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Filters are used to achieve desired spectral 

characteristics of a signal, to reject unwanted signals, 

like noise or interferers, to reduce the bit rate in 

signal transmission, etc. The notion of making filters 

adaptive, i.e., to alter parameters (coefficients) of a 

filter according to some algorithm, tackles the 

problems that we might not in advance know, e.g., 

the characteristics of the signal, or of the unwanted 

signal, or of a systems influence on the signal that we 

like to compensate. Adaptive filters can adjust to 

unknown environment, and even track signal or 

system characteristics varying over time.LMS, RLS 

&Kalman are the popular adaptive filters methods for 

linear systems. Extended Kalman filter is a good 

choice when we needed adaptive filter in nonlinear 

Systems (e.g. OFDM).  Available methods are quite 

good so we did not make any changes in the methods, 

we have improvised the adaption rate developing a 

unique combination of two Extended Kalman filter.   

The purpose of this paper is to provide a practical 

introduction to the new affine combination of discrete 

Kalman filter. This introduction includes a 

description and some discussion of the basic discrete 

Kalman filter, a derivation, description and some 

discussion of the extended Kalman filter, and a 

results. 

The Discrete Kalman Filter 
The Kalman filter is essentially a set of mathematical 

equations that implement a predictor-corrector type 

estimator that is optimal in the sense that it minimizes 

the estimated error covariance—when some 

presumed conditions are met. Since the time of its 

introduction, the Kalman filter has been the subject of 

extensive research and application, particularly in the 

area of autonomous or assisted navigation. This is 

likely due in large part to advances in digital 

computing that made the use of the filter practical, 

but also to the relative simplicity and robust nature of 

the filter itself. Rarely do the conditions necessary for 

optimality actually exist, and yet the filter apparently 

works well for many applications in spite of this 

situation. The Kalman filter estimates a process by 

using a form of feedback control: the filter estimates 

the process state at some time and  

 

 

Then obtains feedback in the form of (noisy) 

measurements. As such, the equations for the Kalman 

filter fall into two groups: time update equations and 

measurement update equations. The time update 

equations are responsible for projecting forward (in 

time) the current state and error covariance estimates 

to obtain the a priori estimates for the next time step. 

The measurement update equations are responsible 

for the feedback—i.e. for incorporating a new 

measurement into the a priori estimate to obtain an 

improved a posteriori estimate. The time update 

equations can also be thought of as predictor 

equations, while the measurement update equations 

can be thought of as corrector equations. Indeed the 

final estimation algorithm resembles that of a 

predictor-correctoralgorithm for solving numerical 

problems as shown below in Figure  

 

The 

Kalman 

filter, also known as linear quadratic estimation 

(LQE), is an algorithm that uses a series of 

measurements observed over time, containing noise 

(random variations) and other inaccuracies, and 

produces estimates of unknown variables that tend to 

be more precise than those based on a single 

measurement alone 
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The Kalman filter has numerous applications in 

technology. A common application is for guidance, 

navigation and control of vehicles, particularly 

aircraft and spacecraft. Furthermore, the Kalman 

filter is a widely applied concept in time series 

analysis used in fields such as signal processing and 

econometrics. 

The algorithm works in a two-step process. In the 

prediction step, the Kalman filter produces estimates 

of the current state variables, along with their 

uncertainties. Once the outcome of the next 

measurement (necessarily corrupted with some 

amount of error, including random noise) is observed, 

these estimates are updated using a weighted average, 

with more weight being given to estimates with 

higher certainty. Because of the algorithm's recursive 

nature, it can run in real time using only the present 

input measurements and the previously calculated 

state; no additional past information is required. 

Kalman filter formulation: In order to use the 

Kalman filter to estimate the internal state of a 

process given only a sequence of noisy observations, 

one must model the process in accordance with the 

framework of the Kalman filter. This means 

specifying the following matrices: Fk, the state-

transition model; Hk, the observation model; Qk, the 

covariance of the process noise; Rk, the covariance of 

the observation noise; and sometimes Bk, the control-

input model, for each time-step, k, as described 

below. 

The Kalman filter model assumes the true state at 

time k is evolved from the state at (k−1) according to 

 

 

 

where 

 Fk is the state transition model which is applied 

to the previous state xk−1; 

 Bk is the control-input model which is applied to 

the control vector uk; 

 wk is the process noise which is assumed to be 

drawn from a zero mean-

multivariatenormaldistribution with covariance 

Qk. 

 

 

At time k an observation (or measurement) zk of the 

true state xk is made according to  

 

Where Hk is the observation model which maps the 

true state space into the observed space and vk is the 

observation noise which is assumed to be zero mean 

Gaussian white noise with covariance Rk. 

 

The initial state, and the noise vectors at each step 

{x0, w1, ..., wk, v1 ... vk} are all assumed 

to be mutually independent. 

Figure above is the Model of Kalman filter. Squares 

represent matrices. Ellipses 

represent multivariatenormaldistributions (with the 

mean and covariance matrix enclosed). Unenclosed 

values are vectors. In the simple case, the various 

matrices are constant with time, and thus the 

subscripts are dropped, but the Kalman filter allows 

any of them to change each time step. 

Extended Kalman filter: In the extendedKalman 

filter, the state transition and observation models 

need not be linear functions of the state but may 

instead be differentiable functions. 

 

 

Where wk and vk are the process and observation 

noises which are both assumed to be zero mean 
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multivariate Gaussian   noises 

with covariance Qk and Rk respectively. 

The function f can be used to compute the predicted 

state from the previous estimate and similarly the 

function h can be used to compute the predicted 

measurement from the predicted state. 

However, f and h cannot be applied to the covariance 

directly. Instead a matrix of partial derivatives 

(the Jacobian) is computed. 

At each time step, the Jacobian is evaluated with 

current predicted states. These matrices can be used 

in the Kalman filter equations. This process 

essentially linearizes the non-linear function around 

the current estimate. 

Predict  

Predicted state estimate 

 

 
 

Predicted covariance estimate 

 

 
 

Update 

Innovation or measurement residual 

 

Innovation or covariance residual 

 

 

Near-optimal Kalman gain  

 

Update state estimate 

Updated 

covariance estimate 

 

Where the state transition and observation matrices 

are defined to be the following Jacobeans 

 

 

 

 

Conclusion 

  

In this thesis work we were able to effectively 

mathematically model of new design of Extended 

Kalman Filter which is an affine combination of two 

Extended Kalman Filter & reduce the white noise in 

non linier system. There are applications like fast 

time varying channels in many military such as 

guided missiles and even in satellite launch vehicles 

or commercial applications like 4G data 

communication 

For these type of application we needed fast adaptive 

non-linear filter which can adapt unknown system as 

soon as possible, our proposed design have very fast 

converging rate which allows the very fast adaption 

of unknown filter. The work functions mainly in the 

time domain and this allows us to implement the 

design of ref  increase SNR. 

 

Result 
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