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ABSTRACT

The agricultural sector faces critical challenges due
to plant diseases that reduce crop yield and threaten
food security. This project presents a transparent
and intelligent system leveraging Explainable
Avrtificial Intelligence (XAIl) to enhance decision-
making in precision agriculture. Using the widely
recognized PlantVillage dataset and state-of-the-art
pre-trained deep learning models (ResNet50 and
EfficientNet), the system accurately detects plant
diseases and explains predictions using GRAD-
CAM and LIME. It is supported by a Node.js-based
backend API and an intuitive React dashboard for
farmers. The model is tested and deployed using
free, open platforms like Google Colab, Render, and
Vercel. This solution aims to provide a cost-
effective, scalable, and interpretable Al-powered
plant disease diagnostic tool.
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ResNet50, EfficientNet, LIME, Precision
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I. INTRODUCTION

Agriculture, the backbone of rural economies, is
under constant threat from plant diseases.
Manual diagnosis is time-consuming and often
inaccurate. Recent advances in Al allow
automated disease detection, but models often
act as "black boxes," leaving farmers with no
explanation behind predictions. This project
proposes an Explainable Al (XAl) framework
that not only detects plant diseases using deep
learning, but also offers transparent visual and
textual justifications.

We use the PlantVillage dataset, pre-trained
image classification models (ResNet50 and
EfficientNet), and XAl techniques (GRAD-CAM
and LIME) to achieve high accuracy and
interpretability. The solution is deployed using a
backend API and a frontend dashboard to create
an accessible and interactive tool for farmers.

The backend handles image processing and
prediction logic, while the dashboard allows
users— such as farmers, agronomists, or
agricultural officers—to upload leaf images, view
predictions, interpret the results, and receive
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actionable treatment suggestions. The entire pipeline
is deployed using free platforms such as Google
Colab, ensuring that the system is not only intelligent
and interpretable but also cost-effective and easily
deployable, especially for communities with limited
resources.

Il. RELATED WORK
The foundation of any machine learning system is its
dataset. For this project, we use the PlantVillage
dataset, one of the most popular and widely used
datasets for plant disease classification tasks. It
contains a total of 54,305 high-resolution images of
plant leaves, categorized into 38 different disease
classes across 14 crop species, including Tomato,
Potato, Apple, Grape, and more. Each image is
already labeled as either healthy or diseased, making
it highly suitable for supervised learning. Since the
dataset is pre-cleaned and balanced, we avoid the
time-consuming and error-prone process of manual
preprocessing.
The choice of the PlantVillage dataset is strategic not
only because of its size and diversity but also due to
its credibility in the research community. It is
publicly available on platforms like Kaggle and
TensorFlow Datasets, and has been used in numerous
academic publications and agricultural Al projects.
Its real-world relevance ensures that models trained
on this dataset can generalize well when tested on
similar images captured in practical farming
scenarios. Additionally, using a well-established
dataset helps maintain consistency and comparability
with prior research.
To train our system efficiently, we adopt a transfer
learning approach using pre-trained deep learning
models. Transfer learning allows us to take a model
already trained on a massive image dataset (like
ImageNet) and adapt it to a more specific task like
plant disease classification. This technique is
especially useful when computational resources are
limited, as it significantly reduces training time and
improves performance on smaller datasets. In our
case, instead of training a model from scratch, we use
pre-trained models and fine-tune them using the
PlantVillage data, ensuring fast and accurate results
even on modest hardware.
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Two specific models were selected for their proven
effectiveness in image classification tasks: ResNet50
and EfficientNet. ResNet50 is a deep convolutional
neural network with 50 layers and a unique residual
connection mechanism that prevents the degradation
problem during training. It has shown excellent
results in various classification  problems.
EfficientNet, on the other hand, is a more recent
architecture that scales model size using a compound
coefficient, balancing depth, width, and resolution for
optimal performance. Its efficiency and speed make
it a strong candidate for real-time applications such
as disease diagnosis in the field.

All training and evaluation are carried out on Google
Colab, a free cloud-based coding platform that
provides access to GPUs, making it an ideal
environment for running Al experiments without
expensive infrastructure. The pre-trained models are
fine-tuned and validated using subsets of the
PlantVillage dataset. Results from both models are
compared, and the best-performing configuration is
chosen for integration with the rest of the system.
This approach ensures that we maintain a balance
between  performance, interpretability, and
ease of deployment.

