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ABSTRACT 

The agricultural sector faces critical challenges due 

to plant diseases that reduce crop yield and threaten 

food security. This project presents a transparent 

and intelligent system leveraging Explainable 

Artificial Intelligence (XAI) to enhance decision- 

making in precision agriculture. Using the widely 

recognized PlantVillage dataset and state-of-the-art 

pre-trained deep learning models (ResNet50 and 

EfficientNet), the system accurately detects plant 

diseases and explains predictions using GRAD- 

CAM and LIME. It is supported by a Node.js-based 

backend API and an intuitive React dashboard for 

farmers. The model is tested and deployed using 

free, open platforms like Google Colab, Render, and 

Vercel. This solution aims to provide a cost- 

effective, scalable, and interpretable AI-powered 

plant disease diagnostic tool. 
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ResNet50, EfficientNet, LIME, Precision 
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I. INTRODUCTION

Agriculture, the backbone of rural economies, is 

under constant threat from plant diseases. 

Manual diagnosis is time-consuming and often 

inaccurate. Recent advances in AI allow 

automated disease detection, but models often 

act as "black boxes," leaving farmers with no 

explanation behind predictions. This project 

proposes an Explainable AI (XAI) framework 

that not only detects plant diseases using deep 

learning, but also offers transparent visual and 

textual justifications. 

We use the PlantVillage dataset, pre-trained 

image classification models (ResNet50 and 

EfficientNet), and XAI techniques (GRAD-CAM 

and LIME) to achieve high accuracy and 

interpretability. The solution is deployed using a 

backend API and a frontend dashboard to create 

an accessible and interactive tool for farmers. 

The backend handles image processing and 

prediction logic, while the dashboard allows 

users— such as farmers, agronomists, or 

agricultural officers—to upload leaf images, view 

predictions, interpret the results, and receive  

actionable treatment suggestions. The entire pipeline 

is deployed using free platforms such as Google 

Colab, ensuring that the system is not only intelligent 

and interpretable but also cost-effective and easily 

deployable, especially for communities with limited 

resources. 

II. RELATED WORK

The foundation of any machine learning system is its 

dataset. For this project, we use the PlantVillage 

dataset, one of the most popular and widely used 

datasets for plant disease classification tasks. It 

contains a total of 54,305 high-resolution images of 

plant leaves, categorized into 38 different disease 

classes across 14 crop species, including Tomato, 

Potato, Apple, Grape, and more. Each image is 

already labeled as either healthy or diseased, making 

it highly suitable for supervised learning. Since the 

dataset is pre-cleaned and balanced, we avoid the 

time-consuming and error-prone process of manual 

preprocessing. 

The choice of the PlantVillage dataset is strategic not 

only because of its size and diversity but also due to 

its credibility in the research community. It is 

publicly available on platforms like Kaggle and 

TensorFlow Datasets, and has been used in numerous 

academic publications and agricultural AI projects. 

Its real-world relevance ensures that models trained 

on this dataset can generalize well when tested on 

similar  images  captured  in  practical  farming 

scenarios. Additionally, using a well-established 

dataset helps maintain consistency and comparability 

with prior research. 

To train our system efficiently, we adopt a transfer 

learning approach using pre-trained deep learning 

models. Transfer learning allows us to take a model 

already trained on a massive image dataset (like 

ImageNet) and adapt it to a more specific task like 

plant disease classification. This technique is 

especially useful when computational resources are 

limited, as it significantly reduces training time and 

improves performance on smaller datasets. In our 

case, instead of training a model from scratch, we use 

pre-trained models and fine-tune them using the 

PlantVillage data, ensuring fast and accurate results 

even on modest hardware. 
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Two specific models were selected for their proven 

effectiveness in image classification tasks: ResNet50 

and EfficientNet. ResNet50 is a deep convolutional 

neural network with 50 layers and a unique residual 

connection mechanism that prevents the degradation 

problem during training. It has shown excellent 

results in various classification problems. 

