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Abstract - In this paper, the definitions of front type and a 

pair of generalized upper and lower solutions are firstly 

described. Then, Leslie-Gower predator-prey model and the 

properties of kernel and growth rate function are expressed. The 

suitable upper and lower solutions combined with the Schauder’s 

fixed-point theorem, fatou’s lemma is utilized to solve the 

existence of nonnegative solution. Additionally, under the 

appropriate parameter assumptions, the existence of front type 

forced wave  is verified. 
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I.  INTRODUCTION

Wave propagation is an important phenomenon in many 
scientific areas such as physics, biology and ecology. Reaction-
diffusion models are commonly used to describe how a 
quantity, such as a biological population or chemical substance, 
spreads in space over time. In classical theory, traveling waves 
move with a constant speed that is determined only by the 
internal properties of the system. However, in real world 
situation, wave propagation is often influenced by the external 
effects. These effects may include environmental forcing, 
boundary conditions. Front-type forced waves describe wave 
solution that appear as moving fronts connecting two different 
stable states under the influence of forcing.  

II. PRELIMINARIES

We begin our article by giving the definition of front- type, 

a pair of generalized upper and lower solutions. 

1. Definition

First, For a scalar wave profile ( )x st , − if 

( ) ( ) , −   + it is called a front type.

2. Definition

The continuous functions ( )1 2,   and ( )
1 2
,  are 

called a pair of generalized upper and lower solutions if 

i i
, , i 1,2  =  are bounded functions and satisfy the following 

inequalities 

( ) ( )

( ) ( )

( ) ( )

*

1 1 1 1 1 1 1 1 2

* 2

2 2 2 2 2 2 2

1

*

1 1 1 21 1 1 1 1

*

2 2 2

U (z) : d J (z) (z) s (z) (z) r z (z) k (z) 0,

(z)
U (z) : d J (z) (z) s (z) (z) r z 0,

(z) h

L (z) : d J (z) (z) s (z) (z) r z (z) k (z) 0,

L (z) : d J

  =  −  −  +  − −  −  
 

 =  −  −  +  − −  
 +  

 =  −  −  +  − −  −  
 

= ( ) ( ) 2

2 2 2 2

1

(z)
(z) (z) s (z) (z) r z 0,

(z) h










 
 −  −  +  − −   

 +    

(1)  

for all z \ E  for some finite subset E  of .

III. LISLIE-GOWER PREDATOR-PREY MODEL 

In this section, the forced waves of Leslie-Gower predator-
prey model in shifting habitats with nonlocal dispersal is 
focused. First, we consider the following diffusive predator-
prey model with one prey and one 
predator:

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )
( )

( )

*

t 1 1

*

t 2 2

u x, t d J u u x, t u r x st u x, t kv x, t , x , t 0,

v x, t
v x, t d J v v x, t v r x st , x , t 0,

u x, t h

=  − +  − − −    


  
=  − + − −    

+   





(2) 

where the unknown functions u denote the population density 
of the prey and v denote the population density of the predator 

at position x and time t. All parameters 
*

1d ,
*

2d , r, h, k are 

positive. Parameters 
*

1d ,
*

2d represent diffusion rates for prey 

and predator, the function r,  represents the growth rate, k  

denote the per capita capturing rate of the prey by a predator 

per unit of time, and 
v

u h+
represents Leslie-Gower terms, 

which means that the carrying capacity of the predator is 
proportional to the population size of the prey.  