I1l. METHODOLOGY

Deep learning models such as ResNet50 and
EfficientNet are known for their high classification
accuracy, but they often operate as opaque systems,
offering no insight into how predictions are made.
This lack of interpretability is especially
problematic in agriculture, where decisions impact
real-world actions like crop treatment. Therefore,
explainability becomes a critical feature of any Al
solution intended for field-level use. To address this,
our project incorporates two widely used
explainability  techniques: LIME (Local
Interpretable Model-Agnostic Explanations) and
Grad-CAM (Gradient-weighted Class Activation
Mapping). Together, they provide both localized
and class-discriminative visual explanations,
making the system transparent and trustworthy
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Fig. 1: Methodology Diagram
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The explainability process is initiated after a plant
leaf image is passed through the trained Al model.
Once a prediction is made — for example, identifying
a disease like "Tomato Leaf Curl Virus" — the system
triggers both LIME and Grad-CAM to generate
visual outputs. These explainers help highlight
specific areas of the image that contributed the most
to the AI’s decision. By visualizing these regions,
users can understand why the model predicted a
certain disease, rather than blindly trusting the output.
LIME operates by perturbing the input image and
observing changes in the model’s prediction. It
breaks down the image into superpixels and
selectively turns them on or off to assess their
importance in classification. This results in a heatmap
overlay that emphasizes regions most influential to
the model's output. LIME is particularly useful in
showing fine-grained local patterns, like small spots
or irregular textures on leaves, which may indicate
early signs of disease. It also provides a textual
explanation summarizing the model’s rationale,
making it easier for non-expert users to interpret.

On the other hand, Grad-CAM provides a more
global and class-specific explanation by utilizing the
gradients flowing into the final convolutional layer of
the CNN. It creates a coarse heatmap that visualizes
the important regions of the image used by the model
to predict a specific class. Grad-CAM is especially
effective for identifying broader spatial features, such
as overall leaf shape, color variations, or large
infected patches. While LIME offers interpretability
through local approximation, Grad-CAM delivers
insight into the deeper internal workings of the neural
network’s spatial reasoning.

Technically, both LIME and Grad-CAM are
implemented in the backend as part of the model
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inference pipeline. After a prediction is made, the
image is processed separately by each explainability
module. The Python libraries lime and tf-keras-vis
are used for LIME and Grad-CAM respectively. The
results — visual overlays and textual explanations —
are converted into image and JSON formats, and
returned through the Flask APl response. This
ensures that every prediction includes accompanying
interpretability data without adding significant
latency.

In the frontend, built using React.js, the dashboard is
designed to display both explainability outputs
clearly. When a user uploads an image, they receive
not only the disease name but also two visual
explanation panels: one showing the LIME heatmap
and another showing the Grad-CAM activation map.
This dual-visualization approach enhances user
understanding by highlighting both fine-grained and
high-level disease features. The dashboard also
includes the LIME-generated textual explanation,
which describes what visual traits were responsible
for the decision.

Overall, the integration of LIME and Grad-CAM in
our crop disease detection framework bridges the gap
between raw Al predictions and real-world
interpretability. These techniques help users
understand and trust the model’s behavior, which is
especially important in agricultural applications
where decisions have direct impact on productivity
and crop health. By ensuring transparent decision-
making, our system supports better, more informed
actions — thereby making Al not only accurate but
also explainable and actionable.
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Fig. 2: Data Flow Diagram
The Data Flow Diagram (DFD) illustrates the
interaction between the farmer, agronomist, and the
Al system within the Explainable Al Crop Disease
Detection platform. The farmer begins by uploading
a crop image, which is processed by the Al system to
detect disease. Upon detection, the system provides a
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visual and textual explanation to enhance
transparency. The farmer and agronomist can then
review the explanation and receive treatment advice.
Additionally, users can revisit past diagnoses to
compare and validate decisions. This flow ensures
both accuracy and interpretability in agricultural
disease management.

Iv. IMPLEMENTATION
The implementation of this project involved the
integration of deep learning-based  image
classification with explainable Al techniques to
create a user-friendly disease detection tool for
farmers. The system architecture was divided into
three main components: the backend Al model, the
explainability module, and the frontend dashboard.
The project was developed using a combination of
Python (for backend processing), React.js (for
frontend UI), and Django for the API layer, ensuring
smooth communication between the user interface
and the Al model.
To train the model, we used the PlantVillage dataset,
which consists of over 50,000 labeled images of
healthy and diseased leaves across various crop
species. We employed pre-trained convolutional
neural networks like ResNet50 and EfficientNet for
their robust performance on image classification
tasks. Transfer learning was used to fine-tune these
models on our dataset, reducing the time and
computational power required for training while
improving accuracy. The trained models were
capable of classifying crop images into different
disease categories with high precision.
A major challenge in Al-based systems is the “black-
box” nature of predictions, which reduces trust
among end-users like farmers. To address this, we
integrated Grad-CAM (Gradient-weighted Class
Activation Mapping) into the pipeline. Grad-CAM
helps generate heatmaps that highlight the most
important regions in the leaf images that influenced
the AI’s predictions. These visual cues are presented to
users alongside the diagnosis, helping them
understand and trust the model’s decision.
The backend of the application was built using
Django, where we developed RESTful API
endpoints to handle image uploads, run predictions,
generate Grad-CAM heatmaps, and return results in
JSON format. This backend system also stores
historical records of diagnoses, which can be
reviewed by users for future reference. For
deployment and demonstration, the backend was run
locally, avoiding the need for paid cloud
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services, in line with our goal of keeping the solution
cost-free and simple to use.

