
Expert Rating Based Software Quality Evaluation
1 Dr. B. B. Jayasingh, 2 Sri Datta Virivinti, 3 N.S. Pranav

1Professor, Dept. of IT, CVR College of Engineering, Vastunagar, Mangalpalli (V), Ibrahimpatan (M),

RR District – 501510, India.

2Department of Information Technology, CVR College of Engineering,

Hyderabad, Andhra Pradesh, India.

3Department of Information Technology, CVR College of Engineering,

Hyderabad, Andhra Pradesh, India.

Abstract

The quality of the software is very essential before the

deployment. Quality check of software can be done at

any level of the software, be it in the initial or final

stages of development. The software should be tested

rigorously in order to avoid any future inconvenience.

ISO/IEC 9126-1 selects 6 criteria along with 27 sub

criteria for determining the quality of the software. The

main challenge faced by Software Quality Assurance

(SQA) is that it should apply more comprehensive

techniques, and decide whether the software is meeting

the good standards in terms of quality. The proposed

approach is to evaluate the software by the rating given

by a group of experts. The ratings are direct rating in

the scale of 1 to 9. We calculate the arithmetic mean of

all the experts to find the level of quality. We also

narrated the calculation of low level metrics of each

criterion. It can help the developers to decide whether

to go ahead or make any changes in the faulty areas of

software.

1. Introduction
There‟re many standards and metrics to evaluate the

quality of software. The research in this field is

growing day by day in order to meet the demands of

the software managers. The software managers have a

great deal of work to ensure that the quality of the

software is up to the mark, so they‟re very concerned

about the quality of software [2]. The quality of

software is checked at various levels and is tested

before the actual usage of it in the company or an

organization. According to Nan-Hsing Chiu [3], the

software modules are classified into two categories,

fault proneness (fp) or non fault proneness and the

software experts can concentrate on the fp modules

early to prevent poor quality of software. The suggested

approach in this paper, can easily give the quality of the

software by taking the ratings given by the different

experts. The ratings given by the various experts can be

helpful in finding the critical areas where the software

can be improved, thereby decreasing the damages

caused by poor quality of software.

Software quality determination described in this

paper is useful for evaluating the software quality and

reporting it back to the user. It's very essential to the

developer or a vendor to know the quality of the

software. The software quality determination process

can help in finding the critical areas where the software

needs to be improved.

Measurement of the software quality includes the

measurement of in-house developments and a selection

of vendors‟ products. SQA takes the responsibility to

make the „„go/not go‟‟ decision in this matter. If the

quality of the product released or purchased is below

standard, the company will suffer a significant loss. If

the product development is behind schedule, the

company also loses a lot. As it is difficult to build a

perfect or error free software system or to purchase

highly compatible software components, SQA must

1269

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100548

apply comprehensive techniques to determine whether

the systems reach the right level of quality. These

techniques include the clear definition of quality

attributes, measurement tools, and the integration

framework.

In this paper, the approach is that, the software is

evaluated by a group of experts and based on the results

the developer can get to know the quality level of the

software. The criteria for evaluating the software are

discussed in the implementation section.

2. Background
As discussed by Robyn R. Lutz [5], there are many

software‟s which help in functioning of safety critical

systems like traffic control, smart vehicles. Software

used in defense and nuclear applications also comes

under safety critical software. Safety critical software is

software which on its failure can cause life loss and

huge property damage. This software needs be built and

designed up to the software standards to ensure safety.

The testing and development of the software needs to

meet the software standards set by the software

managers. To ensure this, the software quality

assurance can help in determining or assessing the

quality of the software.

According to Christian Murphy [1], the flaws may

show up later when the software is deployed in the

system, the various cases considered while testing

might not be sufficient to know any errors in it, in-vito

testing refers to continuous testing of the software even

after deployment. This can be helpful if there are any

remaining flaws in the software. The tests done don‟t

affect or alter the state, which is potentially visible to

the users. This way the software which is to be

deployed in the real time system will have as fewer

bugs or faults as possible.

