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Abstract - In this paper, the definitions of front type and a
pair of generalized upper and lower solutions are firstly
described. Then, Leslie-Gower predator-prey model and the
properties of kernel and growth rate function are expressed. The
suitable upper and lower solutions combined with the Schauder’s
fixed-point theorem, fatou’s lemma is utilized to solve the
existence of nonnegative solution. Additionally, under the
appropriate parameter assumptions, the existence of front type
forced wave is verified.
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I. INTRODUCTION

Wave propagation is an important phenomenon in many
scientific areas such as physics, biology and ecology. Reaction-
diffusion models are commonly used to describe how a
quantity, such as a biological population or chemical substance,
spreads in space over time. In classical theory, traveling waves
move with a constant speed that is determined only by the
internal properties of the system. However, in real world
situation, wave propagation is often influenced by the external
effects. These effects may include environmental forcing,
boundary conditions. Front-type forced waves describe wave
solution that appear as moving fronts connecting two different
stable states under the influence of forcing.

II. PRELIMINARIES

We begin our article by giving the definition of front- type,
a pair of generalized upper and lower solutions.

1. Definition
First, For a

(=) # d(+00), it is called a front type.

scalar wave profile ¢(x—st), if

2. Definition
The continuous functions (51@2) and (d)],d)z) are

called a pair of generalized upper and lower solutions if
$i,<l)i, i=1,2 are bounded functions and satisfy the following

inequalities
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Ui@)=d; (3,%6,2)~8,(2)) =36, )+ 6, 1(-7)-,(2) ke, (2) | <0,

U,@)=d; (1, 4,0~ ,) b, (Z)+¢(Z)|:r %) } 0, ey
¢,(z)+h
Li(2)i=d} (3, *9,(2)=6,(2)) 50 )+, (2) [ 1(~2) -, (2)~ kb, () | 20,

. X0
L) =d;(1,%0,(2)-0,(2)] 50 (2)+ , ()| 1(~2) - rYor

for all z [ \E for some finite subset E of [J .

III. LISLIE-GOWER PREDATOR-PREY MODEL

In this section, the forced waves of Leslie-Gower predator-
prey model in shifting habitats with nonlocal dispersal is
focused. First, we consider the following diffusive predator-
prey model with one prey and one
predator:

u‘(x,t) :dT (J, *ufu)(x,t)+u[r(x7st)7u(x,t)7kv(x,t):|, xel,t>0,

2)

v, (x,t)=d, (J2 *va)(x,t)+v|:r(xfst)f v(x.t) } xel,t>0,

u(x,t)+h
where the unknown functions u denote the population density
of the prey and v denote the population density of the predator

at position x and time t. All parameters d,,d,,r, h, k are
positive. Parameters d, ,d, represent diffusion rates for prey

and predator, the function r, represents the growth rate, k
denote the per capita capturing rate of the prey by a predator

per unit of time, and represents Leslie-Gower terms,

which means that the carrying capacity of the predator is
proportional to the population size of the prey.

The parameters h and k satisfy the conditions

O<h<l1, k>0, hk<l. 3)

A. Properties of Kernel and Growth Rate Function

We always assume that the kernel functions J,(-) 1=1,2)
satisfy the following properties:
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(J) Ji () € C(E >U ’ )7 Ji (_ X) = Ji (X)n
JJi (x)dx =1 and _‘-Ji (x)e™dx <o for

anyA >0, i=12.

The growth rate function () satisfies the following two

properties:

(H) r() is continuous in [, lim r(z) exists
satisfying —o0 <1(—0)<0<1(+0) <0
and 1(z) <r(+9°) for all z 0. Without
loss of generality (up to a rescaling), we
choose r(+®)=1;

(H")  there exists C>0 and p >0 such that

fim S =1@) _
Z—>+ 0 e Pz

We are interested in the propagation phenomena for
system (2). We study the special C' solution of form

(u(x, t) , V(X,t)) = ((1)1 (st - x) ,0, (st - x))

where parameter S being the shifting speed of the climatic
condition, which is called the forced wave.