The frontend dashboard was built using React.js,
designed with simplicity and accessibility in mind for
rural users. It allows farmers to upload crop images,
receive disease predictions, view visual explanations,
and get basic treatment suggestions. The dashboard
also includes a section to review past diagnoses,
making it easier for users to monitor crop health over
time. This implementation effectively combines Al
performance with human-centered design to support
real-world agricultural decision- making.

V.RESULTS AND OBSERVATIONS

The Explainable Al-based crop disease detection
system was evaluated using a diverse dataset of plant
leaf images, simulating real-world agricultural
scenarios. The dataset included both healthy and
diseased plant images across multiple crop types to
assess the system's generalization capability and
predictive accuracy. The deep learning model, built
using Convolutional Neural Networks (CNNs),
effectively identified various disease categories with
high consistency. The average prediction accuracy
was recorded at 91.8%, with a false positive rate of
6.3%, showcasing reliable performance even on
unseen data.

] Per-Class Accuracy

Fig. 1: Per-Class Accuracy

This figure presents the accuracy achieved for each
class in the PlantVillage dataset, showing high
performance across most crop diseases.

) recision Per Class

Fig. 2: Precision Per Class
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This figure illustrates the precision score for each
class, reflecting the model’s effectiveness in
minimizing false positives for plant disease
classification.

Recall Per Class

Fig. 3: Recall Per Class

This figure displays the recall values per class,
indicating the model's capability to correctly
identify all true disease cases without omission.

1ROC Curves (Top 10 Classes)

Fig. 4: ROC Curve with AUC

This figure shows ROC curves and AUC values for
the top 10 classes, all achieving an AUC of 1.00,
indicating near-perfect discrimination capability.
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Fig. 5: Training and validation accuracy and loss over
epochs.

The model demonstrates high training (99.6%) and
validation (99.2%) accuracy with minimal overfitting,
and low loss values throughout training, indicating
strong convergence and generalization.
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Integration of Explainable Al techniques such as
LIME, and Grad-CAM significantly enhanced the
interpretability ~ of  predictions. The  visual
explanations generated by Grad-CAM accurately
highlighted the infected regions of the leaf images,
while SHAP and LIME provided feature-level
importance scores that offered clear insights into the
Al model’s decision logic. This interpretability
proved beneficial in identifying biases, improving
transparency, and fostering user trust—particularly
important for farmers and agronomists relying on the
system for critical decisions.

From a usability perspective, the frontend interface—
developed using React.js —successfully displayed
prediction results, heatmaps, and explanation
summaries in an intuitive format. The upload process,
confidence score, and Grad-CAM visualizations were
dynamically updated and persisted across sessions.
Real-time feedback through toast notifications and Al
explanations ensured a seamless user experience.
Farmers could easily navigate disease results and
access treatment suggestions, contributing to practical
decision-making in the field.

The system also demonstrated responsiveness and
operational reliability. The average response time
for generating predictions and explanations was
under 2.5 seconds, meeting near-real-time usage
expectations. The system architecture proved
modular and scalable, allowing future expansion to
support additional crop types or larger datasets.
Backend services maintained consistent performance,
and all logs were efficiently recorded for further
model analysis and system improvement.

Overall, the project validated the feasibility of using
Explainable Al in crop disease detection to support
informed agricultural practices. By combining
accuracy with interpretability, the system bridges the
gap between advanced Al capabilities and the
practical needs of end users in precision agriculture.

VI. CONCLUSION

This paper presents an Explainable Al-driven
framework for crop disease detection, designed to
enhance decision-making in precision agriculture.
By integrating state-of-the-art Convolutional
Neural Networks (CNNs) with explainability
techniques such as Grad-CAM and LIME, the
system provides accurate disease predictions
alongside transparent, visual, and feature-based
explanations. The modular architecture supports
real-time image analysis, actionable insights, and a
seamless user experience through a responsive
frontend built with React.js The backend, powered
by Python-based inference and explainability
modules, ensures scalable integration with potential
farm-level or cloud-based systems. With high
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detection accuracy, low latency, and enhanced
interpretability, the solution addresses critical
challenges in Al adoption for agriculture—
particularly trust, usability, and transparency. By
empowering farmers and agronomists with
understandable Al insights, the framework
promotes data-driven, sustainable farming practices
and paves the way for broader adoption of
intelligent agricultural technologies.

VII. FUTURE SCOPE
While the proposed Explainable Al framework
demonstrates effective crop disease detection and
interpretation, several enhancements are planned to
broaden its impact. Integration with real-time loT-
based farm monitoring systems and drones can
enable automated, large-scale diagnosis across fields.
Support for additional crops and region-specific
disease datasets will improve generalization and local
relevance. The explainability module can be enriched

with  more advanced techniques, such as
counterfactual explanations and attention-based
models, to offer deeper insights. Mobile app

development with offline capabilities will ensure
accessibility for remote farming communities.
Furthermore, incorporating reinforcement learning
could enable the model to adapt over time based on
user feedback and environmental changes. Finally,
transforming the system into a multilingual, multi-
user platform with role-based dashboards will
prepare it for deployment at scale in agricultural
cooperatives and government-led precision farming
initiatives.
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