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Abstract—Image reconstruction is a process of recovering
the required components that constitute an image. Over the
last decade and a half, a technique to reconstruct images was
developed. This technique, known as Compressed Sensing (CS),
requires only sparse measurements while the Nyquist sampling
theorem requires all necessary samples to recover a signal. This
paper explores two algorithms which solve for a sparse solution,
namely, OMP and LARS. It surveys the two procedures by
measuring different metrics side-by-side and highlighting the
essence of the algorithms.

Index Terms—Image reconstruction, OMP, LARS, Signal Pro-
cessing

I. INTRODUCTION

The reconstruction of signals is a common goal in the field

of signal processing. The Nyquist-Shannon sampling theorem

suggests that in order to reconstruct a signal perfectly, it would

have to be sampled at a rate that is at least twice its highest

frequency component. For signals that are not naturally ban-

dlimited, like images, the temporal resolution will determine

the sampling rate. However, in data acquisition systems, due to

aliasing, an antialiasing-low-pass filter is traditionally used to

bandlimit the signal. Therefore, the Nyquist-Shannon theorem

still plays an essential role.

Compressed sensing is a signal processing technique that

can reconstruct a signal with fewer measurements than tra-

ditionally required. It fundamentally relies on two principles,

namely, sparsity and incoherence. [1]

A. Sparsity

To demonstrate sparsity mathematically, consider an un-

known vector x Rn; such as the n-pixels of an image.

Consider Ψ to be a standard basis; such as the fourier basis

n

xs = ΨiΘ (2)

i=1

Given that Ψ is an n n matrix, the compressible signal x
can then be written as:

xs = ΨΘs (3)

B. Incoherence

The latter principle that compressed sensing relies on is

incoherence. In the context of incoherent sampling, consider

Φ, a sensing matrix Rm×n, where m << n. Let there exist

a sparse matrix Ψ which is incoherent with respect to Φ, as

their product will have new samples which aren’t found in a

standard basis [2]. Instead of recovering x, which will require

n requirements, consider a measurement vector y ∈ Rm.

y = ΦΨx (4)

From eq. (3) Θs is the sparsest possible sequence of

coefficients that would make up the image x. The dictionary

C = ΦΨ substitutes the above equation to become:

y = Cx (5)

Thus, the above equation is of the form Ax = b, wherein,

with the information of y and C, one must solve for x. For the

two algorithms that we are exploring in this paper, there are a
which can expanded as can be represented few assumptions. It assumes C ∈ Rm is an input matrix and is

as follows :
Ψ = [ψ1 ψ2 ..ψn] x

l2 normalized. The residual vector r ∈ Rm demonstrates the

x = ΨiΘi (1)

i=1

difference between the measurement vector y and the solution

vector. A support set S Rk  is a set that consists of the

indices of the active columns of matrix C.

Where Θ is understood as a sequence of coefficients of x.

In order to compress x, the vector Θs will have to be sparse.

It will majorly have zero value entries.

II. ALGORITHMS FOR SPARSE APPROXIMATION

In this paper we discuss the two algorithms for the re-

construction of a noisy image. Their individual features are

highlighted below.

n
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A. Least Angle Regression 

Over a recent period of time, attention to the domain 

of l1 normalization has increased drastically. It has offered 

techniques to solve for a sparse solution of underdetermined 

systems. Donoho and Tsaig [4] proposed that an algorithm 

named ’Homotopy algorithm’ (a modified LARS algorithm), 

in addition to solving the l1 minimization problem, can solve 

for the sparse solutions just as rapidly as OMP/LARS. The 

name “least angle” came from geometrical interpretation of 

the LARS process. It chooses the updated direction that makes 

the smallest and equal angle with all active columns [3]. 
 

Algorithm 1 Least Angle Regression  

Input: (i) the measurement vector y Rm (ii) the matrix 

C Rm×n (iii) The threshold for error ϵ 
Output: The sparse vector x Rn 

Initialise : 

1) The residual r0 = y 
2) The counter value p = 0 
3) x0 = 0 

a step of othrogonalization, in order to prevent the algorithm 

from choosing a column of the matrix C repeatedly [6]. 
 

Algorithm 2 Orthogonal Matching Pursuit  

Input: (i) the measurement vector y Rm (ii) the matrix 

C Rm×n (iii)The threshold for error ϵ 
Output: The sparse vector x Rn Initialise : 

1) The residual r0 = y 
2) The counter value p = 0 
3) x0 = 0 

4) Support set S = 

Compute: 

1) p = p + 1 

2) Calculate the correlation vector vp = CT rk−1 
3) Find the next column of matrix C by using the index 

obtained from the largest absolute entry of vp. 

i = arg maxj∈Cp  vp(j) 
Where Cp is a set that the excludes values that are in 

the support set S 
4) Add i to Sp = Sp−1 i 
5) Solve the least square problem: CT CSxp(S) = CT y 

4) Support set S = {} 6) Calculate the residual vector rp 
S S 

= y − Cxp 
Compute: 

1) p = p + 1 
2) Calculate the correlation vector by vp = CT rp−1 

7) If the residual vector r ¿ ϵ , the algorithm will go back 

to the first step. Else, the algorithm will terminate and 

return x = x 
3) Calculate the absolute maximum value in the vector 

vp, λp = vp  ∞ 
4) If the value of λp happens to be extremely small or 

even 0, then the algorithm terminates and the values 

of xp is returned. Else, the algorithm continues and 

the following steps are continued. 