 According to Robert Baggen[10] software

benchmarking is often associated with the code

functionality and the number of lines of that code. This

gives only a part of overall quality and neglects the

terms of Maintainability which is an important part of

the software life cycle. Robert Baggen[10] establishes

some metrics that deal with the Maintainability through

the SCM[4](Source Code Metrics). These metrics are a

combination of two or more metrics low level product

metrics like Volume, Duplication, Unit

complexity, Unit size, Unit interfacing, Module

coupling [10]. With the combination and usage of low

level metrics with high level metrics we can find the

accurate quality of the software.

[7] The importance of software in our daily life is

immense. Almost every field in the present world has

the needs of software, for example the automobile

industry, which is increasing rapidly day by day and

flight control systems use software which is helpful to

them. The software‟s need to be bug free and should be

of very good quality in order to avoid any unwanted

results in the future. The deployment of such special

kind of software needs to be taken extra care. This can

be made easy with the assurance of the quality of

software is known to the purchaser, where he can

decide whether to buy the software or not. The

developer work can also be known with the software

quality, if the quality of the software is good, then the

developer has done a good job, which means that the

software can be deployed in the real time system. If

software quality is below the standards, necessary

changes can be made to the software and tested again

for good quality.

The main challenges faced by organizations is that how

to we ensure the quality in Agile [8], the most

traditional practices which have proven good in the past

are no longer useful for the Agile environment. The

main challenge faced by Software Quality Assurance is

that it should apply more comprehensive techniques,

and decide whether the software is meeting the good

standards in terms of quality. [9]The defect density of

the software is generally measured after the

implementation of the project, but it‟s argued that an

early warning of the defect levels in the system will

help in the development of software and will be helpful

for better defect management strategies.

3. Analysis

The proposed approach uses six criteria and 27 sub-

criteria, which are defined in ISO/IEC 9126-1,

2001[11]. The evaluator considers the sub

characteristics of six criteria by calculating the weights

and applying Analytical Hierarchy Process (AHP) [12]

before given the direct ratings.

1270

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100548

3.1. Direct Rating

Table 1. Direct rating criteria

Criteria Sub Criteria

Functionality Suitability,

Accuracy,

Interoperability,

Security,

Functionality

compliance

Reliability Maturity,

Recoverability,

Fault tolerance,

Reliability

compliance

Usability Understandability,

Learnability,

Operability,

Attractiveness,

Usability

compliance

Efficiency Time behaviour,

Resource

behaviour,

Efficiency

compliance

Maintainability Analyzability,

Changeability,

Stability,

Testability,

Maintainability

compliance

Portability Adaptability,

Installability, Co-

existence,

Replaceability,

Portability

compliance

The direct rating uses 6 criteria [11] and 27 sub-criteria

to rate the software, by which the quality of the

software can be known.

Functionality: The ability of the software to meet the

required needs when in use under specific conditions is

called as Functionality of the software. The attributes

regarding to this criteria are Suitability, Accuracy,

Interoperability, Security, Functionality compliance.

Reliability: The ability of the software to maintain the

specified level of performance when used under

specific conditions is called Reliability. Maturity,

Recoverability, Fault tolerance, Reliability compliance

is the attributes relating to it.

Usability: The software is measured on how easy it is

to understand, learn and use it under the required

conditions for its usability. Understandability,

Learnability, Operability, Attractiveness, Usability are

the attributes regarding Usability.

Efficiency: The correctness or the accurate results of

the software product is taken into consideration for

measuring efficiency. Time behavior, Resource

behaviour, Efficiency compliance are the three

attributes relating to it.

Maintainability: How easy it is to maintain a software,

that is, how is easy it is to make any changes etc are

taken into consideration for measuring this criteria.

Analyzability, Changeability, Stability, Testability,

Maintainability compliance are the attributes relating to

it.

Portability: How easy software is to deploy or install

in other systems, how easy the software is to adapt to

the required environment etc comes under Portability.

