Excess Transport Properties Of Binary Mixtures Of IBMK With

FURFURALDEHYDE, N-BUTYLACETATE,

BUTAN-2-ONE At 308K

D.UBAGARAMARY

Department of Chemistry, Sri venkateswara institute of engineering, krishnagiri, India

Under the guidance of Dr.P.Neeraja Department of Chemistry,Adhiyamann college of engineering, Hosur-635 109, India

ABSTRACT

The ultrasonic velocity (u), density (ρ) and viscosity (η) have been measured in binary liquid mixtures containing **Ibmk+ furfuraldehyde**, **Ibmk+ n-butylacetate Ibmk+ butan-2-one**. From these data some of acoustical parameters such as adiabatic compressibility (β_{ad}), free length (L_f), free volume (V_f) and internal pressure (π_i) have been computed using the standard relations. The excess values of these parameters are also evaluated over the whole concentration range .The result is interpreted in terms of molecular interaction such as dipole-dipole interaction through hydrogen bonding between components of mixtures. The dependence of excess properties of mixture compositions were compared and discuss in terms of the intermolecular free length and other factors affecting the solvation and self association effect. The excess values of these indicate dipole-induced dipole interaction complexity in the binary liquid mixture.

KEYWORDS

molecular interaction, Ultrasonic velocity, adiabatic compressibility, inter-mole molecular free length, Excess properties, internal pressure, dipole-dipole interactions, dipole-induced dipole interactions.

INTRODUCTION

The ultrasonic studies are extensively used to estimate the thermodynamic properties and predict the intermolecular interactions in pure liquid ^{[1],} liquid mixtures ^[2-5] and ionic interactions in electrolytic solutions ^[6,7]. Though the molecular interactions studies can be best carried out through spectroscopic methods ^[8,9] the other non spectroscopic techniques such as dielectric ^[10] magnetic ^[11] ultrasonic velocity and viscosity ^[12-17] measurements have been widely used in field of interactions and structural aspect evaluations studies. In the present work an attempt has been made to investigate the behaviour of binary solutions of **IBMK+ Furfuraldehyde IBMK+ n-ButylacetateIBMK+ Butan-2-one** with regard to adiabatic compressibility, intermolecular free length, free volume and internal pressure fromultrasonic measurements at 308 K.

In view of the applications of these solvents and their mixtures in chemistry and modern technology three binary mixtures have been studied and reported at 308 K in this paper under THREE categories namely,

System:1IBMK+ FurfuraldehydeSystem:2IBMK+ n-ButylacetateSystem:3IBMK+ Butan-2-one

Experimental techniques

Aspects in Theoretical

1. Adiabatic compressibility (β)

The adiabatic compressibility is the fractional decrease of volume per unit increase of pressure, when no heat flows in or out. These changes are related to the compressibility of the medium by thermodynamic relation

$$\beta = \frac{1}{v} [\partial v / \partial p] \qquad (1)$$

It can also be calculated from the speed of sound (U) and the density of the medium (ρ) using the equation of Newton Laplace as

$$\beta = \frac{1}{u^2 \rho} \qquad (2)$$

2. Intermolecular free length

The adiabatic compressibility of a liquid can be expressed in terms of the intermolecular free length which is the distance between the surfaces of the neighboring molecules and is given by the relation,

$$L_{f = KT \beta}^{1/2}$$
 (3)

Where K_T is the temperature dependent constant.

3. Free Volume (V_f)

Free volume is one of the significant factors in explaining the variations in the physio-chemical properties of liquids and liquid mixtures. The free space and its dependent properties have close connection with molecular structure and it may show interesting features about interactions, which may occur when two or more liquids are mixed together. This molecular interactions between like and unlike molecules are influenced by structural arrangements along with shape and size of the molecules. A liquid may be treated as if it were composed of individual molecules each moving in a volume V_f in an average potential due to its neighbors. That is, the molecules of a liquid are not quite closely packed and there are some free spaces between the molecules for movement and the volume V_f is called the free volume ¹⁸.Eyring and Kincaid ¹⁹ defined the free volume as the effective volume in which particular molecule of the liquid can move and obey perfect gas lawsFree volume in terms of Ultrasonic velocity (U) and the Viscosity of the liquid (η) as

$$\mathbf{V}_{\mathbf{f}} = \left[\frac{M_{eff} U}{K\eta}\right] 3/2 \tag{4}$$

Where M_{eff} is the effective molecular weight

$M_{eff} = \sum X$ імі

in which m_i and X_i are

the molecular weight and the mole fraction of the individual constituents respectively). K is a temperature independent, constant which is equal to 4.28×10^9 for all liquids.

4. Internal Pressure (π_i)

The measurement of internal pressure is important in the study of the thermodynamic properties of liquids. The internal pressure is the cohesive force, which is a resultant of force of attraction and force of repulsion between the molecules 20,21 . Cohesion creates a pressure within the liquid of value between 103 and 104 atmosphere. Internal pressure also gives an idea of the solubility characteristics. Dissolved solutes exist under the internal pressure of the medium and their interactions with the solvent arise through hydrogen bonding, charge transfer, Columbic (or) Vanderwaal's interaction. The term a/v^2 in Vanderwaal's ²² equation being the measure of attractive force of the

molecule is called the cohesive (or) internal pressure.

