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Abstract— It is well-known in electronics that establishing 

symbolic analytic expressions for the oper- ating  point  and 

transient  analysis of circuits including diodes is not  possible 

due to  the  fact that these devices are modelled using an 

exponential function.  In general, to solve this problem, in this  

work, the  Hybrid-Newton-Raphson  Perturbation  technique  is 

proposed,  which allows obtaining  highly accurate and handy 

analytical approximate solution obtained  by the  use of the 

perturbation method.  In turn, these solutions are used as a 

starting point for the Newton- Raphson method in order to 

improve its accuracy in few iterations.  To verify this method, 

two case studies are solved. The first case is the solution for 

single operating point for direct current (DC) analysis of a 

circuit with two rectifier diodes. For the second case, the 

solution for multiple operating points in DC analysis of a tunnel 

diode, voltage source, and a resistor is carried out. Therefore, 

for a wide range of values for the voltage source and resistor, the 

proposed method is able to obtain valid and highly accurate 

solutions.  To validate the results of the method we propose, we 

compared the results of the first case study against commercial 

simulators, while in the second case study, our results were 

compared against a homotopy continuation method, obtaining 

results in good agreement for both study cases.  

Keywords— Perturbation method; Nonlinear circuits; Multiple 

operating points; Homotopy continuation method. 

I.  INTRODUCTION 

Many physical phenomena in science and engineering are 
modelled by nonlinear equation systems (NAES) because is 
the best and direct way to describe its behaviour,  considering 
the laws  that rule them.  These NAES pose a problem because 
it is not possible to obtain,  analytically,  exact results [1] 
because the  equations  complexity  is high.  Therefore,  to  
solve  this kind of equations, numerical methods are 
employed; these methods allows us to formulate mathematical 

problems in a way that can be solved using arithmetic 
operations. 

 Numerical methods allows solving equations and systems 
of equations by means of approaching, mathematically,  the  
solutions  of a problem  expressed  in mathematical  terms.  
[2] details  known numerical methods to solve differential 
equations like Euler’s Method or Runge-Kutta Method; as for 
solving  nonlinear  algebraic  equations,  available  methods 
are  fixed  point  iteration  [2], Secant Method  [2], Brent’s  
Method  [2], Newton-Raphson Method  (NR)  [2, 3], 
Homotopy  Continuation [3–9], among others. Generally 
speaking,  algebraic  and differential  problems are usually 
solved by the  previous mentioned  methods. Nevertheless,  
those  techniques  generally  exhibit  numerical instabilities,  
oscillations,  false equilibrium states,  among other problems 
[2]. Other aspect to be taken  into  account  of numerical  
methods  is  that  only provide  solutions  in the  form of a set  
of numerical data.  This data helps to visualize phenomena 
behaviour,  leaving aside the possibility of performing 
analytical  analysis  that  can only be performed  when exact 
solution is able to be calculated.   Nonlinear algebraic or 
differential problems commonly employed in engineering  or 
applied  physics  usually  do not  possess known exact  
solution,  however.   As  a response  to  this problem, 
approximative methods emerge, capable to provide analytic 
approximative solutions able to imitate the behaviour of the 
exact solution with a certain degree of accuracy and 
convergence domain. 

As for the solution of differential equations, approximative 
methods reported in literature are: iterative variational method 
(VIM) [10, 11], modified Taylor series method (MTSM) [12], 
Adomian [13, 14], power series [15], classic perturbation [16, 
17], homotopy perturbation method (HPM) [18, 
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19], series expansion [20], rational homotopy perturbation 
method (RHPM),  [21], homotopy fixed point [15], among 
others.  Among all these methods, classic perturbation method 
[16] is the oldest and well-founded,  but is restricted  to 
problems containing,  at least,  one perturbative parameter ε 
<< 1.  Therefore,  new derived  methods  from the  classic  
method  previously  mentioned,  like homotopy perturbation 
method (HPM)  that avoids the restriction of the perturbative 
parameter and achieves  more general  solutions.   
Nevertheless,  even this  method  may fail due to  the  high 
nonlinearity of diverse phenomena. [22] proposes the 
generalized  homotopy method (GHM)  as a generalization of 
the homotopy perturbation method (HPM),  which is capable 
to provide precise solutions. Nevertheless, when a parameter 
of the perturbative type is available, it is always desirable to 
use the classic perturbation method.  In addition, the classic 
perturbation method has the advantage  that  it can be applied  
to  algebraic  equations  and differential  equations,  unlike  
other methods that can only be applied to differential 
equations. 

In the absence of an exact solution, an approximative 
solution could provide valuable information about the general 
behaviour of the dynamic system in terms of the parameters 
that make it up; information that would be impossible to 
obtain otherwise.  For the case of electronic circuits, the  
transient  behaviour  is  modelled  using  differential  
equations;  usually,  commercial  simulators just provide a 
numerical solution like a curve or table of values.  In fact, 
circuit designers usually resort to empirical rules based on try 
and failure tests to optimize or characterize their designs. A 
tangible benefit for applying approximative methods in 
electronics [16, 23] is the possibility to analyze the transient 
behaviour of the circuits, that is, it is possible to identify 
which parameters have the most influence on the establishing 
time on the circuit or which parameter combination may 
extend  or shorten  the  transient,  potentially  allowing the  
creation  of analytical  schemes  to reduce power 
consumption, control setting times, among other aspects.  In 
general, find the exact solution on direct current (DC) circuits 
that include diodes is not possible given the exponential 
characteristic of these devices.  Nevertheless, it is possible to 
model the behaviour of a diode in DC circuits using 
approximative methods [24]. Therefore, the perturbation 
method can be employed to propose accurate analytical 
solutions and avoid the use of Newton-Raphson. 