Adaptability, Installability, Co-existence,

Replaceability, Portability compliance are the attributes

which come under it.

The rating depends on six criteria with 27 sub criteria

in ISO/IEC 9126-1 (2001)[11], which is the revision of

1991 version (ISO/IEC 9126, 1991). The direct rating

is given on the basis of the above criteria, and is given

as” poor, weak, good, satisfactory, excellent”, by the

judgment of experts.

The rating depends on six criteria with 27 sub criteria

in ISO/IEC 9126-1 (2001)[11], which is the revision of

1991 version (ISO/IEC 9126, 1991). The direct rating

is given on the basis of the above criteria, and is given

as” poor, weak, good, satisfactory, excellent”, by the

judgment of experts.

3.2. Source Code Metrics
 The Source Code Metrics is also considered for

rating, which is given as “good, average, poor”

depending on the software. The experts give the source

code metric rating by assessing the software quality and

answering the different questions provided to rate the

software. These criteria‟s for source code metrics are

discussed by P´eter Heged [4]. The following are the 5

categories [4] discussed and are organized into 5

questions:

• Analyzability - how easy it is to diagnose the system

for deficiencies or to identify where to make a change?

• Changeability - how easy it is to make a change in the

system?

• Stability - how well does the system avoid unexpected

effects after a change?

• Testability - how easy it is to validate the software

after a change?

• Comprehension - how easy it is to comprehend the

source code of a method?

1271

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100548

3.3. Calculating weights of sub criteria
Software quality depends on low level as well as high

level metrics. Ratings can‟t be solely given based on

high level metrics as this can be accurate. Code quality

in software can be calculated using four characteristics

and their respective sub characteristics [12] selected

from ISO/IEC-9126. They are functionality, efficiency,

maintainability, portability and their respective sub

characteristics. The source code attributes that have an

effect on ISO/IEC-9126 characteristics are Volume,

Complexity, Abstraction, Encapsulation, Coupling,

Cohesion, Messaging, Polymorphism, Composition,

and Inheritance. Weights are determined by applying

AHP at low level, intermediate level and high level to

evaluate sub characteristics using the source code

attributes and pair wise comparison table for each is

constructed. The values for each entity for the

ISO/IEC-9126 quality characteristics are calculated

[12] using the following utility function U(Ci):

U(Ci) = v(sc1)*w(sc1i) +v(sc2)*w(sc2i) + ...+

v(scn)*w(scni) (Equation 1) where

v(sci) = v(d1)*w(d1i) + v(d2)*w(d2i) + ...+

v(dn)*w(dni)(Equation 2)

v(di) = v(m1)*w(m1i) + v(m2)*w(m2i) + ...+

v(mn)*w(mni)(Equation 3)

U(Ci) = Utility Function of ISO/IEC-9126

characteristic I

v(sci) = Value of Sub-characteristic j

w(scji) = Weight of Sub-characteristic j for ISO/IEC-

9126 Characteristic i

v(di) = Value of Source Code Attribute di

w(dji) = Weight of Source Code Attribute dji for Sub -

Characteristic i

v(mi) = Value of Metric mi

w(mji) = Weight of Metric mj for Attribute i

Sub criteria like time behavior (under the criteria

“efficiency”) are difficult to determine. It can vary on a

number of factors like the processor speed on which the

software is being tested etc. Such kind of attributes

must be calculated at run time. The method used in

evaluating the rating is arithmetic mean. For instance,

for evaluating the rating for criteria 1 arithmetic mean

of the sub criteria is considered, that is (1.1 + 1.2 + 1.3

+ 1.4 +1.5)/ 5. The rating for each criteria is measured

and then the arithmetic mean of the all the six criteria is

taken for giving the overall rating of the software for

one expert.

If there are more number of experts, then rating is

evaluated considering each individual expert and then

arithmetic means of the rating obtained from different

experts is calculated. Consider the following analysis

given where there are 3 experts.