The internal pressure is the single factor which varies due to all type of solvent-solute, solute-solute and solventsolvent interactions. A general method of measuring the internal pressure based on the Maxwell's equation of thermodynamics²³ is

$$\mathbf{P} = \mathbf{T} \begin{bmatrix} \frac{\partial P}{\partial T} \end{bmatrix}_{V} - \begin{bmatrix} \frac{\partial E}{\partial V} \end{bmatrix}_{T}$$
(5)

On the basis of statistical thermodynamics, expression for the determination of internal pressure by the use of free volume concept as given by

$$\mathbf{V}_{\mathbf{f}} = \frac{1}{V^2} \left[\frac{bRT}{P + \left(\frac{\partial E}{\partial v}\right)_T} \right]^3 \quad (6)$$

As $\left(\frac{\partial E}{\partial v}\right)_T$ is the internal pressure and neglecting P which is insignificantly small to π_i

$$V_{f} = \frac{1}{V^{2}} \left[\frac{bRT}{\pi_{i}} \right]^{3}$$
(7)

The final equation for the evaluation of internal pressure can be obtained by combining and rearranging the equations (6) and (7)

$$\pi_{i=bRT} \left(\frac{K\eta}{U}\right)^{\frac{1}{2}} \left(\frac{\rho_{3}^{2}}{M_{eff}^{-\frac{7}{6}}}\right) \quad (8)$$

Where K is a constant, T the absolute temperature, η , the viscosity in NSm⁻², U, the ultrasonic velocity in ms⁻¹, ρ , the density in kgm⁻³ of the liquid.

5. Relaxation time (τ)

Relaxation time is the time taken for the excitation energy to appear as translational energy and it depends on temperature and on impurities.

The dispersion of the ultrasonic velocity in binary mixture reveals information about the characteristic time of the relaxation process that causes dispersion. The relaxation time (τ) can be calculated from the relation.

$$\tau = \frac{4}{3} \beta \eta \tag{9}$$

6. Acoustic Impedance (Z)

The Specific acoustic impedance is given by $Z = U^* \rho$ (10)

Where U and ρ are velocity and density of liquid respectively.

7. Gibb's Free Energy (ΔG*)

The relaxation time for a given transition is related to the activation free energy. The variation of $\Box \Box$ with temperature can be expressed in the form of Eyring salt process theory²⁴.

$$\frac{1}{\tau} = \frac{KT}{h} exp\left(\frac{-\Delta G^*}{KT}\right) \qquad (11)$$

The above equation can be rearranged as,

$$\Delta G^* = KT \log \left(\frac{h}{KT\tau}\right) \tag{12}$$

Where K is the Boltzmann constant and h is plank's constant.

The excess values are calculated using the formula,

$$A_{EXCESS} = A_{EXP} - A_{IDEAL}$$
(13)

Where, $A_{id}=\sum A_i X_{ii}$, where A_i is any acoustical parameter and X_i is the mole fraction of liquid component.

3. Experimental

1. Density Measurement

The density of pure liquids and mixtures are measured using a 10ml specific gravity bottle. The specific gravity bottle with the experimental liquid is immersed in a temperature controlled water bath. The densities of pure liquids thus obtained are found to be in good agreement with standard values. The measured density was measured using the formula,

$$\boldsymbol{\rho}_2 = \frac{w_2}{w_1} \boldsymbol{\rho}_1 \tag{14}$$

Where, W_1 , is the weight of the distilled water. W_2 , that of weight of the experimental liquid ρ_1 , is the density of water. ρ_2 that of the experimental liquid.

2. Viscosity measurement

The viscosity of the pure liquids and liquid mixtures are measured using an Ostwald's Viscometer calibrated with doubly distilled water. The Ostwald's Viscometer with the experimental liquid is immersed in a temperature controlled water bath. The time of flow was measured using a Racer stop watch with an accuracy of 0.1 sec. Viscosity was determined using the relation

$$\boldsymbol{\eta}_{2} = \boldsymbol{\eta}_{1\left(\frac{t_{2}}{t_{1}}\right)\left(\frac{\rho_{2}}{\rho_{1}}\right)} \tag{15}$$

Where,

 η_2 is the Viscosity of water t_1 , is the time of flow of water ρ_1 is the density of water. η_1 is the viscosity of the experimental liquid. t_2 is the time of flow of the experimental liquid.

 ρ_2 is the density of the experimental liquid.

