
EVO: An E-Voting System using Blockchain

Vishnu Narayanan S R, Aswin R,

Ponnu G Vijay, Thanush Ram S
UG Scholar: Department of Computer Science

College of Engineering, Perumon

Kollam, India

Devi Dath
Assistant Professor: Department of Computer Science

College of Engineering, Perumon

Kollam, India

Abstract: Being a part of the largest democracy, one of our

major challenges is to choose the right government. But still many

adult citizens don’t go to cast their votes. They may be out of

station from the voting booths or might be fed up with the long

queues in voting booths and many even believe that their vote

doesn’t count because of the unfair election system. Vote rigging,

hacking of EVM (Electronic Voting Machine), election

manipulation, and polling booth capturing are the major issues

in the current voting system. And also, during these pandemic

times it will be very hard for people to vote through the

conventional voting systems. So we are trying to build a solution

to this problem through this project.

Blockchain is said to be an emerging, decentralized, and

distributed technology that promises to enhance different aspects

of many industries. Through this project, we aim to implement

the application of blockchain as a service to build a distributed

electronic voting system while providing a solution to eliminate

all disadvantages of conventional elections.

Keywords—E Voting; Ethereum; Blockchain

I. INTRODUCTION

Individuals have always regarded voting as the main means

by which they express their views on divisive topics and

debates over the years. It is a civic practice that allows people

to demonstrate their official opposition to a ballot question, a

nominee nomination, a political party, and other issues.

The well-known client-server architecture is used in

today's E-Voting systems: A trusted third party is in charge of

the server and the voting results, as well as the ownership and

fairness of the votes. Unfortunately, voting is highly reliant on

the election's organizers’ confidence. Several accusations have

been made against the electorate in recent decades, they are:

1) Inadequate data integrity and security protection.

2) There is only one point of failure.

3) Lack of reliable transaction validation protocols and

centralized control.

4) A mysterious runtime environment.

5) The server is running unidentified business law.

Blockchain, on the other hand, is a modern technology that

ensures data immutability by using cryptographic functions

and consensus algorithms and protocols to provide network

decentralization with no single point of failure. The Ethereum

blockchain[1] is an open-source distributed computing

framework with a Turing-complete scripting language that

allows software engineers to create decentralized applications

(DApps) that take advantage of the blockchain technology's

distribution property. Therefore, DApps will have the

following blockchain features:

1) Data integrity is essential.

2) Consensus processes have decentralized oversight and

confirmation.

3) A run-time environment that is transparent.

4) In the run-time climate, public business laws are active.

5) A high level of availability.

Blockchain is growing in popularity in a variety of

industries, including telecommunications.

We propose a decentralized online voting platform based

on blockchain technology in this paper, with the goal of

addressing the confidence issues posed by traditional E-voting

systems. This scheme employs a novel method for validating

and authenticating registered voters.

The main contributions of this solution include:(1)

Immutability and data integrity of voting data, (2) robustness

and reliability of the voting system, (3) decentralization of

voter registration and validation mechanisms, (4)

transparency, clarity, and determinism of the voting

environment, (5) public visualization of smart contracts votes,

(6) restricting each voter to a single vote per valid Mobile

Station International.

II. BACKGROUND ON BLOCKCHAIN

TECHNOLOGY AND ETHEREUM

Blockchain is a shared decentralized network of replicas

spread across several nodes at the same time. There is no

central authority in charge of controlling and preserving the

transaction ledger in blockchain. A consensus process among

the validating nodes determines the validity of the ledger's

edition. The use of blockchain technology allows for safe data

integrity confirmation of transactions. Bitcoin, for example,

was Satoshi Nakamoto's first Blockchain-based application

[2].

 Ethereum blockchain, on the other hand, is an open-

source, distributed, and decentralized computing platform that

runs smart contracts. Not only for a digital currency, but also

for applications, it is being designed to allow decentralization.