Expert 1 rating = (Criteria 1 rating +criteria 2 rating

+criteria 3 rating+ criteria 4 rating + criteria 5 rating +

criteria 6 rating) / 6

Each criterion is calculated based on its sub criteria

rating, and arithmetic mean is obtained for total criteria

to get rating given by one expert.

Similarly the rating is calculated for Expert 2 and

Expert 3.To get the overall rating of the software given

by three experts arithmetic mean of three expert ratings

is to be evaluated in the following manner,

Overall rating = (Expert 1 rating + Expert 2 rating +

Expert 3 rating) / 3

The rating scale is given in the below table 2 for Direct

ratings,
Table 2. Rating scale for direct ratings

Poor 1

Weak 3

Good 5

Satisfactory 7

Excellent 9

 If the rating of the software is below good, then we can

say that the software is not up to the standards and it

needs revision.

The rating scale for Source Code is given in below

table 3,
Table 3. Rating scale for source code metrics

Poor 1

Average 3

Good 5

4. Implementation

This system is designed for the software engineering

department who determines the quality of a module or

complete software. The users can upload their code to

the system and can view the ratings given by different

experts with their quality level. If the quality level more

than acceptable limit then the product can be released

to the market otherwise the user has to redesign their

code.

An expert who‟s registered can log into his account and

rate the software. The registration of the expert is done

taking account of the work experience, in which field

he is an expert, etc which are helpful in rating and

assuring the quality of the software. The developer who

wants to know the ratings of the software given by

various experts can check the ratings given by different

experts. Here, the developer can know the quality of the

software based on the ratings given by the group of

experts.

1272

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100548

There are two kinds of login i.e. user and expert. User

and expert both provide the username and password

before entering into the system.

User Login

 User provides his details to the system like

username and password. The system verifies the

username and password in the database before using

the system. If anyone among them is wrong the system

prompts with a message to retype the same. Whenever

there is match with the database the system provides

with a page to upload the code and give the destination

path. User also can see his previous uploaded codes and

user can view the ratings. Users are not permitted to

give ratings; it is protected by the system. Each

uploaded code has a unique ID called CID and each

user has a unique ID called UID.

Expert Login

 Expert provides his details to the system like

username and password. The system verifies the

username and password in the database before using

the system. If anyone among them is wrong the system

prompts with a message to retype the same. Whenever

there is match with the database the system provides

with a page to select the code to give ratings. Experts

are not permitted to upload codes. Experts are not

permitted to view the ratings of other experts as well as

to view the final ratings though it is protected by the

system. Each expert has a unique ID called UID. Once

expert has given rating for one code with a model his

second rating for the same are not permitted by the

system.

Direct Rating

 After clicking the direct rating button the

expert provided with an input form that contains six

criteria and twenty seven sub criteria. The direct rating

contains five scale values i.e. Poor, Weak, Good,

Satisfactory and Excellent. After filling the form expert

has to click submit button. Whenever there is new code

to provide rating he has to login and do the same.

The screen shots of the direct ratings given by 3 experts

is given below in the figure 1, 2, 3 respectively and the

result is given in figure 4

Fig. 1 Screenshot of direct rating expert1 i.e. all
excellent

Fig. 2 Screenshot of direct rating expert2 i.e. all
poor

Fig. 3 Screenshot of direct rating expert3 i.e. all
poor and one good

Fig. 4 Screenshot of direct rating given by all
experts i.e. satisfactory.

If the overall rating of the software is satisfactory, this

can be inferred from the figure. The arithmetic mean of

the three experts is the overall rating for the software

rated in the figure. The expert needs to rate each sub

criteria, he can‟t leave any of the criteria or sub criteria

1273

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100548

as it may not give accurate rating of the software. After

rating each criterion and their respective sub criteria are

rated, the rating of the software is calculated using

arithmetic as discussed in “Analysis” section. We can

infer from the figure that the quality of the software is

satisfactory; hence we can say that the software is of

acceptable quality.

