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Abstract— It is well-known in electronics that establishing
symbolic analytic expressions for the oper- ating point and
transient analysis of circuits including diodes is not possible
due to the fact that these devices are modelled using an
exponential function. In general, to solve this problem, in this
work, the Hybrid-Newton-Raphson Perturbation technique is
proposed, which allows obtaining highly accurate and handy
analytical approximate solution obtained by the use of the
perturbation method. In turn, these solutions are used as a
starting point for the Newton- Raphson method in order to
improve its accuracy in few iterations. To verify this method,
two case studies are solved. The first case is the solution for
single operating point for direct current (DC) analysis of a
circuit with two rectifier diodes. For the second case, the
solution for multiple operating points in DC analysis of a tunnel
diode, voltage source, and a resistor is carried out. Therefore,
for a wide range of values for the voltage source and resistor, the
proposed method is able to obtain valid and highly accurate
solutions. To validate the results of the method we propose, we
compared the results of the first case study against commercial
simulators, while in the second case study, our results were
compared against a homotopy continuation method, obtaining
results in good agreement for both study cases.

Keywords— Perturbation method; Nonlinear circuits; Multiple
operating points; Homotopy continuation method.

I INTRODUCTION

Many physical phenomena in science and engineering are
modelled by nonlinear equation systems (NAES) because is
the best and direct way to describe its behaviour, considering
the laws that rule them. These NAES pose a problem because
it is not possible to obtain, analytically, exact results [1]
because the equations complexity is high. Therefore, to
solve  this kind of equations, numerical methods are
employed; these methods allows us to formulate mathematical

problems in a way that can be solved using arithmetic
operations.

Numerical methods allows solving equations and systems
of equations by means of approaching, mathematically, the
solutions of a problem expressed in mathematical terms.
[2] details known numerical methods to solve differential
equations like Euler’s Method or Runge-Kutta Method; as for
solving nonlinear algebraic equations, available methods
are fixed point iteration [2], Secant Method [2], Brent’s
Method [2], Newton-Raphson Method (NR) [2, 3],
Homotopy Continuation [3-9], among others. Generally
speaking, algebraic and differential problems are usually
solved by the previous mentioned methods. Nevertheless,
those techniques generally exhibit numerical instabilities,
oscillations, false equilibrium states, among other problems
[2]. Other aspect to be taken into account of numerical
methods is that only provide solutions in the form of a set
of numerical data. This data helps to visualize phenomena
behaviour, leaving aside the possibility of performing
analytical analysis that can only be performed when exact
solution is able to be calculated.  Nonlinear algebraic or
differential problems commonly employed in engineering or
applied physics usually do not possess known exact
solution, however. As a response to this problem,
approximative methods emerge, capable to provide analytic
approximative solutions able to imitate the behaviour of the
exact solution with a certain degree of accuracy and
convergence domain.

As for the solution of differential equations, approximative
methods reported in literature are: iterative variational method
(VIM) [10, 11], modified Taylor series method (MTSM) [12],
Adomian [13, 14], power series [15], classic perturbation [16,
17], homotopy perturbation method (HPM) [18,
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19], series expansion [20], rational homotopy perturbation
method (RHPM), [21], homotopy fixed point [15], among
others. Among all these methods, classic perturbation method
[16] is the oldest and well-founded, but is restricted to
problems containing, at least, one perturbative parameter g
<< 1. Therefore, new derived methods from the classic
method previously mentioned, like homotopy perturbation
method (HPM) that avoids the restriction of the perturbative
parameter and achieves more general solutions.
Nevertheless, even this method may fail due to the high
nonlinearity of diverse phenomena. [22] proposes the
generalized homotopy method (GHM) as a generalization of
the homotopy perturbation method (HPM), which is capable
to provide precise solutions. Nevertheless, when a parameter
of the perturbative type is available, it is always desirable to
use the classic perturbation method. In addition, the classic
perturbation method has the advantage that it can be applied
to algebraic equations and differential equations, unlike
other methods that can only be applied to differential
equations.