It's done by running a Turing-complete scripting language on

a virtual machine (Ethereum Virtual Machine, EVM). Unlike

Bitcoin, which only considers Boolean evaluations of

spending conditions, EVM is more akin to a general-purpose

computer that simulates the capabilities of a Turing machine.

In the blockchain, altering the state of a contract necessitates

transaction fees, which are priced in Ether. Ether is considered

as the fuel for operating the distributed application platform.

A. Account Types in Ethereum

There are two types of accounts in Ethereum:

 1) Externally Owned Accounts (EOA): A wallet

address identifies an account, which is managed by a private

key. From this account, the holder of this private key may pass

ether and sign transactions. EAOs are user accounts that are

linked to a pair of unique cryptographic keys that are generated

when the account is created. The public key is used to refer to

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCREIS - 2021 Conference Proceedings

Volume 9, Issue 13

Special Issue - 2021

174

www.ijert.org

the account and is also known as the EOA address, while the

private key is used to sign transactions before they are

executed on the network to prove their validity. EOAs have

Ether cryptocurrency balances in their accounts [3].

 2) Smart Contract: A smart contract is a

cryptocurrency account that is run by its own code. It is the

central framework and key building block of any DApp and is

considered an autonomous agent performed by the EVM. The

EVM will take care of running this code once it is deployed on

the blockchain as long as the requirements are met. It's worth

noting that, once deployed to the blockchain network, smart

contracts can be visited and viewed publicly via their address,

along with all of their related transactions (to address, from

address, timestamp, etc...).

 Triggering functions in the smart contract can be

performed from any account as long as the following two

conditions are met: 1) Address of the smart contract is known,

2) The function caller has sufficient Ether to trigger.

 Smart contracts have a significant advantage over

traditional servers in that the code governing the business logic

is now public (and easily verifiable).

B. The Light Ethereum Subprotocol

 As previously stated, each validating node must store

the blockchain's ledger. However, since the history of all

transactions from the genesis block (the first mined block) to

the current block must be downloaded, this requires a large

amount of memory and storage. As of March 2021, the

Ethereum chain data size was about 820 GB. On cell phones

and Internet of Things (IoT) computers, this poses a serious

issue. In order to address the aforementioned limitations, an

alternative to the Ethereum full node is being created. The

Light node chaindata is around 100 MB in size (March 2021),

which is a tiny amount of data as compared to the maximum

validating nodes. This chaindata is downloaded once on a

mobile device (or other devices) and then synchronized

through all DApps. Merkle Tree is the light client's main

building block. This data structure, created by Ralph Merkle,

allows for safe and efficient verification of blockchain data

queries. A light client sends a question to light client servers,

which then responds with the requested data as well as the

Merkle branch. By going through the list of hashes from the

returned object up to the tree's base, the client will check the

data's integrity and validity.

C. Private Ethereum Blockchain

 There is a permissioned version of blockchain as well

as a public version. Private blockchain is another name for this

edition. The decision to use each form is strongly affected by

the application's specifications. Any EOA can submit

transactions to other addresses and explore the network using

online explorers like Etherscan in a public blockchain. A

central authority is required in a permissioned blockchain to

manage and maintain its own ledger. A permissioned

blockchain is preferred in a country election process, for

example, since the government controls the election process.

III. LITERATURE REVIEW AND RELATED WORKS

There exist many different ideas for a secure e-voting

system. This review will focus on 5 major ones which emerged

repeatedly throughout the literature reviewed.

 Biometric-secure cloud based e-voting system for election

processes [4], a paper by J.A Samsul and M. B. Limkar.

