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Abstract 

 

 
The Triple-Diffusive Marangoni-convection problem 

is investigated in a two layer system comprising an 

incompressible three component fluid saturated 

porous layer over which lies a layer of the same fluid.  

The lower  surface of the porous layer is rigid and 

the upper free surface are considered to be insulating 

to temperature and solutes concentration 

perturbations.  At the upper free surface, the surface 

tension effects depending on  temperature and  both 

the solute concentrations are considered. At the 

interface, the normal and tangential components of 

velocity, heat and solute concentrations and their 

fluxes are assumed to be continuous.  The resulting 

eigenvalue problem is solved Exactly and an 

analytical expression for the Thermal Marangoni 

Number  is obtained.  The effect of variation of 

different physical parameters on the same is 

investigated in detail. 

 

 

1.Introduction 
 

Hydrothermal growth is a crystal growth from 

aqueous solution at high temperature and pressure.  

Even under hydrothermal conditions most of the 

materials grown have very low solubilities in pure 

water.  Thus to achieve reasonable solubilities large 

quantities of other materials  called mineralizers are 

added which do not react with the material being 

grown but affect the density gradients.  The 

convection involved is multi component convection 

There are many fluid systems in which more than two 

components are present.  The problem  under 

investigation  also has many   applications like 

solidification of alloys, the materials processing, the 

moisture  migration in thermal insulation and stored 

grain, underground spreading of chemical pollutants,  

waste and fertilizer migration in saturated soil  and 

petroleum reservoirs.  

.  For example, Degens et al [3] have reported that 

the saline waters of geothermally heated Lake Kivu 

are strongly stratified by temperature and salinity 

which is the sum of comparable concentrations of 

many salts, while the oceans contain many salts in 

concentrations less than a few percent of the sodium 

chloride concentration i. e. one can expect a 

multicomponent system.  Even in laboratory 

experiments on double diffusive convection, dyes or 

small temperature anamolies introduce a third 

property which affects the density of the fluid.  In 

these cases the study of double diffusive convection 

becomes very restrictive.  Therefore, one has to 

consider the stability of multi component systems.  

Turner et al [17] and Griffiths [4] have initiated the 

work in this direction by conducting laboratory 

experiments in which the fluxes of several 

components across diffusive interfaces are measured.   

Shivakumara [13] has investigated the onset of triple 

diffusive convection, where the effect of third 

diffusing component upon the onset of marginal, 

oscillatory convection and bifurcation from the static 

solution are discussed. 

The problems of triple diffusive convection in clear 

fluids are also studied by Pearlstein et al [8] and 

Lopez et al [5]. Rudraiah and Vortmeyer [11] have 

studied the linear stability of three- component 

system in a porous medium in the presence of  a 

gravitationally stable density gradient. Poulikakos [9] 

has in his brief communication established the 

presence of a third diffusing component with small 

diffusivity can seriously alter the nature of the 

convective instabilities in the system.  Triple 

diffusive convection in composite layers is not given 

much importance. Where as Single component 

convection in composite layers is investigated by 

Many of the researchers started by Nield [7] , 

Rudraiah [12],  Taslim and Narusawa [16],  McKay 

[6], Chen [2] .  Recently I. S. Shivakumara et. al  [14]  

have investigated the onset of surface tension driven 

convection in a two layer system comprising an 

incompressible fluid saturated porous layer over 

which lies a layer of the same fluid.   The critical 

Marangoni number  is obtained for insulating 
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boundaries both by Regular Perturbation technique 

and also by exact method. They also have  compared 

the results obtained by both the methods and found in 

agreement.    

 

     Double diffusive convection in composite layers 

has  wide applications in crystal growth and 

solidification of alloys.  Inspite of its wide 

applications not much   work has been done  in this 

area.   Chen and Chen [1]  have  considered the 

problem of onset of finger convection using BJ-slip  

condition at the interface.  The problem of double 

diffusive convection for a thermohaline system 

consisting of a horizontal fluid layer above a 

saturated porous bed  has been investigated 

experimentally by Poulikakos and Kazmierczak [10]. 

Venkatachalappa et al [17] have investigated the 

double diffusive convection in composite layer 

conducive for hydrothermal growth of crystals with 

the lower boundary rigid and the upper boundary  

free with deformation.  The  double diffusive 

magneto convection in a composite layer bounded by 

rigid walls is investigated in Sumithra [15] .  
 