In the absence of an exact solution, an approximative
solution could provide valuable information about the general
behaviour of the dynamic system in terms of the parameters
that make it up; information that would be impossible to
obtain otherwise. For the case of electronic circuits, the
transient  behaviour is modelled using differential
equations; usually, commercial simulators just provide a
numerical solution like a curve or table of values. In fact,
circuit designers usually resort to empirical rules based on try
and failure tests to optimize or characterize their designs. A
tangible benefit for applying approximative methods in
electronics [16, 23] is the possibility to analyze the transient
behaviour of the circuits, that is, it is possible to identify
which parameters have the most influence on the establishing
time on the circuit or which parameter combination may
extend or shorten the transient, potentially allowing the
creation  of analytical schemes  to reduce power
consumption, control setting times, among other aspects. In
general, find the exact solution on direct current (DC) circuits
that include diodes is not possible given the exponential
characteristic of these devices. Nevertheless, it is possible to
model the behaviour of a diode in DC circuits using
approximative methods [24]. Therefore, the perturbation
method can be employed to propose accurate analytical
solutions and avoid the use of Newton-Raphson.

An approximative solution is introduced for the
transient and steady state (DC analysis) of a simple series

circuit, which has one independent voltage source, an
inductor, a resistor, and a diode [16]. The provided
solutions  have good accuracy, but require previous

knowledge of the steady state of the circuit in order to select
an adequate expansion point. On the other hand, [25]
proposes an exact expression for the DC analysis of the same
circuit. Nevertheless, the obtained expression is expressed in
terms of the Lambert W function, which is little known and
not included in standard libraries of many mathematical
programs. To this problem is added the fact that the
methodology proposed by [25] cannot be generalized to

The perturbation method from [23] was applied to a series
circuit containing resistor, inductor, and diode obtaining an
algebraic expression for the current in the circuit. Two case
studies are proposed. The first case will obtain an
approximative analytical expression by the perturbation
method for the electrical current in a circuit containing a
voltage source, a resistor, and two different diodes avoiding
the application of NR. This circuit, but with a single diode,
have been analysed in analogue electronic books, obtaining
the operating point in a graphical and numerical way [32, 33].
For the second case, the goal is to obtain an
approximative analytical expression for multiple operating
points of a circuit with a tunnel diode, a resistor, and a voltage
source. The operating points will be located using hybrid
technique that includes the classic perturbation method and
the Newton-Raphson method.

The hybrid perturbation Newton-Raphson technique is
explored as an alternative to the homo- topy continuation
method [4,6,8,34,35] because it requires deep understanding
of several specialized numerical methods regularly adapted to
the problem under study [36]. Continuation methods also
exhibit numerical problems, especially with tracing
methods since the corrective step may show convergence
issues as the number of equations increases. As it is well-
known, continuation meth- ods provide only numerical
solutions, while perturbation methods provide approximative
analytical solutions simple to evaluate in terms of the
parameters under study.

This work is organized as follows. Section 2 introduces
the classical perturbation method. In Section 3 provides a
brief  description of the Newton-Raphson numerical
method. A case study that proposes an approximative
solution for single and multiple operating points of the current
in a circuit with two diodes is presented in Section 5. In
Section 6, a case study featuring the use of the hybrid
homotopy perturbation method to calculate multiple operating
points for a tunnel diode is presented. Finally, Section 7
provides conclusions of this work and suggests possible future
work.

Il. CLASSIC PERTURBATION METHOD

Nonlinear equations that model phenomena, whether they
are physical, chemical, among others, usually do not possess
exact solutions. Exact solutions [37] to these problems are not
always available, thus the need of using approximative
methods to obtain a solution. Approximative analytic
solutions for nonlinear equations obtained using classic
perturbation should be compared against the numerical
solution of the problem through the use of known numerical
methods [2, 3]. In the absence of an exact solution, the
approximative solution can provide valuable information
about the general behaviour of the static or dynamic system in
terms of their parameters; this information would be
impossible to obtain by any other way. Procedure of the
perturbation method is provided by [24, 38]; following the
guidelines, now consider solving the following nonlinear
equation