An approximative  solution  is  introduced  for the  
transient  and steady  state  (DC analysis)  of a simple series 
circuit,  which has one independent voltage  source,  an 
inductor,  a resistor,  and a diode  [16].  The provided  
solutions  have good accuracy, but  require  previous  
knowledge  of the steady state of the circuit in order to select 
an adequate expansion point.  On the other hand, [25] 
proposes an exact expression for the DC analysis of the same 
circuit.  Nevertheless, the obtained expression is expressed in 
terms of the Lambert W function, which is little known and 
not included in standard libraries  of many mathematical  
programs.   To this  problem  is  added the  fact  that the  
methodology  proposed  by [25] cannot  be generalized  to  
circuits  containing  multiple  diodes given the high 
nonlinearities.  Likewise, [23] provides an approximative 
solution for the transient and DC analysis for the same circuit, 
which was obtained using the perturbation method [26–31]. 

The perturbation method  from [23] was applied  to  a series 
circuit  containing  resistor,  inductor, and diode obtaining an 
algebraic  expression for the current in the circuit.  Two case 
studies are proposed.  The first case will obtain an 
approximative  analytical  expression by the perturbation 
method for the electrical current in a circuit containing a 
voltage source, a resistor, and two different diodes avoiding 
the application of NR. This circuit, but with a single diode, 
have been analysed in analogue electronic books, obtaining 
the operating point in a graphical and numerical way [32, 33]. 
For the  second  case,  the  goal is  to  obtain  an 
approximative  analytical  expression  for multiple operating 
points of a circuit with a tunnel diode, a resistor, and a voltage 
source.  The operating points will be located  using hybrid 
technique that includes the classic  perturbation method and 
the Newton-Raphson method. 

The hybrid perturbation Newton-Raphson technique is 
explored as an alternative to the homo- topy continuation 
method [4,6,8,34,35] because it requires deep understanding 
of several specialized numerical methods regularly adapted to 
the problem under study [36]. Continuation methods also 
exhibit  numerical  problems,  especially  with  tracing  
methods  since  the  corrective  step  may show convergence 
issues as the number of equations increases.  As it is well-
known, continuation meth- ods provide only numerical 
solutions, while perturbation methods provide approximative 
analytical solutions simple to evaluate in terms of the 
parameters under study. 

This work is organized as follows.  Section 2 introduces 
the classical perturbation method.  In Section  3 provides  a 
brief  description  of the  Newton-Raphson  numerical  
method.   A case study that proposes an approximative 
solution for single and multiple operating points of the current 
in a circuit with two diodes is presented in Section 5. In 
Section 6, a case study featuring the use of the hybrid 
homotopy perturbation method to calculate multiple operating 
points for a tunnel diode is presented.  Finally, Section 7 
provides conclusions of this work and suggests possible future 
work. 

II. CLASSIC PERTURBATION METHOD 

Nonlinear equations that model phenomena, whether they 
are physical, chemical, among others, usually do not possess 
exact solutions. Exact solutions [37] to these problems are not 
always available, thus the need of using approximative 
methods to obtain a solution. Approximative analytic 
solutions for nonlinear equations obtained using classic 
perturbation should be compared against the numerical 
solution of the problem through the use of known numerical 
methods [2, 3]. In the absence of an exact solution, the 
approximative solution can provide valuable information 
about the general behaviour of the static or dynamic system in 
terms of their parameters; this information would be 
impossible to obtain by any other way. Procedure of the 
perturbation method is provided by [24, 38]; following the 
guidelines, now consider solving the following nonlinear 
equation 

 𝐹(𝑢) = 𝑣,                      (1) 

 also, consider that 

 𝐿(𝑢) = 𝑣,                               (2) 
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Figure 1: Geometric interpretation of the Newton-Raphson 
method. 

 is an auxiliary equation that possess an explicit solution 
known in the form 

 𝑢 = 𝑇(𝑣),                              (3) 

 is the unique solution of (2). 𝐿(𝑢) is the linear operator, 
that is, complies with the principles of superposition and 
homogeneity; this is 

 𝐿(𝑐1𝑢1 + 𝑐2𝑢2) = 𝑐1𝐿(𝑢1) + 𝑐2𝐿(𝑢2), (4) 

 for the case of two functions 𝑢1 and 𝑢2, scalars 𝑐1 and 𝑐2, 
we can then rewrite (1) in the following form 

 𝐿(𝑢) + (𝐹(𝑢) − 𝐿(𝑢)) = 𝑣.                    (5) 

Introducing function 𝑁(𝑢) = 𝐿(𝑢) − 𝐹(𝑢), (5) becomes 

 𝐿(𝑢) = 𝑣 + 𝑁(𝑢).                           (6) 

To ease the discussion of particular solutions for (6), the 
introduction of a small parameter 𝜀 is considered, where 𝜀 ≪
1; therefore, the equation is written as 

 𝐿(𝑢) = 𝑣 + 𝜀𝑁(𝑢).                         (7) 

 

 considering the power series in 𝜀, with independent 
coefficients of 𝜀, becoming 

 𝑢 = 𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 + ⋯,                  (8) 

 by doing this can be seen that term 𝑢0, obtained when 𝜀 =
0, is a linear solution of 

 𝐿(𝑢𝑜) = 𝑣.                             (9) 

This solution can be written as 𝑢0 = 𝑇(𝑣). 