2.Formulation of the problem 

 

We consider a horizontal three - component fluid 

saturated isotropic sparsely packed porous layer of 

thickness md underlying a three component fluid 

layer of thickness d. The lower surface  of the porous 

layer is considered to rigid and the upper surface of 

the fluid layer  is  free at which the surface tension 

effects depending on temperature and both the 

species concentrations.  Both the boundaries  are kept 

at different constant temperatures and salinities.  A 

Cartesian coordinate system is chosen with the origin 

at the interface between porous and fluid layers and 

the z – axis, vertically upwards as shown in Fig.1. 

 
Fig1. Physical Configuration 

 

.  The continuity, momentum, energy, species 

concentration1 and species concentration2 equations 

are,  
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Where the symbols in the above equations have the 

following meaning.  , ,q u v w


 is the velocity 

vector,  t  is the time,   is the fluid viscosity, P   is 

the  pressure, 0  is the fluid density, T is the 

temperature,   is the thermal diffusivit 1C  is the 

species concentration1 or the salinity field 1, 1   is 

the solute1 diffusivity of the fluid, 2C  is the species 

concentration2 or the salinity field2, 2   is the 

solute1 diffusivity of the fluid,  
 
 

0 p m

p f

C
A

C




    is 

the ratio of heat capacities, 
pC  is the specific heat, 

K  is the permeability of the porous medium.   The   
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subscripts   m and f refer to the porous medium and 

the fluid respectively. 

 

 The basic steady state is assumed to the 

quiescent  and we consider the solution of the form, 

 1 2, , , , , ,u v w P T C C   

       1 20,0,0, , , ,b b b bP z T z C z C z     (11) 

in the fluid layer and in the porous layer 

 1 2, , , , , ,m m m m m m mu v w P T C C
 

       1 20,0,0, , , ,mb m mb m mb m mb mP z T z C z C z                

                                                                             (12) 

 
Where the subscript ‘b’ denotes the basic state.  The 

temperature and species concentration distributions 

  ,bT z    ,mb mT z     ,bC z   ,m b mC z  and 

 2 ,bC z    2 ,mb mC z   respectively are found to be 
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  are the interface 

temperature and concentrations.  

  

In order to investigate the stability of the 

basic solution, infinitesimal disturbances are 

introduced in the form, 

         1 2 1 2, , , , 0, , , ,b bq P T C C P z T z C z C z   


          1 2, , , ,q P S S 


       (19) 

And 

 1 2, , , ,m m m m mq P T C C


 

       1 20, , , ,mb m mb m m b m m b mP z T z C z C z          

         1 2, , , ,m m m m mq P S S 


                  (20) 

 

    

Where the primed quantities are the perturbed ones 

over their equilibrium counterparts.  Now Eqs. (19) 

and (20) are substituted into the Eqs. (1) to (10) and 

are linearised in the usual manner.  Next, the pressure 

term is eliminated from (2) and (7) by taking curl 

twice on these two equations and only the vertical 

component is retained.  The variables are then 

nondimensionalised using d ,

2d


, 

d


, 0 uT T , 

10 1uC C and 20 2uC C    as the units of length, 

time, velocity, temperature, species concentrations in 

the fluid layer and md ,

2

m

m

d


, m

md


, 0lT T , 

1 10lC C   and  2 20lC C
 

as the corresponding 

characteristic quantities in the porous layer.  Note 

that the  separate length scales are chosen for the two 

layers so that each layer is of unit depth.
 

  

In this way the detailed flow fields in both 

the fluid and porous layers can be clearly obtained for 

all the depth ratios 

m

d

d
  .  The dimensionless 

equations for the perturbed variables are given by, in 

0 1z   
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For the fluid layer Pr



  is the Prandtl number, 

1
1





  is the ratio salinity1 diffusivity to thermal 

diffusivity, 2
2





  is the ratio salinity2 diffusivity 

to thermal diffusivity.  For the porous layer, 

Pr m
m

m




   is the Prandtl number, 

2

2

m

K
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d
    is the Darcy number, ˆ m


  is 

the viscosity ratio, 
1

1
m

m





  is the ratio salinity1 

diffusivity to thermal diffusivity, 
2

2
m

m





  is the 

ratio salinity2 diffusivity to thermal diffusivity. 