Fu) =v, @)

circuits ~ containing  multiple  diodes given the high

nonlinearities.  Likewise, [23] provides an approximative also, consider that

solution for the transient and DC analysis for the same circuit,

which was obtained using the perturbation method [26-31]. Lw) =v, 2
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is an auxiliary equation that possess an explicit solution
known in the form

u=T), @)

is the unique solution of (2). L(u) is the linear operator,
that is, complies with the principles of superposition and
homogeneity; this is
L(cius + caup) = ¢, L(uy) + ;L (uy), 4)

for the case of two functions u, and u,, scalars c¢; and c,,
we can then rewrite (1) in the following form

L) + (F(w) = L(w) = v. ®)
Introducing function N (u) = L(u) — F(u), (5) becomes
L) =v+ Nu). (6)

To ease the discussion of particular solutions for (6), the
introduction of a small parameter ¢ is considered, where & «
1, therefore, the equation is written as

L(u) =v+ eN(u). @)

considering the power series in &, with independent
coefficients of &, becoming

u=uy+eu; +e2uy + -, (8)

by doing this can be seen that term w,,, obtained when € =
0, is a linear solution of

L(u,) = v. 9)
This solution can be written as u, = T'(v).

In order to obtain the following terms wu,;, u,, -,
systematically, we substitute u given by (8) in (7) and equate
terms, obtaining

L(ug + cuy + €2uy + ) = v+ eN(uy + uy +
2uy + ). (10)

Because the term L is a linear operator, the left side of the
equality can be written as

L(ug) + eL(uy) + €2L(uy) + ---. (12)

Assuming that N (u) is analytical in u, we can expand the
right side of (10) in power series of &, achieving the
expression

N(ug + cuy + €?u? ++) = N(uy) +
eN; (Ug, Uq) + 2N, (g, ug, up) + -+, (12)

where each coefficient ¥ only depends of the quantities
Ug, Uq, Uy, -+, U Combining the expansions of (11) and (12),
equalling coefficients of &, equation (7) gives rise to an
infinite system of equations.

L(ug) =v
L(uy) = N(uo)
L(uz) = Ny(ug,uq)

L(ug41) = N(ug, ug, -+, uyg),

and so on. It is important to note that is an infinite system
and can be solved recursively. Obtaining u, requires to know
u, when 0 < n < k — 1. Therefore, the first equation is given
as follows

uy = T(v). (13)
For the second, we obtain
u; = T(N(up)) = T(N(T())). (14)

Continuing, we can express each u, in terms of v. By
doing this way we can state that when a perturbation
parameter is available, it is always convenient consider the use
of the classic perturbation method. Besides, this method has
the advantage that can be applied to algebraic equations and
differential equations as well [24].

I1l.  THE NEWTON-RAPHSON METHOD

The Newton-Raphson method exhibits local convergence,
thus, is necessary to propose an initial value close enough to
the desired root. The relative closeness of the starting point to
the root is closely related to the nature of the function itself.
Once this step is performed, the method linearise the function
to a tangent line at the initial point. The abscissa at the origin
of the line will be, accordingly to the method, a better
approximation to the root than the previous value. Successive
iterations are performed until the method converges close
enough to the desired root (see Figure 1).

Be f(x) a real domain continuous function in the interval
[a, b], with defined derivative in the interval [a, b]. Starting
with an initial value x;, an approximation x;,, is obtained
closer to the root, given by the formula

I s 0,1, (15)

Xj+1 = Xj

f’(xj) v

v

e 1 :

.X:j+n )CJ Xj+I )Cj
Figure 1: Geometric interpretation of the Newton-Raphson
method.

The iterative process is repeated until the x-intercept of
the tangent line matches the equation root or when the
difference between two successive approximations fulfils an
already defined tolerance error. The Newton-Raphson
method exhibits quadratic convergence given by the fact that
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significant numbers double on each iteration [6]. Although
the NR method is efficient, if the equation possess multiple
roots, multiple turning points or a steep slope in the vicinity
of the root, then, the probabilities of the algorithm to diverge
or oscillate increase [3, 39].