Security of the system is assured by the use of biometric

fingerprint and iris authentication. When a voter wants to cast

their vote, his fingerprints if matched will be allowed to cast a

vote otherwise it would be prompted that he/she is not a

registered user. If a voter comes to scan a second time then

after scanning it would prompt that you have already casted

vote. But there exist certain challenges. The system fails to

recognize the user if their physical traits change even the

slightest. If the data were stolen, they can't try to ‘change’ their

identification traits like they can change their passwords

during a security breach. The biometric system is also

unreliable because it's an automatic system that depends on

electricity to run. If there is a power shortage, no user can enter

or exit.

 In, an Implementation of Secure Online Voting System

[5], Anisaara, N., Rakhi, B., Ashmita, K., Durgesh, G., and

Tushar, N proposed a two-fold system, one is voting through a

website and other is through mobile phones. The voter can use

either of the two ways as per his convenience. First fold system

is Internet voting which includes OTP generation for user

identity. To increase security iris scanning and verification of

the human eye is implemented. The second fold of the system

is voting through normal mobile phones for which IVR

(interactive voice response) system is implemented. The

disadvantages of this system include, in the case of internet

Voting, system crash or power failure and security risk

(hackers/computer virus), and in the case of IVR, difficulty to

understand voice prompts, long menus and wait time that

stretches on for quite some time.

Homomorphic Cryptographic Solution on E-voting

Systems [6], paper by Ahmed A. Abu Aziz, Hasan N.Qunoo,

Aiman A. Abu Samra, uses homomorphic encryption and

Non-Interactive Zero Knowledge Proof for securing e-voting

systems. The proposed E-voting system software consists

three main programs, authentication Server program, voting

Server program, voter Program The Authentication Server

Program is responsible for key generation processes and voter

authentication program (VA), the voting server program

calculates a vote mask for every vote, the voter program

encrypts the vote using the public key provided on BB. But the

system has a centralized structure and remote voting is not

possible. Also, encryption does not prevent DDoS attacks or

hacking of databases.

Ring Signatures For An Anonymous E-Voting System [7],

a paper by Oleksandr Kurbatov, Oleksiy Shapoval, V. N.

Karazin Kharkiv Kravchenko describes the mechanisms for

using ring signatures to ensure anonymity in a decentralized e-

voting system. System consists of 3 elements: Validators, User

identity system, End users. Validators are the main nodes of

the system. In order to sign a transaction and, at the same time

ensure the anonymity of the vote, the user selects a list of

public keys of other users including his own. He calculates the

value of the ring signature and sends the transaction to one of

the validators. If all the specified keys have permission to vote,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCREIS - 2021 Conference Proceedings

Volume 9, Issue 13

Special Issue - 2021

175

www.ijert.org

then the transaction is correct and can be confirmed. In this

system, it is hard to detect dual voting. Other disadvantages

include inability of the voter to check the accuracy of his own

vote. The user may be allowed to change the value of his voice.

In this case, not one transaction will be counted, but the last

transaction that was added to the blockchain.

The paper, blockchain-Based E-Voting System [8] by

Friðrik Þ. Hjálmarsson, Gunnlaugur K. Hreiðarsson,

Mohammad Hamdaqa, Gísli Hjálmtýsson evaluate the use of

blockchain as a service to implement an electronic voting (e-

voting) system. The proposed blockchain-based e-voting

system uses “permissioned blockchain (private blockchain)”.

What are Smart contracts?[9]. Smart contracts are

programmable contracts that automatically execute when

predefined conditions are met. Key benefits of smart contracts

are cost saving, enhanced efficiency and risk reduction. Smart

contracts redefine trust, as contracts are visible to all the users

of the blockchain and can, therefore, be easily verified. In

order to satisfy the privacy and security requirements for e-

voting, and to ensure that the election system should not enable

coerced voting, voters will have to vote in a supervised

environment, which leads to have a 2 types of nodes in the

network; District node: Represent each voting district, where

each district node has a software agent that autonomously

interacts with the "bootnode" and manages the life cycle of the

smart contract on that node, Bootnode: Each institution, with

permissioned access to the network, hosts a bootnode, where

the bootnode helps the district nodes to discover each other and

communicate. Defining a smart contract includes two parts:

Election roles, and election processes. Election roles allow

participation of election administrators and voters, district

nodes and boot nodes. Election process consists of election

creation, voter registration, tallying results, verifying votes and

vote transaction.

