
Fast Performance of Parallel Adders using VLSI

Md Javeed Ahammed
Dept. of Electronics and Communication Engineering

Nimra College of Engineering and Technology, Student

Vijayawada, India

M. Muzammil Parvez
Dept. of Electronics and Communication Engineering

Nimra College of Engineering and Technology, Assistant

Professor

Vijayawada, India

Abstract— In our daily life we use no of electronic devices such

as calculators, computers etc. Every device needs arithmetic

operations. This may create the complexity in the components.

Now a days we have no of arithmetic operations which may

reduce the complexity like Kogge-Stone, spars Kogge-Stone, and

spanning tree adder and compares them to the simple Ripple

Carry Adder (RCA) and Carry Skip Adder (CSA). This paper

presents an attractive structure of parallel adders which gives the

better delay performance and area utilization. This structure and

fast performance makes them particularly attractive for VLSI

implementations.

Keywords—adder, kogge-stone adder, spars kogge- stone adder,

delay performance.

I INTRODUCTION

Arithmetic operations in every electronic device

are major operation for the performance. Arithmetic

operations such as addition, subtraction,

multiplication, division, etc. addition operation are

the major issue for every performance. So, no of

adders have been implemented by which the

complexity of the systems reduces such as area

utilization, time delay. These are the main problems

in each and every electronic device.

 Area and Time consumed by the circuit are the

basic and important requirements. Numbers can be

represented in digital circuits in various ways.

Hence, developing efficient adder architecture is

crucial to improving the efficiency of the design.

Generally ripple carry adder uses for binary

addition. After the design of ripple carry adder

several techniques are used for the computation of

parallel adders. Carry look ahead adders are based

on parallel prefix computation gives the better

performance than ripple carry adder. After many

years research continuous to be focused on

improving the delay performance of the adder. As

such, extensive research continues to be focused on

improving the delay performance of the adder.

Next, Brent and Kung (BK) design parallel prefix-

computation graph In an area-optimal way and the

kogge-stone (KS) architecture is optimized for

timing. This architecture is proposed based on KS

and BK structures.

In this paper propose a new structure for parallel

adders. Our proposed adder shows marginally faster

performance than the regular kogge-stone adder

with area saving.

II ADDERS

1. Kogge-Stone Adder

 The 8-bit Kogge-Stone adder will be

explained in detail in this subsection. An 8-bit

Kogge-Stone adder is built from eight generate and

propagate (GP) blocks, eight black cells (BC)

blocks, eight gray cell (GC) blocks, and nine sum

blocks as shown in the Figure. The details of the

various blocks used in the structure of Kogge-Stone

adder are discussed below.

GP block

 The generate and propagate block takes a

pair of operand bits (a, b) as inputs and computes a

pair of generate and propagate signals (g, p) as

output, as depicted in Figure. The output from this a

block is shown in figure.

 a b

 (g, p)

Fig. Generate and propagate block

GP block

356

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100349

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

BC block

 The black cell takes two pairs of generate

and propagate signals (gi, pi) and (gj ,pj) as input

and computes a pair of generate and propagate

signals (g,p) as output. It is shown in Figure.

 (gi, pi) (gj,pj)

 (g,p)

 Fig. black cell

GC block

The gray cell takes two pairs of generate and

propagate signals (gi,pi) and (gj,pj) as input and

computes a pair of generate signal only. The output

from this block is shown in figure.

 (gi, pi) (gj, pj)

 g

 g

Fig. gray cell

Kogge-Stone adder design procedure

Step 1: First to generate propagation and generation

signals for each bit.

Step 2: To generate black cell and gray cell

equations.

Step 3: In each step gray cells are generated.

Step 4: By using gray cell equation to generate the

carry bits directly.

Step 5: To combine propagation and carry bits for

each step to generate sum.