IV. HOMOTOPY CONTINUATION METHOD.

Obtaining multiple solutions using local convergence
methods is complicated since they can obtain unique
solutions based on the initial condition established at the
beginning of the process. Besides, these methods do not
provide information about the existence of additional
solutions. Nevertheless, homotopy continuation methods
allows solving a system of nonlinear equations like this:

ccf(x) =0,f:€ R* — R", (16)

for multiple solutions. The original system can be
expressed as:

H(x, ) = Af(x) + (1 = DG (x), (17)

where H(F(x)) = H(x,A):R"*! - R, x e R", 1 €
[0,1]. Function G (x) is a auxiliar function that has known, or
trivial solution. If 2 = 0, then a known, or trivial, solution for
G(x) is obtained. If A = 1, solutions of the original system
f(x) are found. By this method, homotopy continuation
generates a set of solutions H~1(0) for the system f(x) = 0.
All the available solutions to solve the system during the
continuous deformation are found from A =0 to A =1.
Figure 2 shows an schematic diagram of the Homotopy
continuation method procedure. This is described step by step
as follows:

Step 1. Define the nonlinear equation that models the
problem to solve. It has the form (16), where x represents the
n variable(s) of the problem. Then, we define x,, the point
where the homotopy begins.

Step 2. The starting point of the algorithm. I, is the
maximum number of roots to search in the system, 4 is the
homotopic parameter and i is the counter loop for algorithm.
Therefore, we assign x, =0,A=0,i =0,1=10,i =0,

Step 3. This step in the algorithm involves two stages.
First, Euler method is applied in order to perform a
prediction; starting from (x;, 4;) an Euler based prediction is

made under a tangential scheme to obtain (x;, 4;). The second
part of this step consists in applying an iterative method to
correct the estimation obtained from Euler method and thus
to obtain a point over (x; + 1, 4;,,) trajectory, see Fig. 2.

Step 4. In case a crossing at 1 =1 is detected, then, a
jump to step 5 is performed. Otherwise, step 3 is repeated.

Step 5. Once a crossing at 4 = 1 is detected, points P; y
P, are utilized to interpolate P; over A = 1 [35].

Step 6. The interpolated P; point is used as the initial
point of NR method; this procedure is done to improve the
root precision [23].

Step 7. If the maximum number of roots I,ax is
achieved, then it is proceeded to store the found roots and the
trajectory is plotted; otherwise, the cycle is repeated at step 3.

V. SINGLE OPERATION POINT CASE.

The computer setup to perform analysis on this paper is as
follows: Intel i3 CPU, speed of 2.40GHz, 3GB of RAM,
Windows 7 Ultimate 64 bits operating system, and the

software environment (Maple 17 mathematical and
simulation software).
Sﬁimctioustosolvc
Slx)=0
Startat x,
Setup
H(xp) =6 y-(1-2) A% )
SartingPoint
=0, x,=0, 7. =0, imax=numberofroots

|

i Predictor-Corrector
(. 2.) ®

2 Crosses
“lept solutionline?

Stops
FindingZeroStrategy
(Interpolation)

“ Fine Tunning p—
NR(P,) Frd s

=g
L !
Solutionling  3.=1

Figure 2: Homotopy continuation method procedure.

On electronics, the rectifier diode is one of the most
important fundamental semiconductor devices; one of their
main applications is to perform half-wave rectification of a
single-phase supply. This process allows converting
alternating current (AC) to direct current (DC) [32, 40]. Now
it is proposed, as case study, a series circuit containing a
single independent voltage source, one resistor and two
diodes; assuming that each diode has different saturation
current Ig. The circuit is depicted in Figure 3.
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DI D2

1 I

Figure 3: Series circuit with two diodes.