In order to obtain the following terms 𝑢1, 𝑢2, ⋯, 
systematically, we substitute 𝑢 given by (8) in (7) and equate 
terms, obtaining 

 𝐿(𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 + ⋯ ) = 𝑣 + 𝜀𝑁(𝑢0 + 𝜀𝑢1 +
𝜀2𝑢2 + ⋯ ).           (10) 

Because the term 𝐿 is a linear operator, the left side of the 
equality can be written as 

 𝐿(𝑢0) + 𝜀𝐿(𝑢1) + 𝜀2𝐿(𝑢2) + ⋯.         (11) 

Assuming that 𝑁(𝑢) is analytical in 𝑢, we can expand the 
right side of (10) in power series of 𝜀, achieving the 
expression 

 𝑁(𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 + ⋯ ) = 𝑁(𝑢0) +
𝜀𝑁1(𝑢0, 𝑢1) + 𝜀2𝑁2(𝑢0, 𝑢1, 𝑢2) + ⋯,      (12) 

 where each coefficient 𝜀𝑘 only depends of the quantities 
𝑢0, 𝑢1, 𝑢2,⋯, 𝑢𝑘. Combining the expansions of (11) and (12), 
equalling coefficients of 𝜀, equation (7) gives rise to an 
infinite system of equations. 

𝐿(𝑢0) = 𝑣  

𝐿(𝑢1) = 𝑁(𝑢0)  

𝐿(𝑢2) = 𝑁1(𝑢0, 𝑢1)  

⋮  

𝐿(𝑢𝑘+1) = 𝑁𝑘(𝑢0, 𝑢1, ⋯ , 𝑢𝑘),  

  and so on. It is important to note that is an infinite system 
and can be solved recursively. Obtaining 𝑢𝑘 requires to know 
𝑢𝑛 when 0 ≤ 𝑛 ≤ 𝑘 − 1. Therefore, the first equation is given 
as follows 

 𝑢0 = 𝑇(𝑣). (13) 

For the second, we obtain 

 𝑢1 = 𝑇(𝑁(𝑢0)) = 𝑇(𝑁(𝑇(𝑣))).      (14) 

Continuing, we can express each 𝑢𝑘 in terms of 𝑣. By 
doing this way we can state that when a perturbation 
parameter is available, it is always convenient consider the use 
of the classic perturbation method. Besides, this method has 
the advantage that can be applied to algebraic equations and 
differential equations as well [24]. 

III. THE NEWTON-RAPHSON METHOD 

The Newton-Raphson method exhibits local convergence, 
thus, is necessary to propose an initial value close enough to 
the desired root. The relative closeness of the starting point to 
the root is closely related to the nature of the function itself. 
Once this step is performed, the method linearise the function 
to a tangent line at the initial point. The abscissa at the origin 
of the line will be, accordingly to the method, a better 
approximation to the root than the previous value. Successive 
iterations are performed until the method converges close 
enough to the desired root (see Figure 1). 

Be 𝑓(𝑥) a real domain continuous function in the interval 
[𝑎, 𝑏], with defined derivative in the interval [𝑎, 𝑏]. Starting 
with an initial value 𝑥𝑗, an approximation 𝑥𝑗+1 is obtained 

closer to the root, given by the formula 

𝑥𝑗+1 = 𝑥𝑗 −
𝑓(𝑥𝑗)

𝑓′(𝑥𝑗)
, 𝑗 = 0,1, ⋯                  (15) 

 

The iterative process is repeated until the 𝑥-intercept of 
the tangent line matches the equation root or when the 
difference between two successive approximations fulfils an 
already defined tolerance error. The Newton-Raphson 
method exhibits quadratic convergence given by the fact that 
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Figure 2: Homotopy continuation method procedure. 

significant numbers double on each iteration [6]. Although 
the NR method is efficient, if the equation possess multiple 
roots, multiple turning points or a steep slope in the vicinity 
of the root, then, the probabilities of the algorithm to diverge 
or oscillate increase [3, 39]. 

IV. HOMOTOPY CONTINUATION METHOD. 

Obtaining multiple solutions using local convergence 
methods is complicated since they can obtain unique 
solutions based on the initial condition established at the 
beginning of the process. Besides, these methods do not 
provide information about the existence of additional 
solutions. Nevertheless, homotopy continuation methods 
allows solving a system of nonlinear equations like this: 

 𝑐𝑐𝑓(𝑥) = 0, 𝑓: ∈ 𝑅𝑛 ⟶ 𝑅𝑛 ,                (16) 

 for multiple solutions. The original system can be 
expressed as: 

 𝐻(𝑥, 𝜆) = 𝜆𝑓(𝑥) + (1 − 𝜆)𝐺(𝑥),           (17) 

 

 where 𝐻(𝐹(𝑥)) = 𝐻(𝑥, 𝜆): 𝑅𝑛+1 ⟶ 𝑅𝑛 , 𝑥 ∈ 𝑅𝑛 , 𝜆 ∈
[0,1]. Function 𝐺(𝑥) is a auxiliar function that has known, or 
trivial solution. If 𝜆 = 0, then a known, or trivial, solution for 
𝐺(𝑥) is obtained. If 𝜆 = 1, solutions of the original system 
𝑓(𝑥) are found. By this method, homotopy continuation 
generates a set of solutions 𝐻−1(0) for the system 𝑓(𝑥) = 0. 
All the available solutions to solve the system during the 
continuous deformation are found from 𝜆 = 0 to 𝜆 = 1. 
Figure 2 shows an schematic diagram of the Homotopy 
continuation method procedure. This is described step by step 
as follows: 

Step 1. Define the nonlinear equation that models the 
problem to solve. It has the form (16), where 𝑥 represents the 
𝑛 variable(s) of the problem. Then, we define 𝑥0, the point 
where the homotopy begins. 