The screenshots of Source Code rating are given in

figures 5,6,7,8

Fig. 5 Screenshot of rating given by expert1 for SCM

model i.e. all good.

Fig. 6 Screenshot of rating given by expert2 for SCM

model i.e. all good.

Fig. 7 Screenshot of rating given by expert3 for SCM

model i.e. all poor

Fig. 8 Screenshot of rating given by all experts i.e.

average

The overall rating given by three experts for Source

Code is given in the figure 8. This can be calculated

using the arithmetic mean as discussed in “Analysis”

section. Since the quality of the software is average we

can say that the quality of the software is acceptable.

5. Conclusion
The system is developed to help the developer to know

the level of quality of the software before release to the

market. The software is evaluated by the domain

experts to maintain its effectiveness. We have shown

the result by taking care of all possible cases where

experts are not biased to provide the ratings. Thus

software quality assurance helps reducing a great deal

of bugs, which in turn can help a developer save a lot of

money which is used to find the bugs.

6. Acknowledgement
The authors would like to thank CVR College of

Engineering, Hyderabad (AP), India for providing its

amenities.

7. References

[1] Christian Murphy, Gail Kaiser, Ian Vo, Matt Chu, Quality

Assurance of Software Applications Using the In Vivo

Testing Approach, 2009 International Conference on

Software Testing Verification and Validation, IEEE DOI

10.1109/ICST.2009.18, 2009, pp. 111-120.

[2] Kevin Kam Fung Yuen, Henry C.W. Lau, A fuzzy group

analytical hierarchy process approach for software quality

assurance management: Fuzzy logarithmic least squares

method, Expert Systems with Applications 38, ELSEVIER

Publication, 2011, pp. 10292–10302.

[3]Nan-Hsing Chiu, Combining techniques for software

quality classification: An integrated decision network

approach, Expert Systems with Applications 38, ELSEVIER

Publication, 2011, pp. 4618–4625.

[4] P´eter Heged˝us, Tibor Bakota, L´aszl´o Ill´es, Gergely

Lad´anyi, Rudolf Ferenc, and Tibor Gyim´othy, Source Code

Metrics and Maintainability:A Case Study, ASEA/DRBC/EL

1274

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100548

2011, Springer-Verlag Berlin Heidelberg 2011, CCIS 257,

pp. 272–284.

[5] R. R. Lutz. Software engineering for safety: a roadmap. In

ICSE ‟00: Proceedings of the Conference on The Future of

Software Engineering, pages 213–226, New York, NY, USA,

2000. ACM.

[6] L. Osterweil. Perpetually testing software. In The Ninth

International Software Quality Week (QW‟96), May 1996.

[7] M. Lyu: Software Reliability Engineering: A Roadmap, in

Future of Software Engineering 2007, L. Briand and A. Wolf

(eds), IEEE-CS Press, 2007.

[8] P. McBreen, “Quality Assurance and Testing in Agile

Projects”, McBreen.Consulting, 2003

[9] T. R. Gopalakrishnan Nair, R. Selvarani, Defect

proneness estimation and feedback approach for software

design quality improvement, Information and Software

Technology 54, ELSEVIER Publication, 2012, pp. 274–285

[10] Robert Baggen, Jose´ Pedro Correia, Katrin Schill, Joost

Visser, Standardized code quality benchmarking for

improving software maintainability, Software Qual J,

Springer Pub., DOI 10.1007/s11219-011-9144-9, 2012, pp.

287–307.

[11] ISO/IEC 9126-1. (2001). Software engineering-product

quality – Part 1: Quality model.

[12] Yiannis Kanellopoulos, Panos Antonellis, Dimitris

Antoniou, Christos Makris, Evangelos Theodoridis, Christos

Tjortjis, Nikos Tsirakis, Code Quality Evaluation

Methodology using the ISO/IEC 9126 Standard, International

Journal of Software Engineering & Applications (IJSEA),

Vol.1, No.3, July 2010.

1275

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100548