Let z=st—x, and the corresponding wave profile system
to system (2) is as follows
s/(z)=d; (J, *¢,(2) - §,(2)) + 0, [ 1(-2) - d,(2) ko, () ] z €],

$,(2) } el )

S¢2(Z) :d; (Jz *¢2(Z)_¢2(Z))+¢2(Z)|:r(_z)_¢ (z)+h

From assumption (H), the environment is favourable to

the prey ahead of the climate change and then gradually
deteriorates until it becomes hostile to the species. This is

equivalent to the boundary condition (¢1,¢2)(+ oo) = (0, 0).
We shall consider the constant unique coexistence state of
. « 1—=hl
system (2) such as E, = (v ,® ) where v =—— and
1+k

« 1+h
o =—.
1+k

We define

d; [Hj 1,(y)e Mdy— 1} +1

D) = -
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B. Existence of Nonnegative Solution

In this section, we state the theorems for the existence of
nonnegative solution.

1 Theorem

Suppose that s > 0. If ($],$2) and ((1_)1,(1_)2) are a pair of

upper and lower solutions of (4) satisfying

0<¢ <4, <L,0<¢ <¢p,<1+hinll,

then (4) admits a solution ((I)l,(I)z) such that
d_)i(z)£¢i(z)£$i(z) forall zell ,i=12.
Proof:

Let X= BUC([ ,U ) be the space of all uniformly continuous

and bounded functions defined in [J . Then, X is a Banach
space equipped with the sup-norm.

Let Y:{(¢l,¢2) eX’:12¢,(z)20,1+h>¢,(z) >0 forallz e[ }

For &= ((I)l,d)z) €Y, we consider the nonlinear operators
E (i=12) defined on Y by

E[®](z) =00,(2)+d; (J, 0, —¢,)(2) + &,(@)[ r(-2) - 0,(2) k() ] z €,

F[0](2) = 00, (2)+ (1, *4, —¢2)(z)+¢2(z{r(—z)— ﬁi;iﬂ’z eC,

where 0 :max{csl,cz} >0 with

o, =d; +|r] . +k(d+h)+2,
. 2(1+h) )
c,=d, +||r||L°”(H) + h

(D)

We define the following operator

z  O(y-2)

P [d)](z)zi [e  E[@](ydy.zel,i=12.

Let P[®] =(P, [®],P, [®]), (¢,.9,) =P(¢,.9,)
Then,

P:Y > X and S(T)i'(z) =— 6d~)i(z)—i-Fi [CI)](Z), zell.
Thus, a fixed point of P is a solution of (4).

0
Let p E(O, —) be a constant and we define the norm
S

0], =sup {max |, 2). [o. @) e} @ e.

Moreover, the set
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is a non-empty convex, closed, and bounded set in (Y,| . |“) )

Then, we show that P maps A into A. Let @ € A.
By using (5), we can get

R[] >F[(6,0,) @),

and hence, P, [®](z) 2 P, [((l)l,cT)z)J(z) forall z ell .

From (1), we have

i -t

0(y-2)

R (00:) [0 ay

0(y=2) Fl |:((l)] 7(I_)2 ):| (¥)

- 1£1~r>r01J.[—oo,z)\U,‘ EE(zi—s,z,+s)e S dy
o 000 ¢ (y)+ 04, (¥)
2 lim inf e+ ——dy
50 [700,2)\U7‘ €E(z; ¢, z;+¢) S
zd)](z),Vz ell.

Thus, P, [(q_;l,J)zﬂ(z) > d_)] (z). Similarly, we have

0(@=P[(6.9,) .