Step 2. The starting point of the algorithm. 𝐼𝑚𝑎𝑥 is the 
maximum number of roots to search in the system, 𝜆 is the 
homotopic parameter and 𝑖 is the counter loop for algorithm. 
Therefore, we assign 𝑥0 = 0, 𝜆 = 0, 𝑖 = 0, 𝜆 = 0, 𝑖 = 0, 

Step 3. This step in the algorithm involves two stages. 
First, Euler method is applied in order to perform a 
prediction; starting from (𝑥𝑗, 𝜆𝑗) an Euler based prediction is 

made under a tangential scheme to obtain (𝑥𝑗, 𝜆𝑗). The second 

part of this step consists in applying an iterative method to 
correct the estimation obtained from Euler method and thus 
to obtain a point over (𝑥𝑗 + 1, 𝜆𝑗+1) trajectory, see Fig. 2. 

Step 4. In case a crossing at 𝜆 = 1 is detected, then, a 
jump to step 5 is performed. Otherwise, step 3 is repeated. 

Step 5. Once a crossing at 𝜆 = 1 is detected, points 𝑃1 y 
𝑃2 are utilized to interpolate 𝑃3 over 𝜆 = 1 [35]. 

Step 6. The interpolated 𝑃3 point is used as the initial 
point of NR method; this procedure is done to improve the 
root precision [23]. 

Step 7. If the maximum number of roots 𝐼𝑚𝑎𝑥 is 
achieved, then it is proceeded to store the found roots and the 
trajectory is plotted; otherwise, the cycle is repeated at step 3. 

 

V. SINGLE OPERATION POINT CASE. 

The computer setup to perform analysis on this paper is as 
follows: Intel 𝑖3 CPU, speed of 2.40GHz, 3𝐺𝐵 of RAM, 
Windows 7 Ultimate 64 bits operating system, and the 
software environment (Maple 17 mathematical and 
simulation software). 

On electronics, the rectifier diode is one of the most 
important fundamental semiconductor devices; one of their 
main applications is to perform half-wave rectification of a 
single-phase supply. This process allows converting 
alternating current (AC) to direct current (DC) [32, 40]. Now 
it is proposed, as case study, a series circuit containing a 
single independent voltage source, one resistor and two 
diodes; assuming that each diode has different saturation 
current 𝐼𝑆. The circuit is depicted in Figure 3. 
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Figure 3: Series circuit with two diodes. 

 

Figure 4: Circuit operating point with two diodes. 

Using Shockley diode equation [32, 33], that 
approximatives the behaviour of the diode as follows 

 𝑖𝑑 = 𝐼𝑆 (exp (
𝑞𝑉𝐷

𝑛𝑘𝑇
) − 1),                       (18) 

 where 𝑖𝑑 is the diode current, in Amperes; 𝑉𝐷 is the 
voltage across the diode, in Volts; 𝐼𝑆 is the reverse bias 
saturation current (or scale current); 𝑞 is the magnitude of the 
charge of an electron, its value is 1.602 × 10−19 Coulomb; 𝑇 
is the absolute temperature of the 𝑝-𝑛 junction;𝑘 is the 
Boltzmann constant, its value is 1.380649 × 10−23𝐽𝐾−1; 𝑛 
is the ideality factor, also known as the quality factor or 
sometimes emission coefficient, depends on the fabrication 
process, its value is 1 for germanium and 2 for silicon. The 
quotient 𝑉𝑇 = 𝑘𝑇/𝑞 is the thermal voltage, is 
approximatively 25.85𝑚𝑉 at 300𝑜𝐶. Therefore, solving for 
𝑉𝐷, the voltage drop for both diodes, considering 𝑛 = 1, the 
expression becomes 

 𝑉𝐷 = 𝑉𝑇ln (
𝑖𝑑

𝐼𝑆
+ 1) , 𝑖 > 0,                   (19) 

 where 𝐼𝑆 is the reverse saturation current; 𝑖 is the diode 
current, and 𝑉𝑇 is the thermal voltage. Applying Kirchhoff 
laws, the algebraic equation to describe the operating point is 

 𝑅𝑖 + 𝑉𝐷1 + 𝑉𝐷2 − 𝑉 = 0.
 (20) 

Substituting (19) in (20) 

 𝑅𝑖 + 𝑉𝑇ln (1 +
𝑖

𝑖𝑆2
) − 𝑉 = 0.                 (21) 

Considering that 
𝑖

𝐼𝑆
≫ 1, the complexity of (19) can be 

reduced by approximating the logarithmic term as follows 

 𝑉𝐷 = 𝑉𝑇ln (
𝑖

𝐼𝑆
) = 𝑉𝑇ln(𝑖) − 𝑉𝑇ln(𝐼𝑆).         (22) 

Therefore, for each diode we obtain 

 𝑉𝐷1 = 𝑉𝑇ln (
𝑖

𝐼𝑆1
) = 𝑉𝑇ln(𝑖) − 𝑉𝑇ln(𝐼𝑆1),        (23) 