Using Shockley diode equation [32, 33], that
approximatives the behaviour of the diode as follows

iy = I (exp (" k;’) - 1), (18)

where i, is the diode current, in Amperes; V, is the
voltage across the diode, in Volts; I is the reverse bias
saturation current (or scale current); g is the magnitude of the
charge of an electron, its value is 1.602 x 10~° Coulomb; T
is the absolute temperature of the p-n junction;k is the
Boltzmann constant, its value is 1.380649 x 10723JK~1; n
is the ideality factor, also known as the quality factor or
sometimes emission coefficient, depends on the fabrication
process, its value is 1 for germanium and 2 for silicon. The
quotient  V, =kT/q is the thermal voltage, is
approximatively 25.85mV at 300°C. Therefore, solving for
Vp, the voltage drop for both diodes, considering n = 1, the
expression becomes

Vp = Vyln (i—‘; + 1),1' >0, (19)

where I is the reverse saturation current; i is the diode
current, and V; is the thermal voltage. Applying Kirchhoff
laws, the algebraic equation to describe the operating point is

Ri+VD1+VD2_V:0.
(20)

Substituting (19) in (20)
Ri + Vyln (1+ _i) V=0 1)

Considering that L 1, the complexity of (19) can be
reduced by apprOX|mat|ng the logarithmic term as follows

Vp = Vyln (E) = VpIn@) - Voln(ls).  (22)
Therefore, for each diode we obtain

Vs = Vyln (é) = VIn()) - Vpln(l;),  (29)

Vpy = Vyln (15—2) = VyIn(0) = Vyln(lsy).  (24)

Rewriting (21) using (23) and (24), the mesh equation is
obtained

The operating point of the circuit, modelled by (20), (23),
and (24), is the intersection of three surfaces (see Figure 4).
For this example, the proposed values are V = 3V, R = 5Q,
Is; = 1E — 124, and L5, = 1E — 9A. Solving the system of

three equations circuit current s

0.3605448941A4.

using NR, the

Operatingpoint

Figure 4: Circuit operating point with two diodes.

VI. SOLUTION USING THE PERTURBATION
METHOD.

To solve (25), the current is expressed in terms of a power
series for V; [17, 41], given that V; << 1 and in agreement
to the classic perturbation [24, 38]

Taking the first four terms of (26), an approximation of
level 3 is obtained; substituting in (25), we obtain

CR(iO + i1VT + le']g + l3V73) + ZVTln(iO + iIVT +
iZV% + l3V73) - VTln(Isz) - VTln(151) - V = 0

@7)

Rearranging, (27) can be expressed as
CR(ig + iy Vp + i, VF + i3VE) + 2VrIn(iy) +
WtV in(lg,) — Vyin(ls,) — V = 0.
(28)

Replacing the first term of the Taylor expansion of the
natural logarithm, we obtain

2v;In (1+

io

CR (i + i Vr + 15V + i3V) + 2Vr (In(io) +
- ) = VeIn(lsz) = Vrln(lsy) =V = 0. (29)

Regrouping terms based on V. and equalling to zero each
coefficient, we create the following system of equations

iV +igVE+igViE
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VO Rig—V =0,
VA Rip + 2In(ip) — In(lsy) — In(lsy) = 0,
V2 Riy+2 (i—;) =0,
V3: Ris+2 (;—2) = 0.
(30)

Solving (30), it is possible to obtain approximative
analytic expressions for the operating point current

.1 Is11s2R?
i _;<V +VT1n(V—2)>,R >0,V >0,

(31)
LV, 1 _2vf Is1IsaR?
i =2+42(vp —2E)n (St ),R>0,V(>3§),
Vv, 1 2V | avd Is1Is2R?
i —E+E(VT _7+W)IH(T)‘R >0,V (>3§)

The approximative solution of the circuit operating point
in Figure 3 obtained using classic perturbation uses two

diodes with different saturation currents. Table 1 and Table 2
show results obtained using the following saturation currents
I =1E — 124 and I, = 1E —9A. As can be seen, the
results show that our method is general, whether saturation
currents are different or equal. Also, it can be noticed the
circuit current was calculated for different supply voltages
and resistor values; the results are in good agreement between
the different approximation orders and the exclusively
numerical solutions given by Orcad or LTspice (commercial
simulators).

It is important to notice that the order 1 of the analytic
approximation is a compact analytic expression, simple to
evaluate, accurate compared to orders 2 and 3 which provide
higher accuracy, closer to the results obtained from electronic
circuit simulators. The downside of these higher order
expressions is the large number of terms.