 

 

We make the normal mode expansion and 

seek solutions for the dependent variables in the fluid 

and porous layers according to 
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With 
2 2

2 0f a f    and 
2 2

2 0m m m mf a f   , 

where a  and ma  are the nondimensional horizontal 

wavenumbers, n  and mn   are the frequencies.  Since 

the dimensional horizontal wavenumbers must be the 

same for the fluid and porous layers, we must have 

m

m

aa

d d
  and hence ˆ

ma da . 

Substituting Eqs. (29) and (30) into the  

Eqs.(21) to (28)   and  denoting the differential 

operator 
z




  and 

mz




 by D  and mD  respectively, 

an eigenvalue problem consisting of the following 

ordinary differential equations is obtained, 
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 2 2 0m m m m mD a An W        (36) 

 2 2

1 1 0m m m m m mD a n W      
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 2 2

2 2 0m m m m m mD a n W      
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It is known that the principle of exchange of 

instabilities holds for triple  diffusive convection in 

both fluid and porous layers separately for certain 

choice of parameters.  Therefore, we assume that the 

principle of exchange of instabilities holds even for 

the composite layers.  In otherwords, it is assumed 

that the onset of convection is in the form of steady 

convection and accordingly we take 0mn n  .    

In 0 1z  , 
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Thus we note that, in total we have a 

twentyth order ordinary differential equation and we 

need twenty boundary conditions to solve them. 

 

3. Boundary conditions 

 

The bottom boundary is assumed to be rigid 

and insulating to both temperature  and species 

concentrations, so that at m mz d  , 
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The upper boundary is assumed to be free 

insulating both temperature and species 

concentrations so, the appropriate boundary 

conditions  at z d , 
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One more velocity condition at the free 

surface is the continuity of the tangential stress given 

by  
2

2 2 2

2 2 1 2 22

1 2

t t tw
T C C

z T C C

  


  
      

   
 

     (49) 

Where t  is the surface tension and is 
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At the interface (i.e., at 0, 0mz z   ), the 

normal component of velocity, tangential velocity, 

temperature, heat flux, species concentration and 

mass flux are continuous and respectively yield 

following Nield (1977), 
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We take two more boundary conditions at 

the interface.  Since we have used the Darcy-

Brinkman equations of motion for the flow through 

the porous medium, the physically feasible boundary 

conditions on velocity are the following, at 0z   

and 0mz   
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The other appropriate velocity boundary condition at 

the interface 0, 0mz z   can be , 
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All the twenty  boundary conditions (47) to (52) are 

nondimenstionalised  by using the same scale factors  

that of equations and are subjected to normal mode 

analysis and they are given . 
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The Eqs.(41) to (46) are to be solved with respect to 

the boundary conditions  (53). 

 

 

4. Exact Solution 

 

The equations (39) and (43) are independent of  

1 2, ,    and  1 2, ,m m m   respectively and 

they can be solved independently to get the general 

solutions in the form, 

     1 2W z ACosh az A zCosh az 
  

 
   3 4A Sinh az A zSinh az      

 (54)
 

     5 6m m m m mW z A Cosh a z A Sinh a z 
 

 
   7 8m mA Cosh z A Sinh z  

 (55)
 

 

Where 1A  to 4A  and  5A  to 8A  constants to be 

determined using the velocity boundary conditions of 

             
1 6 7 8 9 10 11

53 , 53 , 53 , 53 , 53 , 53 , 53

 and obtain 

     1 1[W z A Cosh az a zCosh az 
  

 
   2 3a Sinh az a zSinh az 

       (56)
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     1 4 5[m m m m mW z A a Cosh a z a Sinh a z 

 
   6 7 ]m ma Cosh z a Sinh z  

 (57)
 

 

The heat equations (40) and (44) are then solved 

using thermal boundary conditions of (53),  the 

expressions  for , m  are obtained as, 
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The Species concentration1equations (41) and (45) 

are then solved using species1 boundary conditions 

of (53),  the expressions  for 1 1, m  are obtained 

as, 

     1 1 12 13

1

( )f z
z A a Cosh az a Sinh az



 
    

 

       (60)

 

 

   1 1 14[m m m mz A a Cosh a z 

   

          