 𝑉𝐷2 = 𝑉𝑇ln (
𝑖

𝐼𝑆2
) = 𝑉𝑇ln(𝑖) − 𝑉𝑇ln(𝐼𝑆2).       (24) 

Rewriting (21) using (23) and (24), the mesh equation is 
obtained 

 𝑅𝑖 + 2𝑉𝑇ln(𝑖) − 𝑉𝑇ln(𝐼𝑆1) − 𝑉𝑇ln(𝐼𝑆2) − 𝑉 = 0.       (25) 

The operating point of the circuit, modelled by (20), (23), 
and (24), is the intersection of three surfaces (see Figure 4). 
For this example, the proposed values are 𝑉 = 3𝑉, 𝑅 = 5Ω, 
𝐼𝑆1 = 1𝐸 − 12𝐴, and 𝐼𝑆2 = 1𝐸 − 9𝐴. Solving the system of 

three equations using NR, the circuit current is 
0.3605448941𝐴. 

 

VI. SOLUTION USING THE PERTURBATION 

METHOD. 

To solve (25), the current is expressed in terms of a power 
series for 𝑉𝑇 [17, 41], given that 𝑉𝑇 << 1 and in agreement 
to the classic perturbation [24, 38] 

 𝑖 = 𝑖0 + 𝑖1𝑉𝑇 + 𝑖2𝑉𝑇
2 + 𝑖3𝑉𝑇

3 + ⋯.            (26) 

Taking the first four terms of (26), an approximation of 
level 3 is obtained; substituting in (25), we obtain 

 𝑐𝑅(𝑖0 + 𝑖1𝑉𝑇 + 𝑖2𝑉𝑇
2 + 𝑖3𝑉𝑇

3) + 2𝑉𝑇ln(𝑖0 + 𝑖1𝑉𝑇 +
𝑖2𝑉𝑇

2 + 𝑖3𝑉𝑇
3) − 𝑉𝑇ln(𝐼𝑆2) − 𝑉𝑇ln(𝐼𝑆1) − 𝑉 = 0.  

(27) 

Rearranging, (27) can be expressed as 

 𝑐𝑅(𝑖0 + 𝑖1𝑉𝑇 + 𝑖2𝑉𝑇
2 + 𝑖3𝑉𝑇

3) + 2𝑉𝑇ln(𝑖0) +

2𝑉𝑇ln (1 +
𝑖1𝑉𝑇+𝑖2𝑉𝑇

2+𝑖3𝑉𝑇
3

𝑖0
) − 𝑉𝑇ln(𝐼𝑆2) − 𝑉𝑇ln(𝐼𝑆1) − 𝑉 = 0. 

 (28) 

Replacing the first term of the Taylor expansion of the 
natural logarithm, we obtain 

 𝑐𝑅(𝑖0 + 𝑖1𝑉𝑇 + 𝑖2𝑉𝑇
2 + 𝑖3𝑉𝑇

3) + 2𝑉𝑇 (ln(𝑖0) +

𝑖1𝑉𝑇+𝑖2𝑉𝑇
2+𝑖3𝑉𝑇

3

𝑖0
) − 𝑉𝑇ln(𝐼𝑆2) − 𝑉𝑇ln(𝐼𝑆1) − 𝑉 = 0. (29) 

Regrouping terms based on 𝑉𝑇 and equalling to zero each 
coefficient, we create the following system of equations 
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𝑉𝑇
0: 𝑅𝑖0 − 𝑉 = 0,

𝑉𝑇
1: 𝑅𝑖1 + 2ln(𝑖0) − ln(𝐼𝑆2) − ln(𝐼𝑆2) = 0,

𝑉𝑇
2: 𝑅𝑖2 + 2 (

𝑖1

𝑖0
) = 0,

𝑉𝑇
3: 𝑅𝑖3 + 2 (

𝑖2

𝑖0
) = 0.

 (30) 

Solving (30), it is possible to obtain approximative 
analytic expressions for the operating point current 

 𝑖 =
1

𝑅
(𝑉 + 𝑉𝑇ln (

𝐼𝑆1𝐼𝑆2𝑅2

𝑉2 )) , 𝑅 > 0, 𝑉 > 0,

 (31) 

 𝑖 =
𝑉

𝑅
+

1

𝑅
(𝑉𝑇 −

2𝑉𝑇
2

𝑉
) ln (

𝐼𝑆1𝐼𝑆2𝑅2

𝑉2 ) , 𝑅 > 0, 𝑉 > 0,

 (32) 

 𝑖 =
𝑉

𝑅
+

1

𝑅
(𝑉𝑇 −

2𝑉𝑇
2

𝑉
+

4𝑉𝑇
3

𝑉2 ) ln (
𝐼𝑆1𝐼𝑆2𝑅2

𝑉2 ) , 𝑅 > 0, 𝑉 > 0.

 (33) 

The approximative solution of the circuit operating point 
in Figure 3 obtained using classic perturbation uses two 

diodes with different saturation currents. Table 1 and Table 2 
show results obtained using the following saturation currents 
𝐼𝑆1 = 1𝐸 − 12𝐴 and 𝐼𝑆2 = 1𝐸 − 9𝐴. As can be seen, the 
results show that our method is general, whether saturation 
currents are different or equal. Also, it can be noticed the 
circuit current was calculated for different supply voltages 
and resistor values; the results are in good agreement between 
the different approximation orders and the exclusively 
numerical solutions given by Orcad or LTspice (commercial 
simulators). 