The Kogge-Stone adder is a parallel prefix

form Carry-look ahead adder. It generates the carry

signals in (log n) time, and is widely considered the

fastest adder design possible. It is the common

design for high-performance adders. An example of

a 8-bit, 16-bit Kogge-Stone adder structures are

shown in the figures. Each vertical stage produces a

"propagate" and a "generate" bits as shown. In each

step radix-2 gray cells are generated. By using the

gray cells directly generate the carry values. The

culminating generate bits (the carries) are produced

in the last stage (vertically), and these bits are XOR

with the initial propagate after the input to produce

the sum bits. E.g., the first (least-significant) sum

bit is calculated by XOR ing the propagate in the

farthest-right black box (a "1") with the carry-in (a

"0"), producing a "1". The second bit is calculated

by XOR ing the propagate in second box from the

right (a "0") with C0 (a "0"), producing a "0". It

takes more area to implement than the Brent-Kung

adder, but has a lower fan-out at each stage, which

increases performance. Wiring congestion is often a

problem for Kogge-Stone adders as well.

2. Sparse Kogge-Stone Adder

Enhancements to the original

implementation include increasing the radix and

GRAY CELL

BLACK CELL

357

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100349

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

sparsity of the adder. The radix of the adder refers

to how many results from the previous level of

computation are used to generate the next one. The

original implementation uses radix-2, although it's

possible to create radix-4 and higher. Doing so

increases the power and delay of each stage, but

reduces the number of required stages. While a

complete adder would produce the output of all bits,

this just outputs a series of carry bits at fixed

intervals. These can be used as the carry-in bits for

a series of smaller adders. This is useful in

particular for FPGAs, where small ripple carry

adders can be much faster than general-purpose

logic thanks to fast connections between

neighboring slices. This allows a large adder to be

composed of many smaller adders by generating the

intermediate carries quickly. The sparsity of the

adder refers to how many carry bits are generated

by the carry-tree. Generating every carry bit is

called sparsity-1, where as generating every other is

sparsity-2 and every fourth is sparsity-4. The

resulting carries are then used as the carry-in inputs

for much shorter ripple carry adders or some other

adder design, which generates the final sum bits.

Increasing sparsity reduces the total needed

computation and can reduce the amount of routing

congestion. Above is an example of a Kogge-Stone

adder with sparsity-4 are shown in figure. It uses the

combination of kogge-stone and ripple carry adder

structures’.

The Sparse Kogge-Stone adder consists of

several smaller ripple carry adders (RCAs) on its

lower half and a carry tree on its upper half. Thus,

the Sparse Kogge-Stone adder terminates with

RCAs. The number of carries generated is less in a

Sparse Kogge-Stone adder compared to the regular

Kogge-Stone adder. The functionality of the GP

block, black cell and the gray cell remains exactly

the same as in the regular Kogge-Stone adder. The

schematic for a 16-bit Sparse Kogge-Stone adder is

shown in Figure. Sparse and regular Kogge-Stone

adders have essentially the same delay when

implemented on an FPGA although the former

utilizes much less resources.

Fig. Sparse Kogge-Stone adder

Proposed Adder

 The proposed adder is based on the

combination of Brent-Kung adder and Kogge-

Stone adder. The Kogge-Stone adder has maximum

area and Brent-Kung adder has maximum delay.

These two drawbacks are occurred in previously

used adders. Proposed adder has to remove these

drawbacks and it gives better area and delay results

compared to kogge-stone adder. Flowchart for

proposed adder is shown in figure.

358

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100349

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

The block diagram of proposed adder is shown in

figure. In this diagram First taken the given inputs

up to (a0, a1…….a16) and (b0, b1……..b16). By

using these inputs to calculate the generation and

propagation signals for (g0,p0),

(g1,p1)………..(g16,p16). After the calculation of

generation and propagation signals using Kogge-

Stone ((KS) and Brent-Kung (BK) structures to

perform Black cell and gray cell equations. In

Kogge-stone structure each step gray cells are

generated. Brent-Kung structure uses half of the

gray cells are generated. To perform the generation

of black cell and gray cell values to generate the

carry values by using Kogge-Stone and Brent-Kung

structures. After the calculation of all carry values

these are combine with propagation signals with

XOR operation to get sum(S)

bits(S0,S1,S2,S3……S16)

RESULTS

 The synthesis results for proposed adder.