By using the choice of © and the definition of super and sub-
solutions, we can calculate

o =P (5.9,) [P (@)= B[ (0.0.) >0,
0.2 [(86:) ]2 B [@]2 R, [(0.0,) [ >0,

Therefore, P(A) C A.
Next, we show that the mapping P:A — A is completely

continuous with respect to the norm ||“ We give some

details and show the continuity of P on A.
=(\|/1,\|/2) €A and D, =((p1,(p2) €A, we have

|Pl (WI’\VZ)(Z) -P ((Pl’(Pz)(Z)Ll
=[P (v, v.) @ =P (0,,0,) @)™
|P1 (WI’WZ)(Z) -P ((Pla(Pz)(Z)L

For any @,

—0(z-y)

J[J*wl(y) g (y]e * dyle

a
_1

~ul

+2+k(1+h)|z

—6(z— y)

j [vm-oMe *

(1)

S

~hl7

0+d; +]r
+

y|€

—0(z—y)

=] [v.-e.(n]e = dyle

—nl7|

We note that

—6(z-y)

d|?
S Irv@-Tromle * dyje

~uf2|

IJERTV 151 S010697

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

*

d z ~ —-0(z-y)
< Il(y—a)|w1(a)—<pl(a)k Hettlaze + dy
—oo |
d "
<[ (y)e“‘y‘dyf e dye Uy, —o,
u] —0
and
1 z —0(z—
—J‘e“Me s dye’“‘z‘s

s 0—pus’

-0

Thus, we have

|P1 (WI’WZ)(Z)_PI ((pl’(PZ)(Z)L <L, |\V1 _9[)1|M +L, |\V2 _q)2|u

where
2 * *
L = 9——}18{(11[ 5y dy+0-+d; +[rf . +2+k(a+ h)},

2k
L,=——m:.
0—ps
Similarly, we have

|P2 (WI’WZ)(Z) -P, ((Pla(Pz)(Z)L
= |P2 WI’WZ)(Z)_P2 ((Pla(Pz)(Z)|eiu‘ |

—0(z—y)

I[J oY) =J, %0 (y)]e © dyle

d&
_2 —ul

+2(1+h)

L (1)

0+d, +|r

—0(z—y)

f NAGRNGICEE

e

+

S

(1+h)

z - )
[TvM-9.m]e * dyle

~ul7|

< M1|W1 _(\D1|u +M2|W2 _(P2|“ 5

where

(1+h)?

2
M, =—D"

0—us

2 . (1+h)
M, =e_—us{dzﬁ[J2(y)e oy +2 .

Therefore, there exists a positive constant C such that
PO, ~PD,| <Clo,~®,| .
Hence, P is continuous with respect to the norm |- |ll .

Now, we will prove P in A is compact with respect
to the norm ||u . For any (¢1’¢2) €A and n €lJ, we define

P[¢1>¢2](_n)’z e(— oo,—n),
P’ [¢1,¢2](Z) = P[(b]’d)z](z)’z e[—n,n],
P[d,,9,](n),z &(n,0).
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P“[(I)l,q)z](z) is equicontinuous and uniform bounded in

(Y.I-1,)-

Thus, there exists a constant N such that

P"[0,.9,] (@) —P[,.6,] ()] e < Ne .

Then, P"[¢,,9,](z) converges to P[4,.,](z) as n—>o0.
Thus, P[¢1’¢2](Z)|[7n,n] is compact and then P" [4)1,4)2](2) is

compact. We verify that P[d)],q)z](z) is precompact. Hence,
by Schauder(s fixed-point theorem, the proof completes.

O

2. Theorem
Assume that (51,52) and (¢1’¢z) are a pair of upper and

lower solutions of (4) satisfying

0<¢ <4 <1,0<¢ <¢,<1+h inJ,

and admits a solution (¢,,¢,) such that .(2)<¢,(2) < 6.(2)
for all zell for i=1,2,then (¢1,¢2)(+oo)=(0,0) for any
nonnegative solution ((I)l,(l)z) of (4).