The parameters h  and k  satisfy the conditions 

     0 h 1,    k 0,   h k 1.                  (3) 

A. Properties of Kernel and Growth Rate Function

We always assume that the kernel functions iJ ( ) (i 1,2) =

satisfy the following properties: 

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010697 Page 1

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



(J)  iJ ( ) C( , ),+     i iJ ( x) J (x),− =   

iJ (x)dx 1=


 and 
x

iJ (x)e dx−  


 for 

any 0,   i 1,2.=  

The growth rate function r( )  satisfies the following two 

properties: 

(H)  r( )  is continuous in  , 
z
lim r(z)
→

 exists  

satisfying r( ) 0 r( )−  −   +     

and r(z) r( ) +  for all z .  Without 

loss of generality (up to a rescaling), we 

choose r( ) 1;+ =  

(H )   there exists C 0  and 0   such that  

zz

r( ) r(z)
lim C.

e−→+

+ −
=  

We are interested in the propagation phenomena for 

system (2). We study the special 
1C  solution of form  

( ) ( )( ) ( ) ( )( )1 2u x, t , v x, t st x , st x=  −  −  

where parameter s  being the shifting speed of the climatic 

condition, which is called the forced wave. 

 Let z st x,= −  and the corresponding wave profile system 

to system (2) is as follows 

( ) ( )

( ) ( )

*

1 1 1 1 1 1 1 2

* 2

2 2 2 2 2 2

1

s (z) d J (z) (z) (z) r z (z) k (z) , z ,

(z)
s (z) d J (z) (z) (z) r z , z .

(z) h

 =  −  +   − −  −     

 

 =  −  +  − −   
 +  





(4) 

From assumption (H) , the environment is favourable to 

the prey ahead of the climate change and then gradually 
deteriorates until it becomes hostile to the species. This is 

equivalent to the boundary condition ( )( ) ( )1 2, 0,0 .  + =  

We shall consider the constant unique coexistence state of 

system (2) such as ( )* *

*E v ,=   where * 1 hk
v

1 k

−
=

+
 and 

* 1 h
.

1 k

+
 =

+
 

 

 

 

We define 

* y

2 2d J (y)e dy 1 1

( ) .

−
 

− + 
 

  =





 

B. Existence of Nonnegative Solution 

In this section, we state the theorems for the existence of 

nonnegative solution. 

1 Theorem 

Suppose that s 0 . If ( )1 2,   and ( )
1 2
,   are a pair of 

upper and lower solutions of (4) satisfying  

11
0 1,     22

0 1 h     +  in  , 

then (4) admits a solution ( )1 2,   such that 

i ii
(z) (z) (z)      for all z  , i 1, 2.=  

Proof: 

Let ( )X B C ,=   be the space of all uniformly continuous 

and bounded functions defined in  . Then, X is a Banach 
space equipped with the sup-norm. 

Let ( ) 2

1 2 1 2Y , X :1 (z) 0,1 h (z) 0 for all z .=       +      

For ( )1 2, Y, =     we consider the nonlinear operators 

iF (i 1,2)=  defined on Y by  

( ) ( ) ( )

( ) ( ) ( )

*

1 1 1 1 1 1 1 1 2

* 2

2 2 2 2 2 2 2

1

F [ ](z) (z) d J z (z) r z (z) k (z) , z ,

(z)
F [ ](z) (z) d J z (z) r z , z ,

(z) h

 =  +  −  +   − −  −    

 
 =  +  −  +  − −  

 + 





 

where  1 2max , 0 =     with 

*

1 1 L ( )

*

2 2 L ( )

d r k(1 h) 2,

2(1 h)
d r .

h





 = + + + +

+

 = + + 






           (5) 

We define the following operator 

   
z (y z)

s
i i

1
P (z) e F (y)dy, z , i 1, 2.

s

 −

− 

 =   =   

Let      ( )1 2P P ,P , =   ( ) ( )1 2 1 2, P ,  =   . 

Then,  
2P : Y X→  and  i i is (z) (z) F (z), z . = −  +     

Thus, a fixed point of P is a solution of (4). 

Let 0,
s

 
   

 be a constant and we define the norm 

( ) z

1 2
z

sup max (z) , (z) e , Y.
− 




 =    


 

Moreover, the set 

( ) 1 2 ii i
A , Y : 0, i 1,2=          =  
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is a non-empty convex, closed, and bounded set in ( )Y,


 . 