As have seen in the tables, we tested different supply
voltages and different resistor values, this allowed to
empirically conclude that the valid region of the bias voltage
where approximations have good accuracy is about V >
1.355 Volts. In particular, it would be interesting to broaden
the proposed method to nonlinear circuits that include MOS
transistors and/or bipolar transistors; using the modified
nodal analysis as a tool to obtain the equilibrium equation of
the circuit.

Current i E1[3V,5Q] Ep[4V,10Q] E3[5V,15Q] E4[6V,20Q] E5[12V,20Q] Eg[20V,20Q]
Order 1 (31) 0.3195771786  0.2618848439  0.2418849642 0.2316860801 0.5298942946 0.9285738105
Iterations PNR 2 2 2 2 2 1
Order 2 (32) 0.3244097985  0.2636699823  0.2428305403 0.2322747184 0.5301963334 0.9287584471
Iterations PNR 2 2 2 2 1 1
Order 3 (33) 0.3243265163  0.2636469094  0.2428207632 0.2322696463 0.5301950321 0.9287579698
Iterations PNR 2 2 2 1 1 1

Orcad 16.6
LTspice IV

0.3258754939
0.3257340000

0.2640259201
0.2639550000

0.2429704051
0.2429230000

0.2323434187
0.2323080000

0.5302105407
0.5301740000

0.9287613770
0.9287240000

Table 1: Equations (31), (32), and (33) with I, =I5, = 1E — 124, E=[V(Volts), R(Q)], versus commercial simulators.

Current i E1[3V,5Q] Eo[4V,10Q] E3[5V,15Q] E4[6V,20Q] Eg[12V,20Q] Eg[20V,20Q2]
Order 1 (31) 0.3910033682  0.2975979387  0.2656936941 0.2495426275 0.5477508420 0.9464303578
Iterations PNR 2 2 2 2 2 1
Order 2 (32) 0.3946050768  0.2989214854  0.2663930879 0.2499774019 0.5479759489 0.9465688353
Iterations PNR 2 2 2 2 1 1
Order 3 (33) 0.3945430073  0.2989043786  0.2663858562 0.2499736556 0.5479749791 0.9465684773
Iterations PNR 2 2 1 2 1 1

Orcad 16.6
LTspice IV

0.3953079029
0.3952020000

0.299095941
0.2990430000

0.2664621786
0.2664270000

0.2500113734
0.2499850000

0.5479827285
0.5479550000

0.9465696966
0.9465410000

Table 2: Equations (31), (32), and (33) with Is; = Is, = 1E — 94, E=[V(Volts), R(2)], versus commercial simulators.

Current i Ei[3V,5Q] E,[4V,10Q] E3[5V,15Q] E4[6V,20Q] Es[12V,20Q] Eg[20V,20Q]
Order 1 (31) 0.3552902734 0.2797413913 0.2537893292  0.2406143538 0.5388225683 0.9375020841
Iterations PNR 2 2 2 2 2 1
Order 2 (32) 0.3595074377 0.2812957338 0.2546118141  0.2411260601 0.5390861412 0.9376636412
Iterations PNR 2 2 2 1 1 1
Order 3 (33) 0.3594347618 0.2812756439 0.2546033097  0.2411216509 0.5390850056 0.9376632236
Iterations PNR 2 2 1 1 1 1

Orcad 16.6
LTspice IV

0.3605448941
0.3604220000

0.2815510671
0.28114890000

0.2547126722
0.2546720000

0.2411756791
0.2411450000

0.5390962851
0.5390640000

0.9376654206
0.9376330000

Table 3: Equations (31), (32), and (33) with Ig; = 1E — 124, I, = 1E — 94, E=[V(Volts), R(Q)], versus commercial simulators.
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VII. MULTIPLE OPERATION POINT CASE.

It is known, based on semiconductor literature, that the
characteristic curve of tunnel diode, even in the simplest
circuit, may have multiple operating points (see Figure 5a).
For this study case, multiple operating points are calculated in
a circuit with such device. One of the common applications
of a tunnel diode is in high frequency oscillators [32]. Figure
5b depicts the circuit under study, include voltage source, one
resistor, and a tunnel diode all connected in series.