Proof:
For contradiction, we assume that ¢, = limsup¢,(z) > 0.

Z—>+ 0

When ¢, is oscillatory near z=+oo, there is a maximal
sequence {zn} of ¢, such that z — +o and ¢,(z,) > ¢, as
n—+ow.

From the first equation of (4), we get

Nt )
0=5/) = | [1,0)0,(2, = y)dy ~,(2,) ©

+,(z,)[r(-2,)-0,(z,) - kb, (z,) ]

By letting n —+00, it follows from Fatoulls lemma that

limsup d; [ 1,(y)(¢:(z, —¥)~,(z,))dy <0 and

n—+ow o

limsup| ¢,(z,)(r(~2,)— 9,(z,)~ko,(z,)) |

n—o+o

<o/ [r(—oo)—q)]+ —kliminf ¢, (z, )] <0.

n—+wx

From r(—) <0, it contradicts the equation (6). On the other
hand, suppose that ¢, is monotone ultimately at z=+o0, then

¢, (+) =¢1+

By integrating the first equation of (4) from 0 to n, we get
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n

s[6, ()=, (0] =d; [(J, *0, ~¢,) (2)dz

+[6,(2)(r(=2)— ¢, (2) k¢, (2)) dz

n 1

- dI‘T 1,0 [ 61z ry)(-y)drdzdy

+[0,@ (12~ 4, (2) ko, (2)) dz.

Hence,

S[0,m) =6, (0] +d; [ 1,0y (4, (= 1y) = ¢, (=1y))drdy (7)

= [(6,@)x(=2) = $,(2) -k, (2)) dz.

By taking a sufficiently large positive constant M and
a €(0,1) so that ¢,(z)>a¢; and 1(-=2)<0 for all z>M,
we get

¢, (2)(1(=2)— 4, (2) ko, (2)) < = (@, )* <O.
Thus,

lim [, (r(-2)~,(2) -k, (2)) dz = ~o0,

which contradicts the boundedness of (7).

Thus, ¢,(+)=0.

For the contradiction, we set that ¢, = limsup¢,(z) >0.

Z—>+®
When ¢, is oscillatory near z=+o0, we have a maximal

sequence {z,} of ¢, such that z, oo and ¢,(z,) —> ¢, as
n— oo,

From the ¢, equation of (4), we get

it \
0~ timsup dzLIJz<y)¢2<z.‘fy>dy—¢2<zn)J+¢2<zn)[r(fz.,)f¢ld(’;i%)hﬂ
<é, (r(foo)—(b:bi h] <0.

This is a contradiction. When ¢, is monotone ultimately at
z =+o0 the process is similarly to the proof of ¢, .

Hence, ¢,(+o)=0.
Thus, (¢1,¢2)(+oo):(0,0,0) for any nonnegative solution

(¢-9,) of (4).

Page 4

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

v EXISTENCE OF FRONT-TYPE FORCED
WAVES

In this section, the existence of front type forced waves
connecting E.to (0,0) is shown. Since r is non-monotonic,

we consider the following problem

c¢'(2) = d(J* 0= )(2) + §(2)[1(-2) ~ §(2) ],z €[ } ®
¢(=0) = r(e0), o(+0) = 0.

A positive function ¢1 satisfying

s, =d;(J, %0,(2)-9,(2) + 6, (D) (-2 —k(1+ )=, (2) ] z €11,
?1 (=) =r(0) —k(1+h), 91(4—00) =0.

Similarly, there exists a function ¢2 satisfying

o 9,(2)
s, = d0, «yz)—942»@@{“—2)‘¢ z >+h} =

and

lim ¢ (z) =r(e0)[r(e0) ~k(1+h)+h] >0, lim ¢ (2)=0.

3. Theorem
1 .
Suppose that k < o Then, for each s > O there exists
+

a positive solution (¢1’¢2) of (4) such that ¢ <¢, <1 and
¢, <, <1+h inD.