 15

1

( )
]m m

m m

m

f z
a Sinh a z


 

 (61)

 

 

The Species concentration2 equations (42) and (46) 

are then solved using species2 boundary conditions 

of (53),  the expressions  for 2 2, m  are obtained 

as, 
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5.The Thermal Marangoni number 

  

Now  the thermal Marangoni number is obtained by 

the boundary condition  
2

53  as 

   

 

2 2 2

1 1 2 2

2

(1) 1 1

1

s sD W a M a M
M

a

      


            (64)

 

 Simplifying we get 
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                                                                               (65) 

      

      

 

Where 

 

 

1

32
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f Sinha
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And 
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6. Results and discussion 

 

The  Thermal Marangoni number M obtained as a 

function of the parameters is drawn versus the depth 

ratio   and  the  results are represented graphically 

showing the effects of the variation of one physical 

quantity, fixing the other  parameters. The fixed 

values of the parameters are 

1 2 10.25, 0.25, 0.25, 0.25,t s s       , 

2 1 20.25, 0.25, 0.25m m     , 

ˆ 1,  3.0,a 
.

1 210, 100, 10.0,s sM M Da   1.0  .  

The effects of the parameters 1, , ,sa Da   

1 2 2 2, , ,s s mM M    and ̂ on the thermal 

Marangoni number are obtained and portrayed in the 

Figures 2 to 9 respectively.  

 

 

 
 

Fig.2. The effects of a  on  Thermal Marangoni  

number M 

 

The effects of the horizontal wave number 

a , on the thermal Marangoni number M  are shown 

in Fig.2.   The graph has three  diverging curves.    

The line curve is for 3.0a  , the big dotted  curve 

is for 3.1 and the small dotted line curve is for 3.2.  

Since the curves are diverging, it indicates that  the 

increasing values of   will have effect only for 

larger values of the depth ratio 

m

d

d
   , that is for 

fluid  layer dominant composite systems.  From the 

curves one can see that for a fixed value of  , 

increase in the value of a  is to increase the value of 

the thermal Marangoni number i.e., to stabilize the 

system  by delaying the onset of surface tension 

driven convection. 

 

The effects of the Darcy number Da , on 

the thermal Marangoni number M  are shown in 

Fig.3.   The graph has three  converging curves.    

The line curve is for 10Da  , the big dotted  curve 

is for 20 and the small dotted line curve is for 30.  

Since the curves are converging, it indicates that  the 

increasing values of Da  will have effect only for 
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smaller values of the depth ratio 

m

d

d
   , that is for 

porous  layer dominant composite systems.  From the 

curves one can see that for a fixed value of  , 

increase in the value of Da  is to increase the value 

of the thermal Marangoni number i.e., to stabilize the 

system  by delaying the onset of surface tension 

driven convection. 

 

 
Fig.3 . The effects of Da  on the  Thermal 

Marangoni number M
  

 

The effects of the  ratio of solute1 diffusivity  

of the fluid in the fluid layer to that of porous layer  

1
1

1

s
s

sm





 ,  on the thermal Marangoni number M  

are shown in Fig.4.   The curves are converging  at 

both the ends.    The line curve is for 1 0.25s  , the 

big dotted  curve is for  0.5 and the small dotted line 

curve is for 0.75.  It is evident that  the effect of 1s  

is prominent in the region 2 8    and here  for a 

fixed value of  , increase in the value of 1s  is to 

increase the value of the thermal Marangoni number  

M i.e., to stabilize the system  by delaying the onset 

of surface tension driven convection. 

 

Figure 5 displays the effects of the solute1 

Marangoni number 1sM , on the thermal Marangoni 

number M.     The graph has three  converging 

curves.    The line curve is for 1 25sM  , the big 

dotted  curve is for 50 and the small dotted line curve 

is for 75.   This number has dual effect on the thermal 

Marangoni number.  For values of  5   the curves 

are converging and here  for a fixed depth ratio the 

 

 

                           Fig.4. The effects of 
1s  on the 

                           Thermal Marangoni number M 

         

 
  Fig.5. The effects of 

1sM  on the Thermal     

                Marangoni number M 

 

increase in value of 1sM  increases the thermal 

marangoni number where as, for the values of depth 

ratio 5   the  curves are diverging, and here  for 

fixed depth ratio the increase in value of 1sM  

decreases the thermal marangoni number. 
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Figure 6 displays the effects of the solute1 

Marangoni number 2sM , on the thermal Marangoni 

number M.     The graph has three  converging 

curves.    The line curve is for 2 100sM  , the big 

dotted  curve is for 150 and the small dotted line 

curve is for 200.   Its effect is similar to that of  1sM . 