[6, 42] proposes a model for tunnel diode, given as

_ IpVp

ig = ~, €XP (1 - ‘;—I;) + lexp (:—TVD), (34)

where V), is the voltage between terminals, given in
Volts; V, peak tension, given in Volts; I, peak current, given
in Amperes; i, is the current flowing through the diode, in

Amperes. The quotient kq—T is the reciprocal of the thermal
voltage defined by the elemental charge, given in Volts ~1; k

is Boltzmann constant, and T is temperature given in Kelvin.
The current I is a function of the intrinsic constants of diode
[42].

Applying Kirchhoff voltage law, the mesh equation of the
circuit is
V, =V —iR. (35)
Substituting (35) in (34), we obtain

. . ViR q 8 L
—i+ V—“: (V —iR)exp (1 - V_p) + lexp (ﬁ w - LR)) (— 0),
36

equation (36) of the circuit can not be solved using
conventional algebraic methods [43].

VIIl. SOLVING METHOD BY COMPUTER.

From the classic perturbation theory [17, 24, 38, 41], when a nonlinear equation has a parameter much less than 1, it is
possible to apply the methodology mentioned above to obtain an approximative solution. For this case, given that 1 << 1, is

ld

Ip- ]
v
>
/
Vd

D

2

Figure 5: Tunnel diode circuit.

feasible to apply classic perturbation. Thus, the circuit current may be expressed as power series. For this study case

1= i0+i1H1 +i2]]%+i3]1§+"'. (37)

Substituting (37) in (36) and expanding using Taylor series of order 2, we obtain

V-aR .
_ . Ip=iR) veary |, oR(1-TRG- a4y — oxn (L (v — Lpti—a) =
c—i+ exp (1 - ) + - +1 (exp (kT v aR)) exp (kT w aR)) o R( a)% —)0.
38
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Grouping terms of order zero from (38), we have

2
IpR EXP( ) IpR2a+IpRV~IpRV,

o) 0T (D)

cci = (—(

IpVeXp( +1) R IpVeXp( )

Vp exp(W) Vpexp< )

)+ ()l +

1) = 1))ig — (

()1 +
(39)

Successive terms of (39) are not shown. Taking the coefficient of order zero from perturbative sum (39), which is a second
degree trinomial in terms of i,, we are able to solve it using elemental algebra

2 V. —1)2 aRvyo _ 2 _ ar 4 V2 24 (— aR —y2 V.
<2(lpRzexp(—+1))) \/(IPR exp(2)(aR —=Vp = V) (exp(VP)) 2RVgIpexp(=Vp +V + 7 V+1)+V, (exp(vp)) + (aR?+ (=Vp + V)R)Ipexp(vp +1) -V exp(vp),

and

(40)

i 2 V. — )2 aRyvo _ 2 _ ar 4 V2 24 (- ar — VZaxn (L
ci= <2(lpRzexp(—+1))) \/(IPR exp(2)(aR —Vp —=V) (exp(VP)) 2RV Ipexp(=Vp +V + T V+1)+V, (exp(VP)) + (aR?*+ (=Vp + V)R)Ipexp(vp +1) -V exp(vp),

(41)

where a is the expansion point for the Taylor series. In consequence, (40) and (41) are expressed in terms of the circuit
parameters. Values for the voltage source, resistor, and saturation current of the tunnel diode are proposed as follows: Vp =

50E —3V,V=03V,R=4Q,1, = 100E — 34,1 = 1E — 9A,% = 40V 1. Figure 6 shows the operating points for the circuit

in Figure 5b using the values mentioned above.

0.15 ]
— Tunnel diode f

— Load line [

Point of operationQ1 | |

e Point of operationQ | |

0.1 > Point of operationQs ||

i(A)

005 -\
| )

0 0.1 0.2 0.3 04
Vb (V)

Figure 6: Operating point with loading line and tunnel diode curve.