Proof:

We denote (d_),,(l_)z) =(L1+h). By the definition of (d_)l, (I_)z),
we get L, ()20, i=12.

Since r(—-z) <1 for z €[], there are

A/, %9, (2)= 4, (2) ~50, (1) +,(2) 1(-2)~ 4, (2) Kk, (2) |
S[r(—z)—l]SO,

and

ddJ, *4’>2<z>—$2<z)>—s$2'(z)+$2(z>[r(—z>— T oeh |
Therefore, (d_)l ,E)z) and (d_)l , d_)z) are a pair of upper and

lower solutions of system (4). Hence, by Theorem 1, the proof
completes.

9,2 }

To proceed further, we set

¢; = limsup ¢, (Z) ,

z—-

¢; =liminf ¢, (z), 1=12.

Z—>—0
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Since ¢, > ¢ , we have
—1

o, =B, for i=1,2, where B, =1-k(1+h), B, =B, +h.

4. Theorem

Assume that k < ﬁ Let (d)l,d)z) be a solution of (4)
+
E. = (V*,w*).

For 0 e[O 1], we define the following functions
m,(0) =6v’ +(1-0)(k—¢).
0) =00 +(1-6) 5, 1),
0)=0v’ +(1-0)(1+¢),
M, (0) =00" +(1-6)(1+h+re),

where

obtained from Theorem 3. Then, (¢1 ,0, )(—OO) =
Proof:

m, (
M

1

©)

r,>l, 1<r2<l, 0< &< min BI,BZ kP,
K K ke, — 1
Let A= {e e[0,)]m,(0) <¢; <¢; <M,(0),i= 1,2}.

From Theorem 3, it is obvious that
m;(0) < ¢; < <M;(6)

is true for 6 =0 and i=1,2. Thus, A # 0. In addition, we

know v' <1, " <1+h. Meanwhile, (o*,m*) satisfies
vV =1-ko", ® =v +h.

Then, we get that

v >1-k(1+h)=B,, o >B,+h=B,.

Then, we obtain that m, (9) M, (9), 1=1,2) is a monotone
increasing function of 6 €[0,1] such that

(ml,mz)(l) = (MI,MZ)(l) = (v*,(n*).
Thus, it is sufficient to show that supA =1.

We argue by a contradiction and suppose that
SupA =6, e(O, 1). By taking the limit, we can get

m,(0,)<d; <¢7 <M (6,), i=12,

It should be pointed out that at least one of the following
equalities holds

o =m, (eo)a o =M, (90)’ i=12,
according to the definition of 0, and the continuity df
m, (6) and M, (6).

Now, we consider the case m, (60)=(|)1_. If ¢, is

eventually monotone, then ¢,(—o)=m,(0,).
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By integrating the first equation of (4) from —n to 0, we
can get

S[d)l (O) - d)l (_n)]
=d; J (7, %6, &, ) (2)dz+ j 6,(2)(r(-2)— ¢,(2) ko, (2) 4z

=4[5,y j Jcbl (- vy)(~y)dvdzdy

-n0

+ [ 0,@)(r(-2) - §,(2) - ko, (2)) dz

Hence,

$[0,(0) =0, (=m)] +d; [ 1,(9)y[ (4 (~0y) ¢, (=1~ vy)) dody

= [ ,@(r(-2)-9,(2) - ko,(2))dz (10)

We note that

liminf[r(~z) - ¢,(2) —k¢,(2)]

>1-m,(0,)—kM,(0,)

>1-[0,v" +(1-0,)(B, —&) |- k[ 0,0"+(1-0, ) (1+ h+r,e) |
=1-0,v' —kB,0" —(1-6,)(B, —&)—k(1-6, ) (1+h+r,)
=1-0,—(1-6,)(B, —&)—k(1-6,)(1+h+r,e)
=(1-6,)(1-B, +e—k —hk —kr,e)
=(1-6,)(1-1+k +hk +&—k —hk —kn,¢)
=¢(1-6,)(1-kr,) >0,

by using (9) and 6, <1.