EfficientNet, on the other hand, is a more recent 

architecture that scales model size using a compound 

coefficient, balancing depth, width, and resolution for 

optimal performance. Its efficiency and speed make 

it a strong candidate for real-time applications such 

as disease diagnosis in the field. 

All training and evaluation are carried out on Google 

Colab, a free cloud-based coding platform that 

provides access to GPUs, making it an ideal 

environment for running AI experiments without 

expensive infrastructure. The pre-trained models are 

fine-tuned and validated using subsets of the 

PlantVillage dataset. Results from both models are 

compared, and the best-performing configuration is 

chosen for integration with the rest of the system. 

This approach ensures that we maintain a balance 

between  performance,  interpretability,  and 

ease of deployment. 

III. METHODOLOGY

Deep learning models such as ResNet50 and 

EfficientNet are known for their high classification 

accuracy, but they often operate as opaque systems, 

offering no insight into how predictions are made. 

This lack of interpretability is especially 

problematic in agriculture, where decisions impact 

real-world actions like crop treatment. Therefore, 

explainability becomes a critical feature of any AI 

solution intended for field-level use. To address this, 

our project incorporates two widely used 

explainability techniques: LIME (Local 

Interpretable Model-Agnostic Explanations) and 

Grad-CAM (Gradient-weighted Class Activation 

Mapping). Together, they provide both localized 

and class-discriminative visual explanations, 

making the system transparent and trustworthy 

. 
Fig. 1: Methodology Diagram 

The explainability process is initiated after a plant 

leaf image is passed through the trained AI model. 

Once a prediction is made — for example, identifying 

a disease like "Tomato Leaf Curl Virus" — the system 

triggers both LIME and Grad-CAM to generate 

visual outputs. These explainers help highlight 

specific areas of the image that contributed the most 

to the AI’s decision. By visualizing these regions, 

users can understand why the model predicted a 

certain disease, rather than blindly trusting the output. 

LIME operates by perturbing the input image and 

observing changes in the model’s prediction. It 

breaks down the image into superpixels and 

selectively turns them on or off to assess their 

importance in classification. This results in a heatmap 

overlay that emphasizes regions most influential to 

the model's output. LIME is particularly useful in 

showing fine-grained local patterns, like small spots 

or irregular textures on leaves, which may indicate 

early signs of disease. It also provides a textual 

explanation summarizing the model’s rationale, 

making it easier for non-expert users to interpret. 

On the other hand, Grad-CAM provides a more 

global and class-specific explanation by utilizing the 

gradients flowing into the final convolutional layer of 

the CNN. It creates a coarse heatmap that visualizes 

the important regions of the image used by the model 

to predict a specific class. Grad-CAM is especially 

effective for identifying broader spatial features, such 

as overall leaf shape, color variations, or large 

infected patches. While LIME offers interpretability 

through local approximation, Grad-CAM delivers 

insight into the deeper internal workings of the neural 

network’s spatial reasoning. 

Technically, both LIME and Grad-CAM are 

implemented in the backend as part of the model 
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inference pipeline. After a prediction is made, the 

image is processed separately by each explainability 

module. The Python libraries lime and tf-keras-vis 

are used for LIME and Grad-CAM respectively. The 

results — visual overlays and textual explanations — 

are converted into image and JSON formats, and 

returned through the Flask API response. This 

ensures that every prediction includes accompanying 

interpretability data without adding significant 

latency. 

In the frontend, built using React.js, the dashboard is 

designed to display both explainability outputs 

clearly. When a user uploads an image, they receive 

not only the disease name but also two visual 

explanation panels: one showing the LIME heatmap 

and another showing the Grad-CAM activation map. 

This dual-visualization approach enhances user 

understanding by highlighting both fine-grained and 

high-level disease features. The dashboard also 

includes the LIME-generated textual explanation, 

which describes what visual traits were responsible 

for the decision. 

Overall, the integration of LIME and Grad-CAM in 

our crop disease detection framework bridges the gap 

between raw AI predictions and real-world 

interpretability. These techniques help users 

understand and trust the model’s behavior, which is 

especially important in agricultural applications 

where decisions have direct impact on productivity 

and crop health. By ensuring transparent decision- 

making, our system supports better, more informed 

actions — thereby making AI not only accurate but 

also explainable and actionable. 