It is important to notice that the order 1 of the analytic 
approximation is a compact analytic expression, simple to 
evaluate, accurate compared to orders 2 and 3 which provide 
higher accuracy, closer to the results obtained from electronic 
circuit simulators. The downside of these higher order 
expressions is the large number of terms. 

As have seen in the tables, we tested different supply 
voltages and different resistor values, this allowed to 
empirically conclude that the valid region of the bias voltage 
where approximations have good accuracy is about 𝑉 >
1.355 Volts. In particular, it would be interesting to broaden 
the proposed method to nonlinear circuits that include MOS 
transistors and/or bipolar transistors; using the modified 
nodal analysis as a tool to obtain the equilibrium equation of 
the circuit. 

 

Current i E1[3V, 5Ω] E2[4V, 10Ω] E3[5V, 15Ω] E4 [6V, 20Ω] E5 [12V, 20Ω] E6 [20V, 20Ω] 

Order 1 (31) 0.3195771786 0.2618848439 0.2418849642 0.2316860801 0.5298942946 0.9285738105 

Iterations  PNR 2 2 2 2 2 1 

Order 2 (32) 0.3244097985 0.2636699823 0.2428305403 0.2322747184 0.5301963334 0.9287584471 

Iterations  PNR 2 2 2 2 1 1 

Order 3 (33) 0.3243265163 0.2636469094 0.2428207632 0.2322696463 0.5301950321 0.9287579698 

Iterations  PNR 2 2 2 1 1 1 

Orcad 16.6 0.3258754939 0.2640259201 0.2429704051 0.2323434187 0.5302105407 0.9287613770 

LTspice IV 0.3257340000 0.2639550000 0.2429230000 0.2323080000 0.5301740000 0.9287240000 

Table  1: Equations (31), (32), and (33) with 𝐼𝑆1 = 𝐼𝑆2 = 1𝐸 − 12𝐴, 𝐸=[𝑉(Volts), 𝑅(Ω)], versus commercial simulators. 

 

Current i E1[3V, 5Ω] E2[4V, 10Ω] E3[5V, 15Ω] E4 [6V, 20Ω] E5 [12V, 20Ω] E6 [20V, 20Ω] 

Order 1 (31) 0.3910033682 0.2975979387 0.2656936941 0.2495426275 0.5477508420 0.9464303578 

Iterations  PNR 2 2 2 2 2 1 

Order 2 (32) 0.3946050768 0.2989214854 0.2663930879 0.2499774019 0.5479759489 0.9465688353 

Iterations  PNR 2 2 2 2 1 1 

Order 3 (33) 0.3945430073 0.2989043786 0.2663858562 0.2499736556 0.5479749791 0.9465684773 

Iterations  PNR 2 2 1 2 1 1 

Orcad 16.6 0.3953079029 0.299095941 0.2664621786 0.2500113734 0.5479827285 0.9465696966 

LTspice IV 0.3952020000 0.2990430000 0.2664270000 0.2499850000 0.5479550000 0.9465410000 

Table  2: Equations (31), (32), and (33) with 𝐼𝑆1 = 𝐼𝑆2 = 1𝐸 − 9𝐴, 𝐸=[𝑉(Volts), 𝑅(Ω)], versus commercial simulators. 

 

Current i E1[3V, 5Ω] E2[4V, 10Ω] E3[5V, 15Ω] E4 [6V, 20Ω] E5 [12V, 20Ω] E6 [20V, 20Ω] 

Order 1 (31) 0.3552902734 0.2797413913 0.2537893292 0.2406143538 0.5388225683 0.9375020841 

Iterations  PNR 2 2 2 2 2 1 

Order 2 (32) 0.3595074377 0.2812957338 0.2546118141 0.2411260601 0.5390861412 0.9376636412 

Iterations  PNR 2 2 2 1 1 1 

Order 3 (33) 0.3594347618 0.2812756439 0.2546033097 0.2411216509 0.5390850056 0.9376632236 

Iterations  PNR 2 2 1 1 1 1 

Orcad 16.6 0.3605448941 0.2815510671 0.2547126722 0.2411756791 0.5390962851 0.9376654206 

LTspice IV 0.3604220000 0.28114890000 0.2546720000 0.2411450000 0.5390640000 0.9376330000 

 

Table  3: Equations (31), (32), and (33) with 𝐼𝑆1 = 1𝐸 − 12𝐴, 𝐼𝑆2 = 1𝐸 − 9𝐴, 𝐸=[𝑉(Volts), 𝑅(Ω)], versus commercial simulators. 
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Figure 5: Tunnel diode circuit. 

 

VII. MULTIPLE OPERATION POINT CASE. 
It is known, based on semiconductor literature, that the 

characteristic curve of tunnel diode, even in the simplest 
circuit, may have multiple operating points (see Figure 5a). 
For this study case, multiple operating points are calculated in 
a circuit with such device. One of the common applications 
of a tunnel diode is in high frequency oscillators [32]. Figure 
5b depicts the circuit under study, include voltage source, one 
resistor, and a tunnel diode all connected in series. 

