Extraction of High Resolution Remote Sensing Image Features Using
Triangulation Method

Parul Malhotra¹
M.Tech Research Scholar, ECE Deptt.
Ambala College of Engg. & Applied Research
(Kurukshetra University), Ambala

Saurabh Sharma²
M.Tech Research Scholar, CSE Deptt.
MMEC (Maharishi Markandeshwar
University Mullana), Ambala

Abstract

The project entitled “Extraction of High Resolution Remote Sensing Image Features Using
Triangulation Method” plays an important role in extraction and updating of linear objects
in cartographic processes. For extraction vectorization is performed using Constrained
Delaunay Triangulation and triangles which are obtained from triangulation method are grouped
into polygons that make up the vector image. The skeleton of these polygons represents the
extracted linear structures which are obtained by using skeletonization. All works
for this paper includes the following steps: Reading of image, Obtaining Correlation
image, Obtaining vector image using Constrained Delaunay Triangulation (CDT) method,
Canny edge detection, skeletonization to obtain morphological skeleton. The performance
of the proposed algorithm is compared with the existing algorithm. The proposed algorithm
is fast, automatic and has better results when tested.

Keywords- Vectorization, Skeletonization, Remote Sensing Image, CDT.

1. Introduction

Road extraction is a fundamental step for the efficient uses of high resolution remote sensing
images, such as updating GIS databases, registering image as references, mapping and so on.
Besides, road extraction can also be helpful for the detection and identification of buildings,
bridges, rivers and other ground features. It is rather hard to extract the different objects one
by one and just do cost much time, and therefore, the extracting work can barely be
set up in application. However, we all know that urban road is the main clue to analyze
and interpret the city. So we can extract road information from remote sensing image first,
and then analyze each district segmented by roads. By doing this, the analyzing work
will be easier than before. There have been many researches on the approaches of road extraction. These
can be divided into the semi-automatic type and totally automatic type. Semi-automatic extraction for road
feature takes advantage of man-machine interactive form to recognize the objects.

Traditional approaches on road extraction tend to extract the linear road. The accuracy is relatively low
in extracting the urban road. There also exist omissions in some images because of the tiny, closed
and preserved features. Sometimes the road in the image is close to the background, which could go
against extraction. And a suitable algorithm for urban highways in modern days hasn’t been applied in
traditional approaches. Aiming to the shortfalls above, this paper proposes a new approach. That is road
extraction based on Triangulation method. Not only be fit for the road extraction of general shapes, but also
having certain superiority in the detection work of urban highways. The proposed method reduces
various kinds of distortions and improves the Precision and Recall, compared with previous method.

The remainder of this paper is organized as follows. Section II briefly describes the general
approach of the method. Section III describes the Proposed Algorithm. Section IV describes the
experimental results which includes correlation, canny edge detection process, Triangulation and
skeletonization which is the final step of the algorithm.

2. General Approach

Figure1 shows the flow diagram of our approach. First of all, reading of original image is done. After
reading of image, preprocessing of image is done which includes correlation. Correlation refers to any of
a broad class of statistical relationships involving dependence and dependence refers to any statistical
relationship between two random variables or two sets of data.

![Flow Diagram of Our Method](image)

Figure 1. The Flow Diagram of Our Method

Canny Edge detection is performed to find the edges of the image. After detection of edges, vectorization is performed using Constrained Delaunay Triangulation and triangles which are obtained from triangulation method are grouped into polygons that make up the vector image. The final step in our algorithm is to extract the skeleton of the obtained polygons.

3. Proposed Algorithm

1. **Original input image.**
 Read input image I. If image I is 24 bits, convert to 8 bit grayscale image for edge detection.

2. **Pre-processing.**
 - Compute the correlation distance image.
 - Compute the high correlation image.

 To each pixel having a coefficient higher than a threshold t is assigned the gray level of the reference pixel. In the case where the current pixel has a low correlation coefficient, its spectral value is examined. If it has the same gray level as the reference pixel, the point is deleted.

3. **Canny edge detection.**
 - Obtain all canny edge points as a binary image mask’edge image’. Include all boundary pixels of edge image as edge pixels. Delaunay triangulation of the contour set to obtain a list of triangles tessellating the regions between contours.
 - Obtain list of triples of indices of points constituting triangles.

4. **Extraction of edges that belong to two triangles.**
5. **Extraction of vectors from two triangles.**
 Both triangles have value either 0 or 1. If 1 comes then vectors are saved and if 0 comes then vectors are discarded in case of both triangles.

6. **Thinning to find skeleton.**
 Thinning operation is applied on vectors to find skeleton.

4. Experimental Results

4.1. Correlation

Correlation is a broad class of statistical relationships between two or more random variables or observed data values. Correlation coefficients can range from -1 to +1. The value of -1 represents a perfect negative correlation while a value of +1 represents a perfect positive correlation. A value of 0 represents a lack of correlation.

