-bit 

32 29..613 16 

Sparse Kogge-stone 

adder 16-bit 

45 14.85 10 

Spanning tree adder 

16-bit 

42 13.55 10 

 Kogge-Stone adder 

16-bit 

80 10.72 8 

Proposed adder 16-bit 60 9.45 7 
 

Ripple carry adder 

32-bit 

35 42.69 33 

Carry-look ahead 

adder  32-bit 

70 41.52 33 

Sparse Kogge-stone 

adder 32-bit 

105 14.35 11 

Spanning tree adder 
32-bit 

100 12.65 11 

 Kogge-Stone adder 

32-bit 

190 11.45 8 

 Proposed adder 32-

bit 

142 10.85 7 
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CONCLUSION 

 In this paper we have seen that the area 

utilization and delay performance of the field 

programming gate array (FPGA) kit has been 

reduced when compared to the proposed adders.  
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