Proposed adder uses no of slices, no of LUTS and

no of bounded IOBs. The results for ripple carry

adder, carry-look ahead adder, carry-tree adders and

our proposed adder.

Synthesis report for proposed adder

Selected Device: xa3s500eftg256-4

 Number of Slices: 145 out of 4656 3%

 Number of 4 input LUTs: 252 out of 9312 2%

 Number of IOs: 443

 Number of bonded IOBs: 443 out of 190 233%

Maximum combinational path delay: 12.178ns

These are Synthesis results for proposed adder. This

report tells about selected device, Number of slices,

Number of Look up tables (LUTs) and Delay. Area

is represented in Number of slices and Delay is

measured in nanoseconds (ns).

 Adder

name

Area(slices

)

 Delay(ns) No of

logic

levels

Ripple carry adder

16- bit

15 30.586 16

Carry-look ahead

adder 16-bit

32 29..613 16

Sparse Kogge-stone

adder 16-bit

45 14.85 10

Spanning tree adder

16-bit

42 13.55 10

 Kogge-Stone adder

16-bit

80 10.72 8

Proposed adder 16-bit 60 9.45 7

Ripple carry adder

32-bit

35 42.69 33

Carry-look ahead

adder 32-bit

70 41.52 33

Sparse Kogge-stone

adder 32-bit

105 14.35 11

Spanning tree adder
32-bit

100 12.65 11

 Kogge-Stone adder

32-bit

190 11.45 8

 Proposed adder 32-

bit

142 10.85 7

359

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100349

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

CONCLUSION

 In this paper we have seen that the area

utilization and delay performance of the field

programming gate array (FPGA) kit has been

reduced when compared to the proposed adders.

REFERENCES
1. N.H.E.Weste and D.Harris, CMOS VLSI Design,

4thedition, Pearson–Addison-Wesley, 2011.

2. K. Vitoroulis and A. J. Al-Khalili, “Performance of

Parallel Prefix Adders Implemented with Technology,”

IEEE Northeast Workshop on Circuits and Systems, pp.

498-501, Aug. 2007.

3. P. Ndai, S. Lu, D. Somesekhar, and K. Roy, “Fine-

Grained Redundancy in Adders,” Int. Symp. On Quality

Electronic Design, pp. 317-321, March 2007.

4. M.Bečvář and P.Štukjunger, “Fixed-Point Arithmetic in

FPGA,” Acta Polytechnic, vol. 45, no. 2, pp. 67-72, 2005.

5. D. Gizopoulos, M. Psarakis, A. Paschalis, and Y.Zorian,

“Easily Testable Cellular Carry Look ahead Adders,”

Journal of Electronic Testing: Theory and Applications

19, 285-298, 2003.

6. D. Harris, “A Taxonomy of Parallel Prefix Networks,” in

Proc. 37th Asilomar Conf. Signals Systems and

Computers, pp. 2213–2217, 2003.

7. S. Xing and W. W. H. Yu, “FPGA Adders: Performance

Evaluation and Optimal Design,” IEEE Design & Test of

Computers, vol. 15, no. 1, pp. 24-29,Jan. 1998.

8. T. Lynch and E. E. Swartzlander, “A Spanning Tree

Carry Look ahead Adder,” IEEE Trans. on

Computers,vol. 41, no. 8, pp. 931-939, Aug. 1992.

9. R. P. Brent and H. T. Kung, “A regular layout for parallel

adders,” IEEE Trans. Comput., vol. C-31, pp.260- 264,

1982.

10. P. M. Kogge and H. S. Stone, “A Parallel Algorithm for

the Efficient Solution of a General Class of Recurrence

Equations,” IEEE Trans. on Computers, Vol. C-22, No 8,

August 1973.

360

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100349

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