3. Velocity Measurement

The velocity of ultrasonic waves in the liquid mixture have been measured using an ultrasonic interferometer (Mittal Enterprises, New Delhi) working at a fixed frequency of 2MHZ with a tolerance of \pm 0.005%. The measuring cell is a specially designed double walled vessel with provision for temperature constancy. The high frequency generator excites a quartz crystal fixed at the bottom of the measuring cell, at its resonant frequency. The

capacity of the measuring cell is 12cc. A fine micrometer screw, with a least count of 0.01mmat the top of the cell, can be raised (or) lowered the reflector plate in the liquid through a known distance. The measuring cell is connected to the output terminals of the high frequency generator through a shielded cable. Ultrasonic waves, normal to quartz crystal, is reflected from the reflector plate. Stationary waves are formed in the region between reflector plate and the quartz crystal. The micrometer is slowly moved till a number of maximum readings (n) of the anode current is passed. The total distance moved by the micrometer is noted (d). The wavelength of the ultrasonic waves in the liquid is $\lambda = 2d/n$. The velocity of ultrasonic waves in the liquid U = λf . Where f is the frequency of the generator.

4. Results and Discussion

The experimental values of density viscosity, ultrasonic velocity for the three binarysystems **Ibmk+ furfuraldehyde**, **Ibmk+ n-butylacetate Ibmk+ butan-2-one** at 308k are given in the tables 1, 2, 3. The parameters adiabatic compressibility (β_{ad}), free length(L_f), free volume (V_f), acoustic impedance(Z), internal pressure(π_{i}), relaxation time(τ) at 308k are listed in tables 4,5,6,7,8,9.

The structure of the following systems are studied at 308K.

 $C_5H_4O_2$

 $C_6H_{12}O_2$

C₄H₈O

Furfuraldehyde

N-Butylacetate

Butan-2-One

SYSTEM:-1 IBMK +Furfuraldehyde

Table:-1 Mole fraction of first component (X_1) , Mole fraction of second component (X_2) , Density (ρ) , viscosity (η) , ultrasonic velocity(U), acoustic impedance(Z), Leonard's Jones potential(LJP) and Molecular interaction parameter (χ_u) values at different mole fraction of IBMK +Furfuraldehyde at 308 K.

Mole fr	action	0	n	TI	7		~
X1	X2	(g/cm3)	(cp)	(m/s)	$(\mathbf{gm}^{-2}\mathbf{s}^{-1})$	LJP	λ ^u (m/s)
0.0000	1.0000	1.1477	0.8247	1372	1574.6444	42.1053	0.0000
0.0581	0.9419	1.119	0.7186	1380	1544.22	43.6364	0.0130
0.094	0.906	1.1017	0.6587	1368	1507.1256	41.3793	0.0087
0.1442	0.8558	1.0782	0.6089	1376	1483.6032	42.8571	0.0209
0.2533	0.7467	1.0302	0.5297	1379	1420.6458	43.4389	0.0373
0.3077	0.6923	1.008	0.4924	1330	1340.64	35.5556	0.0073
0.4325	0.5675	0.9623	0.4366	1272	1224.0456	29.2683	-0.0210
0.4941	0.5059	0.9385	0.3925	1256	1178.756	27.9070	-0.0256
0.6501	0.3499	0.888	0.3474	1228	1090.464	25.8065	-0.0275
0.8028	0.1972	0.8441	0.2991	1216	1026.4256	25.0000	-0.0171
1.0000	0.0000	0.7937	0.3945	1204	955.6148	24.2424	0.0000

SYSTEM:-1 IBMK +Furfuraldehyde

Fig. 1 Molefraction vs U

MOLE FRACTION OF FIRST COMPONENT

-1.2

Table:-2 adiabatic compressibility(β), relaxation time(τ), free volume(V_f), internal pressure(π_i), cohessive force(CE), absorption co-efficient(α/f^2), free length(L_f)& activation energy($\Delta G^{\#}$) values at different mole fraction of IBMK+Furfuraldehyde at 308 k.

β 10 ⁻¹²	τ 10 ⁻⁷	V _f 10 ⁻⁵	π_{i}	CE	$\alpha/f^2 10^3$	$\mathbf{L}_{\mathbf{f}}$	$\Delta G^{\#} 10^{-20}$
$(T.Pa)^{-1}$	(s)	(ml/mole)	(atm)	(gJ/mole)	$(NPm^{-1}s^2)$	(T.Pa)-1	(gj/mole)
462.875	6983	2.60443	7932.7268	664.0903	64.0580	107.8580	4.1042
469.258	6205	4.03575	7241.9122	623.3419	47.1600	108.9154	4.08237
485.025	5827	5.12771	6881.4328	602.5299	40.3440	110.2476	4.07079
489.851	5472	6.64827	6489.0040	581.7856	33.4915	111.1181	4.05918
510.446	4971	10.3058	5838.0356	550.3318	24.5744	113.5536	4.04145
560.836	4897	11.5892	5635.9651	544.2252	23.3916	116.8928	4.03867
642.267	4756	14.7727	5234.0042	532.1823	20.4850	122.3334	4.03326
675.439	4440	19.7261	4898.8692	512.0502	16.9663	124.6613	4.02056
746.776	4248	27.1096	4463.3773	496.2613	13.7821	129.6099	4.0124
801.119	3885	42.0305	3998.3248	470.6258	10.2160	133.5919	3.99593
869.142	5504	18.2163	4393.5863	554.4432	17.6500	138.4530	4.06025