[6, 42] proposes a model for tunnel diode, given as 

 

 𝑖𝑑 =
𝐼𝑃𝑉𝐷

𝑉𝑃
exp (1 −

𝑉𝐷

𝑉𝑃
) + 𝕀exp (

𝑞

𝑘𝑇
𝑉𝐷),           (34) 

 

 where 𝑉𝐷 is the voltage between terminals, given in 
Volts; 𝑉𝑃 peak tension, given in Volts; 𝐼𝑃 peak current, given 
in Amperes; 𝑖𝑑 is the current flowing through the diode, in 

Amperes. The quotient 
𝑞

𝑘𝑇
 is the reciprocal of the thermal 

voltage defined by the elemental charge, given in Volts −1; 𝑘 

is Boltzmann constant, and 𝑇 is temperature given in Kelvin. 
The current 𝕀 is a function of the intrinsic constants of diode 
[42]. 

Applying Kirchhoff voltage law, the mesh equation of the 
circuit is 

 𝑉𝐷 = 𝑉 − 𝑖𝑅.                             (35) 

Substituting (35) in (34), we obtain 

 

 −𝑖 +
𝐼𝑃

𝑉𝑃
(𝑉 − 𝑖𝑅)exp (1 −

𝑉−𝑖𝑅

𝑉𝑃
) + 𝕀exp (

𝑞

𝑘𝑇
(𝑉 − 𝑖𝑅)) = 0,

 (36) 

 equation (36) of the circuit can not be solved using 
conventional algebraic methods [43]. 

 

 

 

 

VIII. SOLVING METHOD BY COMPUTER. 

From the classic perturbation theory [17, 24, 38, 41], when a nonlinear equation has a parameter much less than 1, it is 
possible to apply the methodology mentioned above to obtain an approximative solution. For this case, given that 𝕀 << 1, is 

feasible to apply classic perturbation. Thus, the circuit current may be expressed as power series. For this study case 

 

 𝑖 = 𝑖0 + 𝑖1𝕀1 + 𝑖2𝕀2
2 + 𝑖3𝕀3

3 + ⋯. (37) 

 

Substituting (37) in (36) and expanding using Taylor series of order 2, we obtain 

 

𝑐 − 𝑖 +
𝐼𝑃(𝑉−𝑖𝑅)

𝑉𝑃
exp (1 −

𝑉−𝑎𝑅

𝑉𝑃
) +

exp(1−
𝑉−𝑎𝑅

𝑉𝑃
)𝑅(𝑖−𝑎)

𝑉𝑃
+ 𝕀 (exp (

𝑞

𝑘𝑇
(𝑉 − 𝑎𝑅)) − exp (

𝑞

𝑘𝑇
(𝑉 − 𝑎𝑅))

𝑞

𝑘𝑇
𝑅(𝑖 − 𝑎)) = 0. 

  (38) 
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Figure 6: Operating point with loading line and tunnel diode curve. 

Grouping terms of order zero from (38), we have 

 

𝑐𝑐𝑖 = (−(
𝐼𝑃𝑅2exp(

𝑎𝑅

𝑉𝑃
+1)

𝑉𝑃
2exp(

𝑉

𝑉𝑃
)

)𝑖0
2 + (

𝐼𝑃𝑅2𝑎+𝐼𝑃𝑅𝑉−𝐼𝑃𝑅𝑉𝑝

𝑉𝑃
2exp(

𝑉

𝑉𝑃
)

exp (
𝑎𝑅

𝑉𝑃
+ 1) − 1))𝑖0 − (

𝐼𝑃𝑉exp(
𝑎𝑅

𝑉𝑃
+1)𝑎𝑅

𝑉𝑃
2exp(

𝑉

𝑉𝑃
)

+
𝐼𝑃𝑉exp(

𝑎𝑅

𝑉𝑃
+1)

𝑉𝑃exp(
𝑉

𝑉𝑃
)

)) + (⋯ )𝕀1 +

(⋯ )𝕀2
2 + ⋯.  

(39) 

Successive terms of (39) are not shown. Taking the coefficient of order zero from perturbative sum (39), which is a second 
degree trinomial in terms of 𝑖0, we are able to solve it using elemental algebra 

 

𝑐𝑖 = (
−1

2(𝐼𝑃𝑅2exp(
𝑎𝑅

𝑉𝑃
+1))

) √(𝐼𝑃
2𝑅2exp(2)(𝑎𝑅 − 𝑉𝑃 − 𝑉)2(exp(

𝑎𝑅

𝑉𝑃
))2 − 2𝑅𝑉𝑃

2𝐼𝑃exp(−𝑉𝑃 + 𝑉 +
𝑎𝑅

𝑉𝑃
(𝑉 + 1)) + 𝑉𝑃

4(exp(
𝑉

𝑉𝑃
))2 + (𝑎𝑅2 + (−𝑉𝑃 + 𝑉)𝑅)𝐼𝑃exp(

𝑎𝑅

𝑉𝑃
+ 1) − 𝑉𝑃

2exp(
𝑉

𝑉𝑃
),

 (40) 

 and 

𝑐𝑖 = (
1

2(𝐼𝑃𝑅2exp(
𝑎𝑅

𝑉𝑃
+1))