Then, we show that P maps A into A. Let A.   

By using (5), we can get   

  ( )1 1 21
F (z) F , (z),    

 
 

and hence,   ( )1 1 21
P (z) P , (z)    

 
 for all z .   

From (1), we have 

( ) ( )
z (y z)

s
1 12 21 1

1
, (z) e F , (y) dy

s

 −

− 

      =  
     

( )
 ) z i ii

(y z)
1 21s

,z \U E(z , z )0

F , (y)
lim e dy

s

 −

−  − +→

  
 

=   

 ) z i ii

(y z)

1 1s

, z \U E(z , z )
0

c (y) (y)
lim inf e dy

s

 −

−  − +
→

 + 
   

1
(z), z .=     

Thus, ( )1 21 1
P , (z) (z).    
 

 Similarly, we have  

( )11 1 2
(z) P , (z).    

 
 

By using the choice of   and the definition of super and sub-

solutions, we can calculate  

( )   ( )

( )   ( )

1 1 11 1 22 1 1

2 2 22 1 2 1 2 2

P , P P , ,

P , P P , .

             
   

            
   

 

Therefore, P(A) A.  

Next, we show that the mapping P : A A→  is completely 

continuous with respect to the norm 


 . We give some 

details and show the continuity of P  on A . 

For any ( )1 1 2, A =     and ( )2 1 2, A =    , we have 

( ) ( )1 1 2 1 1 2P , (z) P , (z)


  −    

( ) ( ) z

1 1 2 1 1 2P , (z) P , (z) e
−

=   −    

( ) ( )1 1 2 1 1 2P , (z) P , (z)


  −  

 

 

 

z (z y)*
z1 s

1 1 1 1

* z (z y)
1 L ( ) zs

1 1

z (z y)
zs

2 2

d
J (y) J (y) e dy e

s

d r 2 k(1 h)
(y) (y) e dy e

s

k
(y) (y) e dy e .

s



− −
−

−

− −
−

−

− −
−

−

  − 

 + + + + +
+  −

+  −









 

We note that 

 
z (z y)*

z1 s
1 1 1 1

d
J (y) J (y) e dy e

s

− −
−

−

 −   

z (z y)*

1 s
1 1 1

d
J (y ) ( ) ( )e e d e dy

s

− −
−   

−

 −    −   


 

z (z y)*
y y z1 s

1 1 1

d
J (y)e dy e e dye

s

− −
  −



−

  − 


 

and 
z (z y)

y zs
1 2

e e dy e .
s s

− −
 −

−


 −   

Thus, we have 

( ) ( )1 1 2 1 1 2 1 1 1 2 2 2P , (z) P , (z) L L
 

  −     − +  −  

where  

y* *

1 1 1 1 L ( )

2
L d J (y)e dy d r 2 k(1 h) ,

s



 

= + + + + + + 
 −  

 


  

2

2k
L .

s
=
 − 

 

Similarly, we have 

( ) ( )2 1 2 2 1 2P , (z) P , (z)


  −    

( ) ( ) z

2 1 2 2 1 2P , (z) P , (z) e
−

=   −    

 

 

 

z (z y)*
z2 s

2 2 2 2

*
z (z y)2 L ( )

zs
2 2

2

z (z y)
2

zs
1 1

d
J (y) J (y) e dy e

s

(1 h)
d r 2

h (y) (y) e dy e
s

(1 h)

h (y) (y) e dy e
s



− −
−

−

− −
−

−

− −
−

−

  − 

+
 + + +

+  −

+

+  −









1 1 1 2 2 2M M ,
 

  − +  −  

where  
2

2

1

(1 h)

hM ,
s

+

=
 − 

 

y* *

2 2 2 2 L ( )

2 (1 h)
M d J (y)e dy d r 2 .

s h



 +

= + + + + 
 −  

 


 

Therefore, there exists a positive constant C  such that 

1 2 1 2P P C .
 