Fig.3 Molefraction vs β

MOLE FRACTION OF FIRST COMPONENT

Fig.5 Molefraction vs CE

MOLE FRACTION OF FIRST COMPONENT

MOLE FRACTION OF FIRST COMPONENT

UE	$\eta^{\rm E}$	VA ^E	ZE	VE	β ^E 10 ⁻⁰⁸	$V_{\rm F}^{\rm E} 10^{-05}$	$L_{\rm F}^{\rm E}$
(m /s)	(NS/cm ²)	(cm ³)	$(g^{-2}s^{-1})$	(cm ³ /mole)	$(g-^1ms^2)$	(cm ³)	(cm)
-55.0	0.0000	0.0000	0.0000	0.0000	00035112	00000395	-0.0009
-3.2	-0.0173	-3.3573	44.0648	-0.10904	-1.72211	.524266	-0.7210
-18.8	-0.0646	-2.2693	25.0522	-0.14945	-1.60387	1.05576	-0.4872
-27.8	-0.0955	-1.5578	10.7011	-0.18351	-3.16079	1.79261	-1.1524
-30.7	-0.1188	-1.0978	-0.6754	-0.20845	-5.53363	3.74684	-2.0548
-39.2	-0.1444	-0.3196	-12.2659	-0.22298	-2.7047E	4.18096	-0.3799
-26.7	-0.1410	-0.7666	-8.3378	-0.40936	.368105	5.41612	1.2425
-35.0	-0.1672	0.0930	-18.6844	-0.17973	1.1828E	9.40786	1.6859
-21.2	-0.1382	-0.2357	-11.9439	-0.1454	1.97867	14.3559	1.8618
-14.0	-0.1208	0.0396	-9.2206	-0.11126	1.21702	26.8929	1.1720
-1.8	-0.1205	-0.2511	-6.5086	0.0000	0000826	00000365	0.0000

Fig.7 Molefraction vs V^E

Fig.8 Mole fraction vs \mathbf{Z}^{E}

Fig.9 Mole fraction vs ${V_{\rm F}}^{\rm E}$

MOLE FRACTION OF FIRST COMPONENT

SYSTEM: 2 IBMK+n-BUTYLACETATE

Table:-4Mole fraction of first component (X_1) , Mole fraction of second component (X_2) ,
Density(ρ), viscosity(η), ultrasonic velocity(U), acoustic impedance(Z), Leonard's Jones potential(LJP)
and Molecular interaction parameter(χ_n)values at different mole fraction of IBMK+n-
BUTYLACETATE

at 308 K

MOLE FRACT	TION	ρ (g/cm3)	η (cp)	U (m/s)	Z (gm ⁻² s ⁻¹)	LJP	χ _u (m/s)
A 1	\mathbf{A}_2						
0.0000	1.0000	0.87	0.3561	1388	1207.56	45.2830	0.0000
0.0677	0.9323	0.864	0.338	1350	1166.4	38.4	-0.0186
0.1444	0.8556	0.8576	0.3039	1332	1142.3232	35.8209	-0.0216
0.2119	0.7881	0.852	0.2777	1300	1107.6	32	-0.0363
0.3442	0.6558	0.8413	0.2499	1249	1050.7837	27.3504	-0.0571
0.4948	0.5052	0.8287	0.2298	1238	1025.9306	26.5193	-0.0455
0.5484	0.4516	0.8247	0.2123	1237	1020.1539	26.4463	-0.0389
0.6086	0.3914	0.8198	0.2027	1232	1009.9936	26.0870	-0.0345
0.7447	0.2553	0.8086	0.1578	1222	988.1092	25.3968	-0.0232
0.8688	0.1312	0.7984	0.1208	1209	965.2656	24.5524	-0.0156
1.0000	0.0000	0.7878	0.3916	1204	948.5112	24.2424	0.0000

SYSTEM: 2 IBMK+n-BUTYLACETATE

Fig.1 1 Molefraction vs U

MOLE FRACTION OF FIRST COMPONENT

Table:-5

adiabaticcompressibility(β),relaxationtime(τ),freevolume(V_f),internalpressure(π_i),cohessive force(CE), absorption co-efficient(α/f^2), free length(L_f) & activation energy($\Delta G^{\#}$) values at different mole fraction of IBMK+ n-BUTYLACETATE at 308K.

β*10⁻¹²	$\tau^{*}10^{-7}$	V _f	π _i	СЕ	$\alpha/f^2 * 10^3$	L _f	$\Delta G^{\#} 10^{-20}$
(T.Pa)-1	(s)	(ml/mole)	(atm)	(gJ/mole)	$(NPm^{-1}s^2)$	(T.Pa)-1	(Gj/mole)
596.6	0.5457	0.0006	3563.7983	4303.5003	9987.5328	123.1656	5.3344
635.1	0.5216	0.0006	3537.3537	4125.9693	9669.2967	125.3199	5.3260
657.2	0.4725	0.0008	3396.283	3879.6529	8183.1061	126.6337	5.3077
694.5	0.4346	0.0009	3303.3119	3658.7483	7295.5970	128.6034	5.2923
787.3	0.3697	0.0013	3230.7676	3230.9426	5924.1124	133.6241	5.2625
792.4	0.3432	0.0016	3149.2799	3103.8883	5137.2869	134.0019	5.2487
803.7	0.3297	0.0017	3042.5687	3023.9736	4797.5843	134.6742	5.2413
828.2	0.2602	0.0034	2994.0523	2651.2859	3066.0132	136.1574	5.1976
856.9	0.2017	0.0068	2683.1912	2302.9123	1899.5468	137.7591	5.1506
875.7	0.6628	0.0002	2385.781	4131.4185	20887.3052	138.9705	5.3702