The correlation coefficient is defined as:

\[
\text{Corr} (x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}
\]

where

- \(x\): current pixel
- \(y\): reference pixel

![The Original Image](image)

Figure 2. The Original Image

Figure 2 shows the original image on which whole process is to be taken.
The result of applying an edge detector to an image may lead to a set of connected curves that indicate the boundaries of objects, the boundaries of surface markings as well as curves that correspond to discontinuities in surface orientation. Thus, applying an edge detection algorithm to an image may significantly reduce the amount of data to be processed and may therefore filter out information that may be regarded as less relevant, while preserving the important structural properties of an image. In this paper canny edge detection is applied at high correlation image. Figure 5 shows the canny edge detection.

Canny edge detection consists of following steps:
- Blurring of the image to remove noise.
- The edges should be marked where the gradients of the image has large magnitudes.
- Only local maxima should be marked as edges.
- Potential edges are determined by thresholding.
- Final edges are determined by suppressing all edges that are not connected to a very certain (strong) edge.

4.3. Triangulation

The construction of vector image starts with Canny edge detection followed by a constrained Delaunay triangulation (CDT) where the lines resulting from the preprocessing stage are used as constraints for Delaunay triangulation. A triangulation of a set S of points on the plane presents a partition of an area, surrounded by a convex hull. Triangles are composed by vertices, given as an input. But if the triangles fulfill additional condition of an empty circumcircle, they present a Delaunay triangulation. Let G be a straight-line planar graph.
A triangulation T is a constrained Delaunay triangulation (CDT) of G if each edge of G is an edge of T and for each remaining edge e of T there exists a circle C with the following properties: 1) The endpoints of edge e are on the boundary of C, and 2) if any vertex v of G is in the interior of C then it cannot be “seen” from at least one of the endpoints of e (i.e., if you draw the line segments from v to each endpoint of e then at least one of the line segments crosses an edge of G).

Figure 7 shows the triangulation result. The presence of constraints in the CDT is ensured through local modifications where Delaunay edges are removed or flipped. CDTs solve the problem of enforcing boundary conformity—ensuring that triangulation edges cover the boundaries (both interior and exterior) of the domain being modeled.

4.4. Skeletonization

Skeletonization plays an important role in digital image processing especially for the analysis and recognition of binary images. Skeletonization is the process for reducing foreground regions in a binary image to a skeletal remnant that largely preserves the extent and connectivity of the original region while throwing away most of the original foreground pixels. It is a global space domain technique for shape representation. The skeleton typically emphasizes the geometric properties and topological shape, such as connectivity, topology, length, direction, and width. There are two well-known paradigms for skeletonization methods: The first is iterative thinning of the original image until no pixel can be removed without altering the topological and morphological properties of the shape. The second definition used for a skeleton is that of the ridge lines formed by the centers of all maximal disks included in the original shape, connected to preserve connectivity. This leads directly to the use of distance transforms or similar measures which can be computed in only two passes on the image.

The final step in our algorithm is to extract the skeleton of the obtained polygons. Figure 8 shows the skeletonization result. The skeleton represents the extracted lines.

5. Accuracy

The proposed algorithm is fast and automatic with improved results when compared with previous results. To evaluate the obtained results we used the Precision and recall measures. Precision is defined as the number of relevant identified elements divided by the total number of retrieved elements, and Recall is defined as the number of relevant elements retrieved divided by the total number of existing relevant elements. The closer value to 1 indicates the better results.

In order to evaluate the performances of our algorithm, Recall and Precision have been calculated using the following formulas:

\[
\text{Precision} = \frac{\text{No. of relevant identified elements}}{\text{Total No. of retrieved elements}}
\]

\[
\text{Recall} = \frac{\text{No. of relevant elements retrieved}}{\text{Total No. of existing relevant elements}}
\]

We tested the algorithm on several high resolution satellite images containing road segment. The high
resolution satellite image taken in this paper had a precision of 0.87 and a recall value of 0.89.

6. Conclusion

This paper has realized features extraction from the high resolution remote sensing image, by the triangulation method. Our approach provides good recall and precision values when compared with previous methods. The algorithm is costly in terms of complexity and memory as it depends on the size of the CDT input set. The proposed work can also be extended for military purposes by carrying work on the region of interest.

7. References

Parul Malhotra was born at H.No. 228/3 Jail Road, Mandi(Himachal Pradesh) in India, on Sep. 13, 1988. She graduated from Indo Global College of Engg., Abhipur, Distt. Mohali (Punjab), India, and completed her Masters of Technology in Electronics and Communication Engineering from ACE&AR, Ambala (Haryana), INDIA. She has successfully completed her Six Weeks Industrial training from (18 June 2007 to 30 July 2007) at BSNL, Bhiuli, Mandi (Himachal Pradesh), INDIA. Also during her Six Month Industrial Project she worked on Fake Currency Detector from (1 July 2008 to 31Dec 2008) at Central Scientific Instruments Organization (CSIO), Sector-30C, Chandigarh-160030, INDIA.

Saurabh Sharma was born at H.No. 70/11, Chougan, SunderNagar, Distt. Mandi (Himachal Pradesh) in India, on May 21, 1987. He
graduated from Dr. JJMCOE Jaysingpur, Distt. Kolhapur (Maharashtra), India, and completed his Masters of Technology (batch 2009-11), CSE Department, from Maharishi Markandeshwar Engg. College, MMU, Mullana, Ambala (Haryana), INDIA. He has successfully completed his B.E. Final Year Project- Multi-layer Database Access Control Architecture (MDACA).