 −    −  

Hence, P  is continuous with respect to the norm 


 . 

Now, we will prove P  in A is compact with respect 

to the norm 


 . For any ( )1 2, A    and n ,  we define 

 

  ( )

   

  ( )

1 2

n

1 2 1 2

1 2

P , ( n), z , n ,

P , (z) P , (z), z n,n ,

P , (n), z n, .

   −  −  −


  =    −


   
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 n

1 2P , (z)   is equicontinuous and uniform bounded in 

( )Y, .


  

Thus, there exists a constant N such that 

    zn n

1 2 1 2P , (z) P , (z) e Ne .
− −  −     

Then,  n

1 2P , (z)   converges to  1 2P , (z)   as n → . 

Thus,  1 2 [ n,n]
P , (z)

−
   is compact and then  n

1 2P , (z)   is 

compact. We verify that  1 2P , (z)   is precompact. Hence, 

by Schauder’ s fixed-point theorem, the proof completes.   

 

2. Theorem 

Assume that ( )1 2,   and ( )
1 2
,   are a pair of upper and 

lower solutions of (4) satisfying   

11
0 1,     22

0 1 h     +  in ,  

and admits a solution ( )1 2,   such that i ii
(z) (z) (z)      

for all z  for i 1,2,= then ( )( ) ( )1 2, 0,0  + =  for any 

nonnegative solution ( )1 2,   of (4). 

Proof: 

For contradiction, we assume that 1 1
z

limsup (z) 0.+

→+

 =    

When 1  is oscillatory near z = + , there is a maximal 

sequence  nz  of 1  such that nz → +  and 1 n 1(z ) + →   as  

n→+ .  

From the first equation of (4), we get 

( )

*

1 1 1 1 n 1 n

1 n n 1 n 2 n

0 s (z) d J (y) (z y)dy (z )

(z ) r z (z ) k (z ) .

 
=  =  − −   

 

 +  − −  −  


 (6) 

By letting n→+ , it follows from Fatou’ s lemma that  

( )*

1 1 1 n 1 n
n

limsup d J (y) (z y) (z ) dy 0
→+

 − −  


  and 

( )( )1 n n 1 n 2 n
n

1 1 2 n
n

limsup (z ) r z (z ) k (z )

r( ) k liminf (z ) 0.

→+

+ +

→+

  − −  −  

 
  − −  −    

 

From r( ) 0,−   it contradicts the equation (6).  On the other 

hand, suppose that 1  is monotone ultimately at z = + , then 

1 1( ) .+ + =   

By integrating the first equation of (4) from 0 to n, we get 

  ( )

( )

n

*

1 1 1 1 1 1

0

n

1 1 2

0

s (n) (0) d J (z)dz

(z) r( z) (z) k (z) dz

 −  =  − 

+  − −  − 





 

          

( )

n 1

*

1 1 1

0 0

n

1 1 2

0

d J (y) (z ry)( y)dr dz dy

(z) r( z) (z) k (z) dz.

+

−

=  − −

+  − −  − 

  



 

Hence, 

  ( )
1

*

1 1 1 1 1 1

0

s (n) (0) d J (y)y (n ry) ( ry) dr dy − +  − − − 


  (7) 

 ( )
n

1 1 2

0

(z)(r( z) (z) k (z) dz.=  − − −    

By taking a sufficiently large positive constant M  and 

(0,1)   so that 1 1(z) +    and r( z) 0−   for all z M,  

we get 

( ) 2

1 1 2 1(z) r( z) (z) k (z) ( ) 0.+ − − −   −    

Thus, 

( )
n

1 1 2
n

0

lim (z) r( z) (z) k (z) dz ,
→+

 − − −  = −  

which contradicts the boundedness of (7). 