MOLE FRACTION OF FIRST COMPONENT

Fig.15 Mole fraction vs π_i

MOLE FRACTION OF FIRST COMPONENT

Fig.16 Mole fraction vs CE

MOLE FRACTION OF FIRST COMPONENT

Fig.17 Mole fraction vs ΔG

Table:-6 EXCESS ULTRASONIC VELOSITY (U^{E}), EXCESS VISCOSITY (η^{E}), EXCESS AVAILABLE VOLUME (VA^{E}), EXCESS ACOUSTICAL IMPEDANCE (Z^{E}), EXCESS volume (V^{E}), EXCESS ADIABATIC COMPRESSIBILITY(β^{E}), EXCESS FREE LENGTH (LF^{E}) and EXCESS FREE VOLUME (VF^{E}) VALUES AT VARIOUS MOLE FRACTIONS OF IBMK+ n-Butylacetate at 308k

UE	η ^E	VA ^E	ZE	V ^E	β ^E 10 ⁻⁸	$V_{\rm F}^{\rm E} 10^{-5}$	LF ^E
(m/s)	(NS/cm ²)	(cm ³)	$(g^{-2}s^{-1})$	(cm ³ /mole)	$(g-^1ms^2)$	(cm ³)	(cm)
0.0000	0.0000	0.0000	0.0000	0.0000	.00255	00827	8.0430
-25.5432	-0.0205	2.1874	-23.6224	0.1053	1.95707	5.4718	8.6161
-29.4304	-0.0573	2.5560	-27.8302	0.1575	2.03119	25.9043	8.1384
-49.0104	-0.0859	4.2071	-45.0676	0.1930	3.8761	43.2279	8.5315
-75.6672	-0.1184	6.4208	-67.6117	0.2042	6.92799	62.6479	8.8725
-58.9568	-0.1439	5.0450	-53.4521	0.2569	5.26396	87.3487	6.9446
-50.0944	-0.1633	4.2961	-45.3437	0.1924	4.27783	119.2848	6.0705
-44.0176	-0.1750	3.7825	-39.9093	0.1797	3.71966	138.0964	5.3368
-28.9752	-0.2247	2.5075	-26.5372	0.1528	2.37325	306.5364	3.6412
-19.1408	-0.2661	1.6401	-17.2328	0.1044	1.78115	659.7078	2.3443
0.0000	0.0000	31.4669	0.0000	0.0000	00490	0.0240	0.4913

Fig.17 Mole fraction vs Z^E

MOLE FRACTION OF FIRST COMPONENT

Fig.19 Mole fraction vs V_F^{E}

MOLE FRACTION OF FIRST COMPONENT

SYSTEM: 3 IBMK+BUTAN-2-ONE

Table:-7Mole fraction of first component (X_1) , Mole fraction of second component (X_2) ,
Density(ρ), viscosity(η), ultrasonic velocity(U), acoustic impedance(Z), Leonard's Jones potential(LJP)
and Molecular interaction parameter(χ_u) values at different mole fraction of IBMK+BUTAN-2-0NE at 308 K

MOLE FRACTION						LJP	χ _u (m/a)
		ρ	η (cp)	\mathbf{U}	$Z_{(am^{-2}c^{-1})}$		
X ₁	X ₂	(g/cm3)	(cp)	(111/8)	(gm s)		(111/8)
0.0000	1.0000	0.9775	0.5265	1414	1382.185	6	0.0000
0.0829	0.9171	0.9597	0.4483	1363	1308.0711	6	-0.0241
0.1506	0.8494	0.9468	0.4346	1334	1263.0312	6	-0.0350
0.2371	0.7629	0.9304	0.4143	1305	1214.172	6	-0.0434
0.3871	0.6129	0.9025	0.3939	1268	1144.37	6	-0.0486
0.4641	0.5359	0.8882	0.3522	1246	1106.6972	6	-0.0536
0.6312	0.3688	0.8674	0.3171	1224	1061.6976	6	-0.0448
0.6448	0.3552	0.8567	0.2808	1220	1045.174	6	-0.0458
0.7789	0.2211	0.8326	0.2585	1202	1000.7852	6	-0.0387
0.8846	0.1154	0.8132	0.22	1191	968.5212	6	-0.0303
1.0000	0.0000	0.7934	0.3944	1204	955.2536	6	0.0000

Fig.21 Mole fraction vs U

Fig.22 Mole fraction vs χ_u

MOLE FRACTION OF FIRST COMPONENT

Table:-8 Adiabatic compressibility(β), relaxation time(τ), free volume(V_f), internal pressure(π_i), cohessive force(CE), absorption co-efficient(α/f^2), free length(L_f)& activation energy($\Delta G^{\#}$) values at different molefraction of IBMK+BUTAN-2-ONE at 308 K.