) √(𝐼𝑃
2𝑅2exp(2)(𝑎𝑅 − 𝑉𝑃 − 𝑉)2(exp(

𝑎𝑅

𝑉𝑃
))2 − 2𝑅𝑉𝑃

2𝐼𝑃exp(−𝑉𝑃 + 𝑉 +
𝑎𝑅

𝑉𝑃
(𝑉 + 1)) + 𝑉𝑃

4(exp(
𝑉

𝑉𝑃
))2 + (𝑎𝑅2 + (−𝑉𝑃 + 𝑉)𝑅)𝐼𝑃exp(

𝑎𝑅

𝑉𝑃
+ 1) − 𝑉𝑃

2exp(
𝑉

𝑉𝑃
),

 (41) 

 where 𝑎 is the expansion point for the Taylor series. In consequence, (40) and (41) are expressed in terms of the circuit 
parameters. Values for the voltage source, resistor, and saturation current of the tunnel diode are proposed as follows: 𝑉𝑃 =
50𝐸 − 3𝑉, 𝑉 = 0.3𝑉, 𝑅 = 4Ω, 𝐼𝑃 = 100𝐸 − 3𝐴, 𝕀 = 1𝐸 − 9𝐴,

𝑞

𝑘𝑇
= 40𝑉−1. Figure 6 shows the operating points for the circuit 

in Figure 5b using the values mentioned above. 

 

In this way, the hybrid technique PNR applies classic 
perturbation to (36) proposing a loop current given by (37), 
the result are equations (40) and (41). Arbitrary expansion 
points employed to find the operating points of the circuit are 
𝑎 = 0.05 and 𝑎 = 0.00. Using the proposed values in the 
circuit and performing the algebraic procedures, allows 
obtaining 𝑖𝑝01, 𝑖𝑝02, 𝑖𝑝03, 𝑖𝑝04; where suffix 𝑝 refers to 

perturbation. Therefore, to calculate the bias point 𝑄1 in 
Figure 6, 𝑖𝑝01 is selected as initial point for NR the estimation 

of 𝑖01. In consequence, fast converge of NR is guaranteed to 
find every operating point (36). The first two columns to the 

left of Table 4 show all the approximative roots calculated 
using the perturbation method. Notice that solution 𝑖𝑝04 has 

been discarded because is not within the operating point 
region, as it can be seen in Figure 6. 

Applying the hybrid scheme PNR on the NR process can 
be seen that using current values from the first two columns 
of Table 4 as starting points, the number of iterations are 7, 5, 
and 3 while taking 0.261𝑠, 0.218𝑠, and 0.140𝑠, respectively; 
the error criteria is about 1𝐸 − 10 in Maple 17. 

The advantage of this hybrid NPR technique lies on being 
a symbolic method, simple to evaluate avoiding the use of 
homotopy continuation. From the literature about homotopy 
continuation methods is known that this algorithm is built 
from fundamental blocks, these are: predictive step; NR 
corrective step, which is the most expensive block in 
computational terms; 𝜆 = 1 crossing detection; interpolation 
and fine-tuning [23, 35], among the most important. Using 
homotopy continuation took 362 iterations to reach 𝜆 = 1 
and 16091 iterations of the NR corrector, taking a total of 
115.924𝑠 to obtain all operating points. As already shown for 
the case of multiple operating points, the number of NR 
iterations exceeded by 16076, being this the main cause for 
the computation time difference between these two 
techniques. In consequence, the advantage of using the 
Hybrid PNR technique, in computational terms, to calculate 
operating points of the circuit in Figure 6 is noticeable since 
took just 15 NR iterations and 0.619𝑠 total time. 

Figure 7 and Figure 8 depict the homotopy trajectories 
[23] of solution to determine the different equilibrium states 
of the circuit with the three operating points when 𝜆 = 1. The 
operating points calculated using continuation homotopy are 
located in the penultimate column in Table 4.
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Figure 7: Homotopy trajectory of the circuit current for multiple 
operating points. 

 

Figure  8: Homotopy trajectory of 𝑉𝑑 voltage for multiple operating 

points. 

. 

Perturbation a = 0.05 Perturbation a = 0.00 PNR PNR Iteration Homotopy Iteration 

ip01  = 0.06495043272A – i1  = 0.07028795173A 7 i01  = 0.070208925515A 335 

ip02  = 0.04330225198A – i2  = 0.03450748128A 5 i02  = 0.034456395350A 347 

– ip03  = 0.005364498003A i3  = 0.006118858757A 3 i03  = 0.006053597072A 362 

– ip04  = −0.1747600592A – – – – 

Table 4: Comparison between operating points obtained by different solving methods. 

 

IX. CONCLUSIONS. 

The first case study proposed an approximative solution 
using classic perturbation of the operating point for a circuit 
with two diodes, independent voltage source, and resistor. 
The solution is an analytical expression in terms of the 
parameters in the circuit, such as bias value, thermal voltage, 
saturation current, and resistance. The analytical solution 
mentioned above has the advantage of being derivable and 
integrable in terms of all its parameters. For the second case 
study, the proposal included the use of a hybrid PNR scheme 
as a mathematical strategy to obtain an approximative result 
for the multiple solutions that a circuit with nonlinear 
elements, afterwards the solution will be used as initial point 
for the NR convergence method in order to increase the 
accuracy of the solutions for all operating points. Another 
aspect of the hybrid PNR technique is that it avoids the use of 
random start points on the NR algorithm. The comparison 
between the hybrid PNR method and homotopy methods 
showed that the proposed scheme improves the easiness to 
implement because its fast convergence in a few iterations, 
thus, computation time is significantly reduced. 

Given the success of the methodology, further work 
includes to extend it in circuits with higher number of 
components, that includes more diodes and decide if the 
resultant expressions can provide analytical information. It is 
possible to improve the understanding about the behaviour of 
such circuits. A potential application of the analytical 
expressions is to apply them on stability or frequency 
analysis [40, 44] in circuits with nonlinear elements. 
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