IV. PROPOSED SYSTEM

In this part, we present our proposed voting system, which

aims to overcome the obstacles that currently exist in

blockchain-based e-voting systems.

A. System Components

 The proposed platform consists of the following

components:

 1) Web application: Election commission may use the

web application to create and administer new election events.

In the blockchain network, each election is represented by a

different smart contract. The election admins create the list of

candidates participating in the election, then send an HTTP

request to the Application Server with the results. This Web

application's purpose is to be accessible as an Application

Programming Interface (API) that allows admins to create new

election events.

 2) Application Server: The Application Server's main

goal is to deploy the smart contract to the network using the

data (questions and answers) from the web application. As a

result, it includes an Ethereum Wallet (address) for deploying

the contract, a complete node for connecting to the Ethereum

network, and a database for storing the list of contract

addresses that will be retrieved later by the mobile application.

 3) Smart contracts: In our scheme, there are two parts

for the smart contract: 1) Voting part, 2) Registration part for

all voting cases, the registration contract is used only once. It

is used to register and authenticate voters in a safe manner. As

previously mentioned, the voting contract is written once

during development and deployed multiple times by the

Application Server with different election constituencies and

corresponding candidate choices specified by the election

commission.

 4) SMS Gateway: An SMS Gateway is essentially

necessary in our framework because it is used to authenticate

users by sending SMS messages to the corresponding

MSISDNs.

 5) Mobile application: Voters use the smartphone

application to enroll themselves in the system and then vote. It

also allows users to view elections, see candidate lists and cast

their votes. Furthermore, the application generates a

comprehensive report detailing election statistics such as the

number of votes cast per time slot, venue, and other factors.

Since the voting takes place on the Ethereum network, an

interface connecting the mobile application to the blockchain

network is needed. As a consequence, the mobile app contains

an Ethereum light client. The app sends all transactions it

receives to the server.

B. Registration & Configuration

 A consumer must first register with the system in

order to be able to vote. The program automatically retrieves

the user's phone number from the Subscriber Identity Module

(SIM card) when it is launched for the first time. Since

transactions to the blockchain cost GAS, which is priced in

Ether, the EOA must have enough Ether to register and vote.

This app uses two Ethereum wallets, one for managers and one

for voters, in which the election administering body fills with

Ethereum. The private keys of the wallet are not shared with

the users of the wallet. The server manages it, so that the wallet

transactions can only be made from within the application.

This ensures that no one misuses the crypto balance.

 The Register function is called with the user's Voter

ID as a parameter. The smart contract then checks to see if the

Voter ID is on the list of accepted Voter IDs (Govt Issued).

Then, using the Oraclize contract, it sends an HTTP request to

an OTP(One Time Password) server, which generates an OTP

code. Oraclize is a service that connects smart contracts to

external web APIs in a safe manner. When the OTP is created,

the contract connects Oraclize to the Short Message Service

(SMS) Gateway, which sends an SMS to the phone number

with the OTP as the payload.

 After the MSISDN receives the SMS, the user enters

the OTP code into the app, which triggers the

Approve(MSISDN, OTP) feature. The contract then checks to

see if the received transaction's address (msg.sender) matches

the address of the first register call, as well as the OTP.

C. Creating an Election

 To create a new election, the election commission

uses the previously mentioned web application. This organizer

would be able to publish election information using graphs,

maps, and textual representations.

 To create a new election, the election commission is

requested to register the candidate(s) through the admin panel

of the web application.