5) The support set S will then be built using {j:vp(j) = 

λp 
6) The least squares problem will then be solved, so that 

the active entries may be found. The updated direction 

should be considered. 

CT CSdp(S) = sign(vp(S)) 
where sign(vp(S)) returns the sign of the entries of 

the correlation vector vk 
7) The inactive entries of the updated direction become 

0, dp(Sv) = 0 

8) Calulate the minimum step size for λp 
9) The solution vector is updated to xp = xp−1 + λpdp 

10) Find the new residual vector: rp = y   Cxp 
11) If rp 2 < ϵ, the algorithm may be terminated and 

output x = xv as the solution vector. If not, increase 

the iteration k = k +1 and return to computing the 

correlation vector. 
 

 

 
B. Orthogonal Matching Pursuit 

In 1993, Mallat and Zhang [5] proposed a sparse approxi- 

mation algorithm that they named the Matching Pursuit (MP). 

This algorithm searches for a solution for an underdetermined 

linear system. The MP algorithm was later modified to the 

OMP, which uses a least squared formula instead and adds 

p 
 

 

 

III. EXPERIMENT AND SIMULATION 

We conducted an experiment by using a noisy image from 

a dataset and measure the performance of both algorithms on 

it. 

A. Conditions 

The Smartphone Image Denoising Dataset (SIDD) con- 

tains images representing 160 scenes. They are presented in 

pairs of noisy and ground truth. This dataset has pictures 

which were shot on the iPhone 7, LG G4, Google Pixel and 

Samsung Galaxy S6. For this experiment, patches of size 

(7,7) were extracted from a sample image. The dictionary 

for this algorithm was learnt in batches, and the comparison 

of the two algorithms is measured through two parameters. 

These parameters are Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM). 

B. Results 

The measured PSNR values for both methods are shown in 

Table I. For the LARS algorithm, the values do not increase 

drastically and centre around 28 dB. The OMP algorithm 

increases in PSNR with the increase of the non-zero coeffi- 

cients. The OMP algorithm displayed higher values of PSNR. 

The SSIM is a perception-based metric that calculates image 

quality degradation. 

As shown in Table II, the values of SSIM increase upwards 

with the increase in of non-zero coefficients. It is worth noting 

that OMP reaches a value that is extremely close to 1. From 

fig. 1, there are upward trends of both the algorithms. At no 

{} 
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TABLE I 

PSNR VALUES FOR OMP AND LARS 
 

PSNR (dB) 
Non-zero 
coefficients (s) 

OMP LARS  

28.44 25.70 2 

30.58 25.76 4 

33.72 27.51 6 

37.10 28.93 8 

38.11 28.54 10 

38.90 28.91 12 

41.18 28.28 14 

 

 

point do these values overlap, although a slight spike at 8 

non-zero coefficients is noticeable. 

 
TABLE II 

SSIM VALUES FOR OMP AND LARS 
 

SSIM 
Non-zero 
coefficients (s) 

OMP LARS  

0.882 0.749 2 

0.932 0.791 4 

0.964 0.839 6 

0.985 0.865 8 

0.986 0.869 10 

0.991 0.876 12 

0.994 0.877 14 

 

 

 
Fig. 1. Graph of SSIM vs. non-zero coefficients for LARS and OMP 

 
 

IV. CONCLUSION 

This paper explores two sparse approximation algorithms 

by testing them on an image reconstruction experiment. The 

gathered results as shown above were for a given noisy image, 

so that we could obtain a general insight into the metrics of 

OMP and LARS. The time taken to compute the calculation 

for OMP is far lesser than for LARS. This is because there 

are many additional steps that LARS executes, that OMP does 

not have. OMP updates the largest possible entries such that 

the values in the support set are orthogonal to residual r. 
As for LARS, the solution coefficients are updated to the 

smallest value, which will result in a column to join the support 

set or be dropped from it. For further study, it would be 

 

 
 

Fig. 2. Original noisy image from SIDD 
 

 
 

Fig. 3. Reconstruction with OMP and 4 non-zero coefficients 
 

 
 

Fig. 4. Reconstruction with LARS and 4 non-zero coefficients 

 

 

encouraged to analyse the performance of OMP and LARS in 

other circumstances where values of C are highly correlated. 

REFERENCES 

[1] E. J. Candes and M. B. Wakin, ”An Introduction To Compressive 
Sampling,” in IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-
30, March 2008, doi: 10.1109/MSP.2007.914731. 

[2] J. M. Duarte-Carvajalino and G. Sapiro, ”Learning to Sense Sparse 
Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Op- 
timization,” in IEEE Transactions on Image Processing, vol. 18, no. 7, 
pp. 1395-1408, July 2009, doi: 10.1109/TIP.2009.2022459. 

[3] Hameed, Mazin Abdulrasool. Comparative Analysis of Orthogonal 
Matching Pursuit and Least Angle Regression. N.p.: Michigan State 
University, Electrical Engineering, 2012. 

[4] Donoho, David Tsaig, Yaakov Drori, Iddo Starck, Jean-Luc. (2012). 
Sparse Solution of Underdetermined Systems of Linear Equations by 
Stagewise Orthogonal Matching Pursuit. IEEE Transactions on Infor- 
mation Theory. 58. 1094-1121. 10.1109/TIT.2011.2173241. 
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