$\beta_{\rm s} 10^{-12}$	τ10-7	Vf10 ⁻⁵	π _i	СЕ	$\alpha/f^2 10^3$		$\Delta \mathbf{G}^{\#} 10^{-20}$
(T.Pa) ⁻¹	(s)	(ml/mole)	(atm)	(gJ/mole)	$(NPm^{-1}s^2)$	(T.Pa)-1	(gj/mole)
511.6	0.7182	4.6321	7474.6202	10331.3079	56751.7412	115.1226	5.38511
560.884	0.6228	7.39193	6722.7433	8793.8263	41304.6722	118.3391	5.3588
593.513	0.6120	8.20345	6465.7391	8166.4303	38360.1885	120.4306	5.35557
631.116	0.5937	9.73763	6114.4161	7423.9528	34018.3647	122.8298	5.34996
689.151	0.5819	12.1499	5626.2501	6438.5119	29055.3640	126.5204	5.34626
725.192	0.5287	17.4198	5175.3057	5727.4963	22730.0971	128.6558	5.32855
769.516	0.4874	26.5732	4622.4229	4907.6153	17017.8028	131.3540	5.31354
784.245	0.4370	38.3794	4302.753	4497.1256	13263.8645	132.3883	5.29337
831.294	0.4140	53.1831	3917.4203	3920.4963	10570.3351	135.2924	5.28336
866.92	0.3607	92.127	3464.6472	3355.5843	7271.1035	137.5274	5.25793
869.47	0.6628	18.2302	4391.9224	4195.3997	21237.1516	138.4792	5.37029

Fig.23 Mole fraction vs β

Fig.24 Mole fraction vs π_i

Fig.25 Mole fraction vs CE

MOLE FRACTION OF FIRST COMPONE

Fig.26 Mole fraction vs ΔG

 $\begin{array}{lll} \textbf{Table:-9} & \text{Excess ultrasonic velosity } (u^{E}) \text{,} \text{Excess viscosity } (\eta^{E}) \text{,} \text{Excess available volume} \\ (v_{a}^{E}) \text{,} \text{Excess acoustical impedance } (z^{E}) \text{,} \text{Excess volume } (v^{E}) \text{,} \text{Excess adiabatic compressibility} (\beta^{E}) \text{,} \text{Excess free length } (L_{F}^{E}) \text{ and Excess free volume } (v_{f}^{E}) \text{ values at various mole fractions of IBMK+Butan-2-oneat 308K.} \end{array}$

$\mathbf{U}^{\mathbf{E}}$	η^{E}	VA ^E	ZE	\mathbf{V}^{E}	β ^E 10 ⁻⁸	$V_{\rm F}^{\ \rm E} 10^{-5}$	$\mathbf{L}_{\mathbf{F}}^{\mathbf{E}}$
(m /s)	(NS/cm ²)	(cm ³)	$(g^{-2}s^{-1})$	(cm ³ /mole)	$(g-^1ms^2)$	(cm ³)	(cm)
0.0000	0.0000	0.0000	0.0000	0.0000	.0000474	4.58578	0.0000
-0.55867	-0.0672	1.0338	-38.7213	-0.55867	1.95585	5.83816	1.2802
-1.04855	-0.0720	1.4140	-54.8579	-1.04855	2.79641	5.41864	1.7905
-1.55839	-0.0809	1.6573	-66.7876	-1.55839	3.46171	5.37991	2.1693
-2.15013	-0.0815	1.7249	-72.5499	-2.15013	3.89807	5.0646	2.3565
-2.27864	-0.1130	2.1089	-77.3489	-2.27864	4.7471	8.9343	2.6934
-3.34468	-0.1260	1.4487	-51.0083	-3.34468	3.20054	15.0492	1.4887
-2.31974	-0.1605	1.8122	-61.7256	-2.31974	4.18677	26.6081	2.2053
-1.79092	-0.1651	1.8385	-48.8629	-1.79092	4.09352	38.9734	1.9773
-0.99906	-0.1896	1.8384	-36.0003	-0.99906	3.87411	75.9952	1.7435
0.0000	0.0000	0.0000	0.0000	0.0000	.0000457	-0.0000439	0.0000

Fig.27 Mole fraction vs V $^{\rm E}$

MOLE FRACTION OF FIRST COMPONENT

Fig.29 Mole fraction vsV_F^E

SSSMOLE FRACTION OF FIRST COMPONENT

From the tables 1,4 &7, The corresponding plots are given in Figs- 1,11,21. it is noted that the density decreases with increase in mole fraction For IBMK +Furfuraldehyde , IBMK+n-Butylacetate & IBMK+Butan-2-One. Ultrasonic velocity and viscosity decreases with increase in mole fraction of the solute in For IBMK +Furfuraldehyde ,IBMK+n-Butylacetate & IBMK+Butan-2-One.