 Creating an Election on the Blockchain involves

creating a voting contract. As a result, as transactions cost in

Ethereum, the admin wallet must be used for payment for this

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCREIS - 2021 Conference Proceedings

Volume 9, Issue 13

Special Issue - 2021

176

www.ijert.org

transaction. To make this process easier for organizers,

payment has been automated into the web application. The

web app then deploys the contract to the Ethereum network

after securing the transaction cost. The newly generated smart

contract's address will be returned to the organizer and also

stored in the database so that it can be tracked later in the

mobile app.

D. Voting

 The program calls the Vote(string candidateID)

method of the Vote(string candidateID) class when voting.

On the EVM, there is a dedicated smart contract. The

voting contract then makes contact with the registration

contract to see if the person has already enrolled. The program

then checks to see whether the user has already cast a vote or

whether the election has ended. If the conditions are met, the

contract increases the count of the chosen choice, labels the

user as voted, and sends the application a success letter.

The contract automatically rejects duplicate votes,

restricting to one vote per Voter ID. This is considered the

major advantage of our system compared to the others.

V. IMPLEMENTATION

To implement the proposed scheme, we use a variety of

technologies. Solidity [10], a contract-oriented programming

language for writing smart contracts for both registration and

voting, Django: server-side scripting for the Application

Server, and eth-brownie to interface the ethereum client. To

model the blockchain network, the Ropsten Testnet is used.

Twilio's SMS gateway API is used.

VI. CONCLUSION

We propose a decentralized voting network based on the

Ethereum blockchain in this paper. The platform's key

contribution is the mitigation of election frauds. Based on

fingerprints or a special device located in polling centers, this

method may be strengthened to make it more eligible for

national government elections. The user interface and results

visualization could be tailored to the needs of the consumer.

This platform could replace existing centralized election

polling systems and make voting easier for governments,

competitions, and expositions, among other items. This

platform incorporates a new business model for voting service

providers, with election organizers, blockchain providers, and

voters as participants. The blockchain provider allows voting

smart contracts to be implemented by election organizers. The

voting contracts configured according to the election norms are

deployed in the Ethereum network by the Application Server.

The revenue for the voting service provider will come from

two places: the Election Organizers as a fixed cost to pay for

the implementation of the Ethereum smart contract, and the

voters when they register and vote.

APPENDIX I

OUR SMART CONTRACT

pragma solidity ^0.8.1;
contract Voting {
 address adminAddress;
 bool electionOn = false;
 modifier onlyOwner {
 require(msg.sender == adminAddress, "You must
be admin to do this.");

 _;
 }
 event voterAdded(string name, string
constituency);
 event candidateAdded(string name, string
constituency, string symbol);
 struct Voter {
 string name;
 uint idNo;
 string constituency;
 bool canVote;
 bool exists;
 }
 struct Candidate {
 string name;
 string constituency;
 string symbol;
 uint noOfVotes;
 bool exists;
 }
 Voter[] voters;
 mapping(uint => uint) ballot;
 Candidate[] candidates;
 mapping(uint => uint) votersList;
 constructor(){
 adminAddress = msg.sender;
 candidates.push(Candidate("nonce", "nonce",
"nonce", 0, false));
 voters.push(Voter("nonce", 0, "nonce", false,
false));
 }
 function startElection() public onlyOwner {
 electionOn = true;
 }
 function endElection() public onlyOwner {
 electionOn = false;
 }
 function createVoter(string memory _name, uint
_id, string memory _constituency) public {
 require(!voters[votersList[_id]].exists,
"Voter id is already registered!.");
 voters.push(Voter(_name, _id, _constituency,
true, true));
 votersList[_id] = voters.length - 1;

 emit voterAdded(_name, _constituency);
 }
 function getVotersList() onlyOwner public view
returns(Voter[] memory){
 return voters;
 }
 function getCandidatesList() onlyOwner public view
returns(Candidate[] memory){
 return candidates;
 }
 function createCandidate(string memory _name,
string memory _constituency, string memory _symbol)
onlyOwner public {
 require(!electionOn, "Sorry. The election has
already began. You cannot add new candidates.");
 uint candId = _generateHash(_name,
_constituency, _symbol);
 require(!candidates[ballot[candId]].exists,
"Candidate already in ballot list!.");
 candidates.push(Candidate(_name,
_constituency, _symbol, 0, true));
 ballot[candId] = candidates.length - 1;
 emit candidateAdded(_name, _constituency,
_symbol);
 }

 function _generateHash(string memory _name, string
memory _constituency, string memory _symbol) public