Fig. 2: Data Flow Diagram 

The Data Flow Diagram (DFD) illustrates the 

interaction between the farmer, agronomist, and the 

AI system within the Explainable AI Crop Disease 

Detection platform. The farmer begins by uploading 

a crop image, which is processed by the AI system to 

detect disease. Upon detection, the system provides a 

visual and textual explanation to enhance 

transparency. The farmer and agronomist can then 

review the explanation and receive treatment advice. 

Additionally, users can revisit past diagnoses to 

compare and validate decisions. This flow ensures 

both accuracy and interpretability in agricultural 

disease management. 

IV. IMPLEMENTATION

The implementation of this project involved the 

integration of deep learning-based image 

classification with explainable AI techniques to 

create a user-friendly disease detection tool for 

farmers. The system architecture was divided into 

three main components: the backend AI model, the 

explainability module, and the frontend dashboard. 

The project was developed using a combination of 

Python (for backend processing), React.js (for 

frontend UI), and Django for the API layer, ensuring 

smooth communication between the user interface 

and the AI model. 

To train the model, we used the PlantVillage dataset, 

which consists of over 50,000 labeled images of 

healthy and diseased leaves across various crop 

species. We employed pre-trained convolutional 

neural networks like ResNet50 and EfficientNet for 

their robust performance on image classification 

tasks. Transfer learning was used to fine-tune these 

models on our dataset, reducing the time and 

computational power required for training while 

improving accuracy. The trained models were 

capable of classifying crop images into different 

disease categories with high precision. 

A major challenge in AI-based systems is the “black-

box” nature of predictions, which reduces trust 

among end-users like farmers. To address this, we 

integrated Grad-CAM (Gradient-weighted Class 

Activation Mapping) into the pipeline. Grad-CAM 

helps generate heatmaps that highlight the most 

important regions in the leaf images that influenced 

the AI’s predictions. These visual cues are presented to 

users alongside the diagnosis, helping them 

understand and trust the model’s decision. 

The backend of the application was built using 

Django, where we developed RESTful API 

endpoints to handle image uploads, run predictions, 

generate Grad-CAM heatmaps, and return results in 

JSON format. This backend system also stores 

historical records of diagnoses, which can be 

reviewed by users for future reference. For 

deployment and demonstration, the backend was run 

locally, avoiding the need for paid cloud 
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services, in line with our goal of keeping the solution 

cost-free and simple to use. 

The frontend dashboard was built using React.js, 

designed with simplicity and accessibility in mind for 

rural users. It allows farmers to upload crop images, 

receive disease predictions, view visual explanations, 

and get basic treatment suggestions. The dashboard 

also includes a section to review past diagnoses, 

making it easier for users to monitor crop health over 

time. This implementation effectively combines AI 

performance with human-centered design to support 

real-world agricultural decision- making. 

V. RESULTS AND OBSERVATIONS

The Explainable AI-based crop disease detection 

system was evaluated using a diverse dataset of plant 

leaf images, simulating real-world agricultural 

scenarios. The dataset included both healthy and 

diseased plant images across multiple crop types to 

assess the system's generalization capability and 

predictive accuracy. The deep learning model, built 

using Convolutional Neural Networks (CNNs), 

effectively identified various disease categories with 

high consistency. The average prediction accuracy 

was recorded at 91.8%, with a false positive rate of 

6.3%, showcasing reliable performance even on 

unseen data. 

Fig. 1: Per-Class Accuracy 

This figure presents the accuracy achieved for each 

class in the PlantVillage dataset, showing high 

performance across most crop diseases. 

Fig. 2: Precision Per Class 

This figure illustrates the precision score for each 

class, reflecting the model’s effectiveness in 

minimizing false positives for plant disease 

classification. 

Fig. 3: Recall Per Class 

This figure displays the recall values per class, 

indicating the model's capability to correctly 

identify all true disease cases without omission. 