Thus, 1( ) 0. + =  

For the contradiction, we set that 2 2
z

limsup (z) 0.+

→+

 =    

When 2  is oscillatory near z = + , we have a maximal 

sequence  nz  of 2  such that nz →  and 2 n 2(z ) + →   as 

n .→   

From the 2  equation of (4), we get 

* 2 n

2 2 2 n 2 n 2 n n
n 1 n

2

2

1

(z )
0 limsup d J (y) (z y)dy (z ) (z ) r( z )

(z ) h

r( ) 0.
h

→ 

+

+

+

    
=  − −  +  − −     +    

 
  − −   + 




 

This is a contradiction. When 2  is monotone ultimately at 

z = +  the process is similarly to the proof of 1 .  

Hence, 2 ( ) 0. + =  

Thus, ( ) ( )1 2, ( ) 0,0,0  + =  for any nonnegative solution 

( )1 2,   of (4).  
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IV  EXISTENCE OF FRONT-TYPE FORCED 

WAVES 

In this section, the existence of front type forced waves 

connecting *E to ( )0,0  is shown. Since r is non-monotonic, 

we consider the following problem 

 c (z) d(J )(z) (z) r( z) (z) , z ,

( ) r( ), ( ) 0.

 =  − +  − −    


 − =   + = 


  (8) 

A positive function 
1
 satisfying 

*

1 11 1 1 1 1

1 1

s d (J (z) (z)) (z) r( z) k(1 h) (z) , z ,

( ) r( ) k(1 h), ( ) 0.

    =  − +  − − + −    

 − =  − +  + =


 

Similarly, there exists a function 
2
 satisfying   

* 2

2 22 2 2 2

2

(z)
s d (J (z) (z)) (z) r( z) , z

(z) h

 
 =  − +  − −  

 +  

  

and  

 
2z

lim (z) r( ) r( ) k(1 h) h 0,
→−

 =   − + + 
2z

lim (z) 0.
→ 

 =  

3. Theorem 

Suppose that 
1

k
1 h


+

. Then, for each s 0  there exists 

a positive solution ( )1 2,   of (4) such that 
11

1     and 

22
1 h    +  in .  

Proof: 

We denote ( )1 2
, (1,1 h).  = +  By the definition of ( )

1 2
, ,   

we get iL (z) 0,  i 1,2.=   

Since r( z) 1−   for z ,  there are 

*

1 1 1 1 1 1 1 2
d (J (z) (z)) s (z) (z) r( z) (z) k (z)   − −  +  − − − 

 
 

 r( z) 1 0 − −  , 

and 

* 2

2 2 2 2 2 2

1

(z)
d (J (z) (z)) s (z) (z) r( z) 0.

(z) h

  − −  + − −  
 +  

 

Therefore, ( )1 2
,   and ( )

1 2
,   are a pair of upper and 

lower solutions of system (4). Hence, by Theorem 1, the proof 
completes. 

 

To proceed further, we set 

( ) ( )i i i i
z z

limsup z , liminf z , i 1,2.+ −

→− →−

 =   =  =  

Since 
i i
   , we have 

i i

−    for i 1, 2,=  where 1 2 11 k(1 h), h. = − +  =  +  

 

4. Theorem 

Assume that 
1

k
1 h


+

. Let ( )1 2,   be a solution of (4) 

obtained from Theorem 3. Then, ( )( ) ( )* *

1 2 *, E v , .  − = =   

Proof: 

For  0,1 , we define the following functions 

( ) ( )( )*

1m v 1 k , =  + − −    

( ) ( ) ( )*

2 2 1m 1 r , =  + −  −    

( ) ( )( )*

1M v 1 1 , =  + − + 

( ) ( ) ( )*

2 2M 1 1 h r , =  + − + +   

where 

1

1
r ,

k
  2

1
1 r ,

k
   2 2

1

1 1

k
0 min , , .

r kr 1

  
    

− 
     (9) 