In this way, the hybrid technique PNR applies classic
perturbation to (36) proposing a loop current given by (37),
the result are equations (40) and (41). Arbitrary expansion
points employed to find the operating points of the circuit are
a = 0.05 and a = 0.00. Using the proposed values in the
circuit and performing the algebraic procedures, allows
obtaining i,o1, ipo2s Ipos, iposas Where suffix p refers to
perturbation. Therefore, to calculate the bias point Q; in
Figure 6, i,,0, is selected as initial point for NR the estimation
of iy;. In consequence, fast converge of NR is guaranteed to
find every operating point (36). The first two columns to the

left of Table 4 show all the approximative roots calculated
using the perturbation method. Notice that solution iyo, has
been discarded because is not within the operating point
region, as it can be seen in Figure 6.

Applying the hybrid scheme PNR on the NR process can
be seen that using current values from the first two columns
of Table 4 as starting points, the number of iterations are 7, 5,
and 3 while taking 0.261s, 0.218s, and 0.140s, respectively;
the error criteria is about 1E — 10 in Maple 17.

The advantage of this hybrid NPR technique lies on being
a symbolic method, simple to evaluate avoiding the use of
homotopy continuation. From the literature about homotopy
continuation methods is known that this algorithm is built
from fundamental blocks, these are: predictive step; NR
corrective step, which is the most expensive block in
computational terms; A = 1 crossing detection; interpolation
and fine-tuning [23, 35], among the most important. Using
homotopy continuation took 362 iterations to reach 1 =1
and 16091 iterations of the NR corrector, taking a total of
115.924s to obtain all operating points. As already shown for
the case of multiple operating points, the number of NR
iterations exceeded by 16076, being this the main cause for
the computation time difference between these two
techniques. In consequence, the advantage of using the
Hybrid PNR technique, in computational terms, to calculate
operating points of the circuit in Figure 6 is noticeable since
took just 15 NR iterations and 0.619s total time.

Figure 7 and Figure 8 depict the homotopy trajectories
[23] of solution to determine the different equilibrium states
of the circuit with the three operating points when 4 = 1. The
operating points calculated using continuation homotopy are
located in the penultimate column in Table 4.
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Perturbation a = 0.05 Perturbation a = 0.00 PNR PNR Iteration Homotopy Iteration
ipo1 = 0.06495043272A - i; = 0.07028795173A 7 ig; = 0.070208925515A 335
ipo2 = 0.04330225198A - i =0.03450748128A 5 igo = 0.034456395350A 347
- ipo3 = 0.005364498003A | i3 = 0.006118858757A 3 ig3 = 0.006053597072A 362
- ipos = —0.1747600592A - - - -
Table 4: Comparison between operating points obtained by different solving methods.
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Figure 7: Homotopy trajectory of the circuit current for multiple Figure 8: Homotopy trajectory of V/, voltage for multiple operating
operating points. points.
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IX. CONCLUSIONS.

The first case study proposed an approximative solution
using classic perturbation of the operating point for a circuit
with two diodes, independent voltage source, and resistor.
The solution is an analytical expression in terms of the
parameters in the circuit, such as bias value, thermal voltage,
saturation current, and resistance. The analytical solution
mentioned above has the advantage of being derivable and
integrable in terms of all its parameters. For the second case
study, the proposal included the use of a hybrid PNR scheme
as a mathematical strategy to obtain an approximative result
for the multiple solutions that a circuit with nonlinear
elements, afterwards the solution will be used as initial point
for the NR convergence method in order to increase the
accuracy of the solutions for all operating points. Another
aspect of the hybrid PNR technique is that it avoids the use of
random start points on the NR algorithm. The comparison
between the hybrid PNR method and homotopy methods
showed that the proposed scheme improves the easiness to
implement because its fast convergence in a few iterations,
thus, computation time is significantly reduced.

Given the success of the methodology, further work
includes to extend it in circuits with higher number of
components, that includes more diodes and decide if the
resultant expressions can provide analytical information. It is
possible to improve the understanding about the behaviour of
such circuits. A potential application of the analytical
expressions is to apply them on stability or frequency
analysis [40, 44] in circuits with nonlinear elements.
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