Fig. 4: ROC Curve with AUC 

This figure shows ROC curves and AUC values for 

the top 10 classes, all achieving an AUC of 1.00, 

indicating near-perfect discrimination capability. 

Fig. 5: Training and validation accuracy and loss over 

epochs. 

The model demonstrates high training (99.6%) and 

validation (99.2%) accuracy with minimal overfitting, 

and low loss values throughout training, indicating 

strong convergence and generalization.  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS050177
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 05, May-2025

www.ijert.org
www.ijert.org


Integration of Explainable AI techniques such as 

LIME, and Grad-CAM significantly enhanced the 

interpretability of predictions. The visual 

explanations generated by Grad-CAM accurately 

highlighted the infected regions of the leaf images, 

while SHAP and LIME provided feature-level 

importance scores that offered clear insights into the 

AI model’s decision logic. This interpretability 

proved beneficial in identifying biases, improving 

transparency, and fostering user trust—particularly 

important for farmers and agronomists relying on the 

system for critical decisions. 

From a usability perspective, the frontend interface— 

developed using React.js —successfully displayed 

prediction results, heatmaps, and explanation 

summaries in an intuitive format. The upload process, 

confidence score, and Grad-CAM visualizations were 

dynamically updated and persisted across sessions. 

Real-time feedback through toast notifications and AI 

explanations ensured a seamless user experience. 

Farmers could easily navigate disease results and 

access treatment suggestions, contributing to practical 

decision-making in the field. 

The system also demonstrated responsiveness and 

operational reliability.  The  average  response  time   

for generating predictions and explanations was 

under 2.5 seconds, meeting near-real-time usage 

expectations. The system architecture proved 

modular and scalable, allowing future expansion to 

support additional crop types or larger datasets. 

Backend services maintained consistent performance, 

and all logs were efficiently recorded for further 

model analysis and system improvement. 

Overall, the project validated the feasibility of using 

Explainable AI in crop disease detection to support 

informed agricultural practices. By combining 

accuracy with interpretability, the system bridges the 

gap between advanced AI capabilities and the 

practical needs of end users in precision agriculture. 

VI. CONCLUSION

This paper presents an Explainable AI-driven 

framework for crop disease detection, designed to 

enhance decision-making in precision agriculture. 

By integrating state-of-the-art Convolutional 

Neural Networks (CNNs) with explainability 

techniques such as Grad-CAM and LIME, the 

system provides accurate disease predictions 

alongside transparent, visual, and feature-based 

explanations. The modular architecture supports 

real-time image analysis, actionable insights, and a 

seamless user experience through a responsive 

frontend built with React.js The backend, powered 

by Python-based inference and explainability 

modules, ensures scalable integration with potential 

farm-level or cloud-based systems. With high  

detection accuracy, low latency, and enhanced 

interpretability, the solution addresses critical 

challenges in AI adoption for agriculture— 

particularly trust, usability, and transparency. By 

empowering farmers and agronomists with 

understandable AI insights, the framework 

promotes data-driven, sustainable farming practices 

and paves the way for broader adoption of 

intelligent agricultural technologies. 

VII. FUTURE SCOPE

While the proposed Explainable AI framework 

demonstrates effective crop disease detection and 

interpretation, several enhancements are planned to 

broaden its impact. Integration with real-time IoT- 

based farm monitoring systems and drones can 

enable automated, large-scale diagnosis across fields. 

Support for additional crops and region-specific 

disease datasets will improve generalization and local 

relevance. The explainability module can be enriched 

with more advanced techniques, such as 

counterfactual explanations and attention-based 

models,  to  offer  deeper  insights.  Mobile  app 

development with offline capabilities will ensure 

accessibility for remote farming communities. 

Furthermore, incorporating reinforcement learning 

could enable the model to adapt over time based on 

user feedback and environmental changes. Finally, 

transforming the system into a multilingual, multi- 

user platform with role-based dashboards will 

prepare it for deployment at scale in agricultural 

cooperatives and government-led precision farming 

initiatives. 
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