Thus,

lim j 0,(2)(1(=2)~ ¢,(2) ~k,(2))dz =

This contradicts the boundedness of left side of (10).
On the other hand, we assume ¢, is oscillatory at

—o0. Then, we can choose a sequence {zn}neN of minimal
of ¢, with
lim ¢, (z,)=m, (6,).

n—+o

point Z, —>—© as n—>+o so that

We note that ¢/ (Zn) =0 and the Fatou[’s lemma gives that
liminf (7, *¢, = ¢,)(z,) >

From the first equation of (4), we have

0 =sliminf ¢;(z,) > liminf [ ,(z,)(r(~2,) — ¢,(z,) kb, (2)) ]

n—+ o n— + o

= ml(eo)(l_ml(eo)_kMz(eo)) >0
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It is contradiction. That is, ¢, =m, (90). Additionally, the

other cases are similar to the discussion above by applying the
following inequalities:

(i) ¢ =M, (6,),

limsup [1(=2,) = ,(z,) ko, (z,)]
<1-M,(6,)—km,(6,)

=1-[0,v" +(1-0,)(1+&) |- k[ 6,0 +(1-0,) (B, — 1¢) |
=1-0,v k0,0 —(1-6,)(1+&)-k(1-6,)(B, —1¢)
=(1-6,)(1-1-e—kB, +kng)

=(1-0,)[ (kn, -1)e—kB, |

<0;
(if) ¢; =m, (6,),
liminf [r(— z,)— M}
n— o ¢1(Zn)+h
_ m,(8,)
m,(6,)+h

0,0 +(1-6,)(B, —r1¢)
0,V +(1-0,)(B, —¢)+h
0,v +(1-6,)(B, —&)+h—6,0" +(1-6,)(B, - r&)
- 0,v' +(1-0,)(B, —¢)+h
0,(v -0 )+h+(1-0,)(B, —e—B, +1¢)
- 0,v" +(1-6,)(B, —€)+h
, ~ho, +h+(1-6,)(B, —e—B, +1¢)
0,v +(1-0,)(B,—€)+h
(1—90)(h+[31 -B, —8+I‘18)
"0,V +(1-0,)(B,—€)+h
_ e(1-6,)(B, - 1)
0,v +(1-6,)(B,—¢)+h

>0;

M, (6,).

9,(z,) }

(ifi) ¢, =

¢,(z,)+h

limsup {r(—z“) -
Mz(eo)
M, (0,)+h
600)*+(1—90)(1+h+r28)
0,v +(1-0,)(1+¢&)+h
0,V +(1-8, )(1+s)+h 0,0
0,v" +(1-6,)(1+¢
_0,(v' —0)+(1-6,)(1+¢)+h—(1- 90)(1+h+1‘28)
B 0,v +(1-6 )(1+a)

—(1-6,)(1+h+1e)
+¢&)+h
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~h0, +h+(1-6,)(1+e—1-h+re)
T 0w +(1-0,)(1+¢)+h
(1—90)(h+8—h—1‘28)
T 0, +(1-0,)(1+¢)+h

_ e(1-0,)(1-1,)
0,v" +(1-6,)(1+¢)+h

in which the sequence {zn}neN is the corresponding minimal

or maximal point of ¢, (i =1,2). The proof completes. O

CONCLUSION

We calculate the existence of nonnegative solution for
Leslie-Gower predator-prey model by constructing appropriate
upper-lower solution and employing fixed-point theorems.
The conditions for the existence of front type the Leslie-
Gower formulation are established. Our analysis demonstrate
that climate change speed models as a shifting environment.
Specifically, it is shown that: Front-type forced waves emerge
when populations respond to the environmental shifts by
forming monotone traveling wave profiles, capturing the
invasion-extinction transition.
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