Let  i i i iA [0,1) m ( ) M ( ),i 1,2 .− +=        =  

From Theorem 3, it is obvious that 

i i i im ( ) M ( )− +        

is true for 0 =  and i 1,2.=  Thus, A 0.  In addition, we 

know 
*v 1,

* 1 h.  +  Meanwhile, ( )* *,  satisfies 

* *v 1 k ,= −  * *v h. = +  

Then, we get that 

( )* *

1 1 2v 1 k 1 h , h . − + =    + =   

Then, we obtain that ( )im  ( )i( M , i 1,2)−  =  is a monotone 

increasing function of  0,1  such that  

( ) ( ) ( )( ) ( )* *

1 2 1 2m ,m 1 M ,M 1 v , .= =   

Thus, it is sufficient to show that supA 1.=  

We argue by a contradiction and suppose that 

( )0supA 0,1 .=    By taking the limit, we can get 

( ) ( )i 0 i i i 0m M ,− +        i 1,2,=  

It should be pointed out that at least one of the following 
equalities holds 

( ) ( )i i 0 i i 0m , M ,− + =   =  i 1,2,=  

according to the definition of 0  and the continuity of 

( )im   and ( )iM .   

Now, we consider the case ( )1 0 1m .− =   If 1  is 

eventually monotone, then 1 1 0( ) m ( ). − =   
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By integrating the first equation of (4) from n−  to 0, we 

can get 

 1 1s (0) ( n) − −  

( ) ( )
0 0

*

1 1 1 1 1 1 2

n n

d J (z)dz (z) r( z) (z) k (z) dz
− −

=  −  +  − −  −  

( )

0 1

*

1 1 1

n 0

0

1 1 2

n

d J (y) (z y)( y)d dzdy

(z) r( z) (z) k (z) dz.

−

−

=  −  − 

+  − −  − 

  




 

Hence, 

  ( )
1

*

1 1 1 1 1 1

0

s (0) ( n) d J (y)y ( y) ( n y) d dy − − +  − − − −   


 

( )
0

1 1 2

n

(z) r( z) (z) k (z) dz.
−

=  − −  −                             (10) 

We note that 

 1 2
z

liminf r( z) (z) k (z)
→−

− −  −   

1 0 2 01 m ( ) kM ( ) −  −   

( ) ( ) ( ) ( )* *

0 0 1 0 0 21 v 1 k 1 1 h r    −  + −  −  −   + − + +      

( )( ) ( )( )* *

0 0 0 1 0 21 v k 1 k 1 1 h r= − −   − −  − − − + +   

( )( ) ( )( )0 0 1 0 21 1 k 1 1 h r= − − −  − − − + +   

( )( )0 1 21 1 k hk kr= − − + − − −   

( )( )0 21 1 1 k hk k hk kr= − − + + + − − −   

( ) ( )0 21 1 kr 0,=  − −   

by using (9) and 0 1.   

Thus, 

( )
0

1 1 2
n

n

lim (z) r( z) (z) k (z) dz .
→

−

 − −  −  =   

This contradicts the boundedness of left side of (10). 

On the other hand, we assume 1  is oscillatory at 

− . Then, we can choose a sequence  n n N
z


 of minimal 

point of 1  with nz → −  as n→+  so that 

( ) ( )1 n 1 0
n
lim z m .
→+

 =   

We note that ( )1 nz 0 =  and the Fatou’ s lemma gives that 

( ) ( )1 1 1 n
n

liminf J z 0.
→+

 −    

From the first equation of (4), we have 

( )1 n 1 n n 1 n 2
n n

0 sliminf (z ) liminf (z ) r( z ) (z ) k (z)
→ +  → + 

 =    − − −   

    ( )1 0 1 0 2 0m ( ) 1 m ( ) kM ( ) 0  −  −   , 

It is contradiction. That is,  ( )1 1 0m .−    Additionally, the 

other cases are similar to the discussion above by applying the 

following inequalities: 