From the tables 2, 5 &8, The corresponding plots are given in Figs- 2,12,22. it is noted that the decrease in velocity is due to the increase in free length and adiabatic compressibility. The decrease in velocity is due to the increase in free length and adiabatic compressibility of the liquid mixtures IBMK +Furfuraldehyde ,IBMK+n-Butylacetate & IBMK+Butan-2-One. It is observed that for a given concentration as the number of -CH group or chain length increases, the sound velocity increases.

The adiabatic compressibility and free length increases with increase of mole fraction in IBMK +Furfuraldehyde ,IBMK+n-Butylacetate & IBMK+Butan-2-One systems. This may lead to the presence of specific molecular interaction between the molecules of the liquid mixture. The adiabatic compressibility and free length are the deciding factors of the ultrasonic velocity in liquid systems. The internal pressure decrease and free volume increases with increasing mole fraction.

From the tables 2,5,8. The corresponding plots are given in Figs- 4,14,24. it is noted that the internal pressure may give information regarding the nature and strength of forces existing between the molecules. The decrease in free volume shows that the strength of interaction decreases gradually with the increase in solute concentration. It represents that there is weak interaction between the solute and solvent molecules like IBMK+n-Butylacetate except IBMK +Furfuraldehyde , IBMK+Butan-2-One systems.

When two liquids are mixed, there is a molecular attraction between the molecules of components and hence the cohesive energy is high. The cohesive energy and absorption coefficient values are decreased with increases in mole fractions in all the systems which may be due to weak induced dipole-induced dipole interactions in IBMK +Furfuraldehyde , IBMK+Butan-2-One , IBMK+n-Butylacetate systems.

From the tables 2,5,8. Acoustic impedance decreases with increase of mole fraction in all the three systems. The relaxation time (τ) decreases with increasing concentration for all the three systems. The dispersion of the ultrasonic velocity in the system should contain information about the characteristic time τ of the relaxation process that causes dispersion.

The relaxation time which is in the order of 10⁻¹² sec is due to structural relaxation process ²⁵ and in such a situation it is suggested that the molecules get rearranged due to co-operative process²⁶. From the tables 2,5,8. It is noted that the Gibb's Free energy decreases with increasing mole fraction of all the systems.

From the table1,4&7. The corresponding plots are given in Figs- 3,13,23. It is seen that the molecular interaction parameter values are more negative in IBMK+Butan-2-One, IBMK+n-Butylacetate systems than IBMK +Furfuraldehyde . It is suggested that dipole-dipole interactions stronger in IBMK+Butan-2-One, IBMK+n-Butylacetate systems than IBMK +Furfuraldehyde induced dipole-induced dipole interactions.

From the table2,5&8. The corresponding plots are given in Figs- 6,16,26. The Gibb's Free energy decreases with increasing mole fraction of all the systems. This may be due to the intermediate compound formation between binary liquids. It is observed Generally free energy decrease favors the formation of products from reaction. This observation confirms the formation of hydrogen bonding in binary mixtures.

From the table3,6&9. The corresponding plots are given in Figs- 7,8,9,10&17,18,19,20 &27,28,29,30.

The excess acoustical parameters can be used to find out the extent of deviation from ideal behavior in binary liquid mixtures. These values are calculated for all the three binary systems for different mole fractions at 308K. These values are presented in Tables 3, 6, 9. It may be pointed out that the excess adiabatic compressibility (κ^{E}), excess free length(L_{f}^{E}) and excess available volume (V_{a}^{E}) are positive for almost all compositions of system IBMK+Butan-2-One , IBMK+n-Butylacetate systems than IBMK +Furfuraldehyde . This indicates that the attractive forces between the molecules of components are stronger than the intermolecular attractions in IBMK +Furfuraldehyde .

Table 3,6&9. Shows the values of excess adiabatic compressibility (β^E), excess free length (L_f^E), excess free volume (V_f^E) for IBMK+Butan-2-0ne, IBMK+n-Butylacetate systems than IBMK +Furfuraldehyde at 308 K. From the Table 3,6,&9, it is observed that as the concentration of IBMK increases the ultrasonic velocity decreases for both the systems studied.

As shown in Table3,6&9. β^E values are negative which suggest the presence of hydrogen bonding interaction between the components of the liquid mixtures like IBMK +Furfuraldehyde . However, β^E values are positive which suggest that absence of hydrogen bonding in IBMK+Butan-2-One , IBMK+n-Butylacetate systems .

This indicates that the less interaction in the IBMK+Butan-2-0ne , IBMK+n-Butylacetate systems than IBMK +Furfuraldehyde system. The possible reason may be as follows, in the IBMK+Butan-2-One , IBMK+n-Butylacetate systems, the closeness of $-CO-CH_3$ to -C H group shows the presence of two types of effect. One is the increase of electron density in the $-CO-CH_3$ and the other is the resonance effect.

These two effects decrease the strength of the intermolecular hydrogen bond formation in IBMK+Butan-2-One, IBMK+n-Butylacetate systems than IBMK +Furfuraldehyde system. Hence from these factors, there is less intermolecular hydrogen bond formation and less dipole-dipole interaction in IBMK +Furfuraldehyde system.