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCREIS - 2021 Conference Proceedings

Volume 9, Issue 13

Special Issue - 2021

177

www.ijert.org

pure returns (uint){
 uint hash =
uint(keccak256(abi.encodePacked(_name, _constituency,
_symbol)));
 return hash;
 }
 function vote(uint _voterId, string memory
_voteTo, string memory _constituency, string memory
_symbol) public{
 require(voters[votersList[_voterId]].exists,
"You are not registered to vote.");
 require(electionOn, "Sorry. The election has
ended.");
require(voters[votersList[_voterId]].canVote, "Sorry.
You already voted.");
 uint candId = _generateHash(_voteTo,
_constituency, _symbol);
require(candidates[ballot[candId]].exists, "Selected
candidate not found.");
require(keccak256(abi.encodePacked(candidates[ballot[c
andId]].constituency)) ==
keccak256(abi.encodePacked(voters[votersList[_voterId]
].constituency)), "Sorry. You are voting for a
candidate who is not in your constituency.");
candidates[ballot[candId]].noOfVotes++;
voters[votersList[_voterId]].canVote = false;
 }
 function getElectionResult() public view returns
(Candidate[] memory){
 require(!electionOn, "Election has not
ended.");
 return candidates;
 }
 function getElectionState() public onlyOwner view

returns (bool){
 return electionOn;
 }
}

REFERENCES
[1] V. Buterinet al., “A next-generation smart contract and decentralized

application platform,”white paper, 2014.
[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[3] G. Wood, “Ethereum: A secure decentralised generalised

transactionledger,”Ethereum project yellow paper, 2014.
[4] J. A. Samsul and M. B. Limkar, “A biometric-secure cloud based e-

voting system for election processes,” International Journal of Electrical
and Electronics Engineering Research (IJEEER), 2014.

[5] Anisaara, N., Rakhi, B., Ashmita, K., Durgesh, G., and Tushar, N.

(2015). An implementation of secure online voting system. International
Journal of Engineering Research and General Science

[6] Aziz, Ahmed & Qunoo, Hasan & Abusamra, Aiman. (2018). Using

Homomorphic Cryptographic Solutions on E-voting Systems.
International Journal of Computer Network and Information Security.

10. 44-59. 10.5815/ijcnis.2018.01.06.
[7] O. Kurbatov, P. Kravchenko, N. Poluyanenko, O. Shapoval and T.

Kuznetsova, "Using Ring Signatures For An Anonymous E-Voting

System," 2019 IEEE International Conference on Advanced Trends in

Information Theory (ATIT), 2019, pp. 187-190, doi:
10.1109/ATIT49449.2019.9030447.

[8] Friðrik Þ. Hjálmarsson, Gunnlaugur K. Hreiðarsson, Mohammad

Hamdaqa, Gísli Hjálmtýsson 2018,Blockchain-Based E-Voting
System,2018 IEEE 11th International Conference on Cloud Computing

(CLOUD).
[9] What Are Smart Contracts? A Beginner’s Guide to Smart Contracts.

(2018). Retrieved 26 8, 2018, from https://

blockgeeks.com/guides/smart-contracts/., 2018.
[10] C. Dannen,Introducing Ethereum and Solidity.Springer, 2017.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCREIS - 2021 Conference Proceedings

Volume 9, Issue 13

Special Issue - 2021

178

www.ijert.org