(i) ( )1 1 0M ,+ =   

 n 1 n 2 n
n

limsup r( z ) (z ) k (z )
→ 

− −  −   

1 0 2 01 M ( ) km ( ) −  −   

( ) ( ) ( ) ( )* *

0 0 0 0 2 11 v 1 1 k 1 r   = −  + − +  −   + −  −      

( )( ) ( )( )* *

0 0 0 0 2 11 v k 1 1 k 1 r= − −   − − +  − −  −   

( )( )0 2 11 1 1 k kr= − − −−  +   

( ) ( )0 1 21 kr 1 k = − −  −    

0;  

(ii) ( )2 2 0m ,− =   

2 n

n
n 1 n

(z )
liminf r( z )

(z ) h→ 

 
− − 

 + 
 

2 0

1 0

m ( )
1

m ( ) h


 −

 +
 

( ) ( )
( ) ( )

*

0 0 2 1

*

0 0 1

1 r
1

v 1 h

  + −  − 
 −

 + −  −  +
 

( ) ( ) ( ) ( )
( ) ( )

* *

0 0 1 0 0 2 1

*

0 0 1

v 1 h 1 r

v 1 h

 + −  −  + −  + −  − 
=

 + −  −  +
 

( ) ( )
( ) ( )

* *

0 0 1 2 1

*

0 0 1

(v ) h 1 r

v 1 h

 − + + −  −  − + 
=

 + −  −  +
 

( ) ( )
( ) ( )

0 0 1 2 1

*

0 0 1

h h 1 r

v 1 h

−  + + −  −  − + 


 + −  −  +
 

( ) ( )
( ) ( )

0 1 2 1

*

0 0 1

1 h r

v 1 h

− + − −  + 
=

 + −  −  +
 

( ) ( )
( ) ( )

0 1

*

0 0 1

1 1
0;

v 1 h

 −  −
= 
 + −  −  +

 

 

 

(iii) ( )2 2 0M ,+ =   

2 n

n
n 1 n

(z )
limsup r( z )

(z ) h→

 
− − 

 + 
 

2 0

1 0

M ( )
1

M ( ) h


 −

 +
 

( ) ( )
( ) ( )

*

0 0 2

*

0 0

1 1 h r
1

v 1 1 h

  + − + + 
= −

 + − +  +
 

( ) ( ) ( ) ( )
( ) ( )

* *

0 0 0 0 2

*

0 0

v 1 1 h 1 1 h r

v 1 1 h

 + − +  + −  − − + + 
=

 + − +  +
 

( ) ( ) ( ) ( )
( ) ( )

* *

0 0 0 2

*

0 0

(v ) 1 1 h 1 1 h r

v 1 1 h

 − + − +  + − − + + 
=

 + − +  +
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( ) ( )
( ) ( )

0 0 2

*

0 0

h h 1 1 1 h r

v 1 1 h

−  + + − +  − − + 
=

 + − +  +
 

( ) ( )
( ) ( )

0 2

*

0 0

1 h h r

v 1 1 h

− +  − − 
=
 + − +  +

 

( ) ( )
( ) ( )

0 2

*

0 0

1 1 r
0,

v 1 1 h

 − −
= 
 + − +  +

 

in which the sequence  n n N
z


is the corresponding minimal 

or maximal point of i (i 1,2). = The proof completes.  

CONCLUSION  

We calculate the existence of nonnegative solution for 

Leslie-Gower predator-prey model by constructing appropriate 

upper-lower solution and employing fixed-point theorems. 

The conditions for the existence of front type the Leslie-

Gower formulation are established. Our analysis demonstrate 

that climate change speed models as a shifting environment. 

Specifically, it is shown that: Front-type forced waves emerge 

when populations respond to the environmental shifts by 

forming monotone traveling wave profiles, capturing the 

invasion-extinction transition.  

 

 

 

 . 
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