This number has again dual effect on the thermal 

Marangoni number.  For values of  5.5   the 

curves are converging and here  for a fixed depth 

ratio the increase in value of 2sM  increases the 

thermal marangoni number where as, for the values 

of depth ratio 5.5   the  curves are diverging, and 

here  for a fixed depth ratio the increase in value of 

2sM  decreases the thermal marangoni number. 

 

 

 
Fig.6. The effects of 

2sM  on the Thermal 

Marangoni number M 

 

 
The effects of the ratio of solute 2 

diffusivity to thermal diffusivity in the fluid layer  ,

2
2





  on the thermal Marangoni number M  are 

shown in Fig.7.   The graph has three  diverging 

curves.    The line curve is for 2 0.25  , the big 

dotted  curve is for 0.50 and the small dotted line 

curve is for 0.75.  Since the curves are diverging, it 

indicates that  the increasing values of 
2  will have 

effect only for larger values of the depth ratio 

m

d

d
   , that is for fluid   layer dominant 

composite systems.  From the curves one can see that 

for a fixed value of  , increase in the value of 
2  is 

to increase the value of the thermal Marangoni 

number i.e., to stabilize the system  by delaying the 

onset of surface tension driven convection. 

 

 

  

Fig.7. The effects of 
2  on the Thermal Marangoni 

number M 

 

 

Fig.8. The effects of 
2m  on the Thermal Marangoni 

number M 
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The effects of the ratio of solute2 diffusivity 

to thermal diffusivity  of the fluid in the porous layer 

2
2

m
m





 , on the thermal Marangoni number M  

are shown in Fig.8.   The graph has three  converging 

curves.    The line curve is for 2 0.25m  , the big 

dotted  curve is for 0.50 and the small dotted line 

curve is for 0.75.  Since the curves are converging, it 

indicates that  the increasing values of 
2m  will have 

effect only for smaller values of the depth ratio 

m

d

d
   , that is for porous  layer dominant 

composite systems.  From the curves one can see that 

for a fixed value of  , increase in the value of 
2m  

is to decease the value of the thermal Marangoni 

number i.e., to destabilize the system  so the onset of 

surface tension driven convection is faster. 

 

The effects  of the viscosity ratio ˆ m


 ,  

which is the ratio of the effective viscosity  of the 

porous matrix to the fluid viscosity are displayed in 

Fig.9. The line curve is for ˆ 1  ,  the big dotted  

curve is for 2 and the small dotted line curve is for 3.  

Since the curves are  converging, it indicates that  the 

increasing values of ̂  will  affect the onset of 

convection  only for  the values of 10  .   From 

the curves it is evident that for a fixed value of   , 

increase in the value of ̂  is to increase  the  value 

of the thermal Marangoni number M i.e., to stabilize 

the system, so    the onset of surface tention driven 

triple diffusive  convection is  delayed. In other 

words  when  the effective viscosity of the porous 

medium m  is made larger than the fluid viscosity 

 , the onset of the convection in the fluid layer can 

be delayed.
 

 

 

 
 

Fig.9. The effects of ̂  on the Thermal Marangoni 

number M 

 

 

 

6. Conclusions 

 

1. For Fluid layer dominant composite systems, by 

increasing values of 2a      the surface tension 

driven triple diffusive convection can be delayed. 

 

2. For Porous layer dominant composite systems, by 

increasing the values of ˆ,Da   and  by decreasing 

the value of 2m   the system can be stabilized. 

 

3. Both the solute Marangoni numbers have similar 

effects on the convection.  They exhibit  opposite 

effects  for the fluid layer dominant and porous layer 

dominant systems.  

 

4. The effect of ratio of solute1 diffusivity  of the 

fluid in fluid layer to porous layer is prominent for a 

range of values of depth ratio for certain choice of 

parameters.  There is no effect of the ratio of solute2 

diffusivity of the fluid in fluid layer to porous layer  

on the thermal marangoni number. 
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