Conclusion

The computed transport parameters and their values point to the presence of specific molecular interaction in the liquid mixtures IBMK+Butan-2-One, IBMK+n-Butylacetate systems than IBMK +Furfuraldehyde system. Hence it is concluded that the association in these mixtures is the result of strong Hydrogen bonding between the molecules & less Dipole-Dipole interactions in IBMK +Furfuraldehyde , than IBMK+Butan-2-One , IBMK+n-Butylacetate systems in Binary liquid mixtures. This shows that dipole-dipole interaction present in IBMK+n-Butylacetate system because both the components are polar.Dipole-dipole interaction existing in IBMK molecule is distubed by the addition of

Butan-2-one molecule with formation dipole-induced dipole interaction between IBMK & Butan-2-one molecules.

The comparative studies of polarity in these systems are given by increasing order.

IBMK+n-Butylacetate > IBMK+Butan-2-0ne > IBMK +Furfuraldehyde

These parameters will be useful in pharma and perfuma industries for handling &mixing process.

Acknowledgment

The authors thank Prof. Dr. Neeraja, Department of chemistry, Department of Chemistry, Adhiyamann college of engineering, Hosur-635 109, India.and also would like to thank principal Dr.Raghunath sir in Adhiyamann college of engineering, Hosur-635 109, India.

References

- 1. Ali. A., and Nain. A.K. Indian J. Pure Appl. Phys., 35 (1997) 729.
- 2. Jayakumar. S., Karunanidhi, N, and Kannappan. V. Indian J. Pure & Appl. Phys., 34 (1996) 761.
- 3. Rajendran. V. Indian J. Pure Appl. Phys. 34 (1996) 52.
- 4. Fort. R.J., Moore. W.R. Trans. Faraday. Soc (GB) 61 (1975) 2102
- 5. Sheshadri.K. and Reddy. K.C., Acustica (Germany) 29 (1973) 59
- 6. Kaulgud. M.V. and Patil. K.J. Indian J. Pure Appl. Phys. 13 (1975) 322.
- 7. Kovelenko. L.S., Ivanova. E.F. and Kransnoperova. A.P. Russ. J. Phys. Chem. 64 (1960) 184.
- 8. Nikam. P.S., Shirsat. L. Nano Hasan. M. J. Indian.Chem. Soc. 77(2000) 244.
- 9. Pimental G C and Maclellan A L, The Hydrogen Bond, (WH Freeman and Co, San Fransisco) 1960.
- 10. Hobbs M E and Bates WW, J Am Chem Soc., 1952, 74, 746.
- 11. Lin W and Tsay S J, J Phys Chem., 1970, 74, 1037.
- 12. Kannappan A N, Kesavasamy R and Ponnuswamy V, ARPN Journal of Engineering and Applied. Sciences, 2008, 3, 41.

13. Velusamy V., Nithiyanantham S. and Palaniappan L., Main Group Chemistry, 2007, 6(1), 53-61.

14. Jerie K., Baranowski A., Przybylski J. & Glinski J, J. Mol Liq., 2004, 111, 25-31.

15.Bhandakkar V. D., Adv. Appl. Sci. Res., 2(3) (2011)198-207.

16.Bhandakkar V. D., Bedare G. R., Muley V. D. and Suryavanshi B. M., Adv. In Appl. Sci. Res., 2(4) (2011)338-

347.

17.Bedare G. R., Bhandakkar V. D. and Suryavanshi B. M, Archiv. of Appl. Sci. Res., 2011, 3(5):323-338

18. Glasstone, S., Laidler, K.J., and Erying, H., Theory of Rate Processes.

19. Mc. Graw – Hill, Newyork, 478, 479, (1950). Erying, H.and Kincaid, J.F.J. Chem. Phy., 6,520,(1938).

- 20. Richards, T.W., Chem. Rev., 2,315, (1925).
- 21. Vanderwaals, J.d., Essay on the continuity of the gaseous and liquid States London (1873).
- 22. Glasstone, S., Thermodynamic for chemist, D. van Mostrand Co., Inc., Newyork, 62, (1947).
- 23. Ratha, D.C., Mishra, S.C. and Samal, K., J.Pure. Appl. Ultrason., 12,108, (1990).

24. Kinsler, L.E. and Rray. A.R., Fundamentals of Acoustics (Wiley Eastern, New Delhi). (1989).

25. Ali, A., Hyder, S. and Nain, A.K., Ind.J. Phys. 74 B, 63 (2000).

26. Sumathi T and Uma Maheswari, Indian J Pure & Appl Phys, 2009, 47, 782.

Author

Author profile

The author D.Ubagaramary has been currently involved in doing her Ph.D in Acoustical Studies on Molecular Interactions in Binary Liquid Mixtures at 308 K through ultrasonic measurements under the guidance of Prof. Dr.P.Neeraja, Department of Chemistry, Adhiyamann college of engineering, Hosur-635 109, India.

She has completed her M.Phil in the field of Ultrasonics at Bharathdasan University, India, under the guidance of Dr.X,.Rosario rajkumar Department of Chemistry,St.Joseph's college in Trichy, India. This author is currently working as a Assistant Professor in Sri venkateswara institute of engineering, Krishnagiri, India. Also, the author has been qualified in M.sc., M.phil. B.Ed.,