
Evaluation of Optimised Apriori Algorithm on

HDFS using MapReduce in Hadoop Distributed

Mode

1VVD Prasad Chelluri, 2BLVV Kumar, 3K. Purushotham Naidu,4M. Santhosh

1,2,3 Assistant Professor

 Dept. Of Computer Science Engineering,

Gayatri Vidya Parishad College of Engineering for Women,

Visakhapatnam, India

Abstract — With a revolutionary change in data analytics it

requires techniques that can equally extend with the trending

data processing methods. To keep in pace with this elated

progress in information evaluation, calibration and storage

patterns, development and implementation of large scale

algorithms for data processing is gaining importance. In

datamining, association rule mining and classification is a

wellutilised methodology for identifying overwhelming

relations from data in large scale analytics. Apriori algorithm

is one such crucial algorithm to mine the frequent item sets

which form the basis for finding association rules among the

data. Analyzing frequent item sets is a crucial step to find

rules and association between them. This stands as a primary

foundation for crucial decision making. With the advent of

Hadoop Map-Reduce, parallel processing and efficient

memory utilisation has come into order. This paper aims to

identify the potential of Apriori Algorithm which is

implemented as one-phase and k-phase Apriori algorithms in

MapReduce framework and further an Optimised Apriori

Algorithms(OAA) has been implemented which has a full-

fledged MapReduce benefits and it has been identified that

Optimised Apriori Algorithm has yielded better efficiency and

reduced time complexity.

Index Terms: Apriori Algorithm Optimised Apriori Algorithm,

MapReduce.

INTRODUCTION

Recent technical trends in storage, processing and

networking technologies lead to rapid growth of huge

volumes of data in both scientific as well as commercial

domains. Organizations are more inclined to make better

use of this data and the data processing techniques to

efficient decision making. Since the data is voluminous it

requires appropriate and potential computing environments

and framework to increase the precision that directly

influence the decision making in real time scenario.

Hadoop Framework is one such large-scale distributed

batch processing infrastructure for parallel processing of

voluminous data which is otherwise called as BIG DATA

that flows over huge cluster of commodity computers.

Hadoop is an open source project of Apache that

implemented Google’s File System as Hadoop Distributed

File System (HDFS) and Google’s processing framework

as Hadoop MapReduce programming model. All the

algorithms in this paper were implemented on Hadoop

using MapReduce paradigm. MapReduce is a parallel

programming model designed for parallel processing of

large volumes of data by breaking the job into independent

tasks across a large number of machines. MapReduce

programming is inherited form the list processing

languages e.g. LISP, that consists of two functions Mapper

and Reducer which runs on all machines in a Hadoop

cluster. The input output of these functions will be in form

of <key, value> pairs. The Mapper reads the input <k1, v1>,

from HDFS and produces a list of intermediate values <k2,

v2>. An additional Combiner function which is optional is

applied to reduce communication complexity in

transferring intermediate outputs from mappers to reducers.

Generally the output pairs of mapper are sorted locally and

grouped on same key and applied as input to the combiner

to make local sum.

With its efficient and rapid processing capabilities Hadoop

has become a predominant tool for Data mining and

knowledge discovery to extract useful, hidden and

unknown patterns and knowledge from large database.

There are many areas in datamining that generally

considered for decision making. Association Rule mining is

one such concept where Apriori is the basic and most

popular algorithm for association rule mining proposed by

R. Agrawal and R. Srikanth for finding frequent itemsets

based on candidate generation. Candidates are itemsets

containing all frequent itemsets. The name of the algorithm

Apriori is based on the Apriori property which states that

all nonempty subsets of a frequent itemset must also be

frequent. The core step of the algorithm is generation of

candidate k-itemsets Ck from frequent (k − 1)-itemsets

Lk−1.[1][2][3]There has been a wide variations in the

implementation of Apriori Algorithms. In this paper we

have implemented an Optimised Apriori Algorithm (OAA)

and evaluated its performance against the One-Phase

Apriori and K-Phase Apriori algorithm where the results

have evidently proven that the performance of OAA is

much better when compared to the other two

algorithms.[4][5][6]

Related Work

Apriori Algorithm: One-phase and K-Phase

As the outline of the paper discussed earlier, since the

Apriori lacks in efficiency while dealing with the

voluminous data sets and even most of the optimized

techniques of Apriori using MapReduce has elated its

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060431
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1136

efficiency using multiple techniques, our work aims at

evaluating the performance of the Optimised Apriori

Algorithm (OAA) with two basic Apriori Models one-

phase Apriori Algorithm and K-Phase Apriori

Algorithm.[4][6][7][8]

In one-phase Apriori algorithm only a single phase of

MapReduce task is considered for all frequent k-itemsets

even though it has little implementation complexity, but the

time complexity is too high making it more inefficient. Our

experimental results have underlined the same effect. The

following algorithm explains the implementation of the

one-phase algorithm.

Map task: //one for each split

Input: Si // Split i, line=transaction

Output: <key, 1>pairs, where key is an element of candidate

itemsets.

1. For each transaction t in Si

2. Map(line offset,t)//map function

3. For each itemset I in t /*I = all possible subsets of t */

4. Out(I,1);

5. End foreach

6. End map

7. End foreach

8. End

Reduce Task:

Input: <key2, value2> pairs,

Minimum _support_court, where key is an element of the

candidate Iternsets and value is its occurrence in each split

Output: <key, value >pairs, key is an element of frequent itemsets

and value is its occurrence in the whole data set.

1. Reduce (key2, value2)// reduce fun.

2. Sum=0;

3. While (value 2.has next0)

4. Sum+=value2.get next0;

5. End while

6. If(sum>=min_sup_count)

7. Out(key2,sum);

8. End if

9. End reduce

10. End

Fig.1.One-Phase Apriori Algorithm

In the K-phase Apriori Algorithm (where k=maximum

length of frequent itemsets) the algorithm needs k phases

(MapReduce jobs) to find all frequent k-itemsets where

phase one to find frequent 1-itemset, phase two to find

frequent 2-itemset, and so on. The pseudo-code of this

algorithm is shown in figure 2 and 3.

Map Task: // one for each split

Input: Si // Split i, line = transaction

Output: <key, 1>pairs, where key is an element of candidate k-

itemset

1. For each transaction t in Si

2. Map(line offset,t) //map function

3. Foreach item I in t // I = token

4. Out(I,1);

5. End foreach

6. End map

7. End foreach

8. End

Reduce Task:

Input: <key 2, value 2>pairs,

Minimum_support_court, where key2 is an element of the

candidate k –itemset and value 2 is its occurrence in each split

Output :< key3, value3> pairs, where key3 is an element of

frequent k-itemset and value3 is its occurrence in the whole

dataset.

1. Reduce((key2,value2)//Reduce function

2. Sum=0;

3. While(value2 has next0)

4. Sum+=value 2 get next0;

5. End while

6. If (sum>=min_sup_count)

7. Out(key2,sum);//collected in Lk

8. End if

9. End reduce

10. End

Fig.2.Algorithm for K-phase Apriori where k=1

Map Task: // one for each split

Input: Si, Lk-1

Output: <key, 1> pairs, key is an element of candidate k

– itemset

1. Read Lk-1 from Distribute Cache.

2. Ck=ap_gen(Lk-1) // self-join

3. For each transaction t in Si

4. Map(line offset , t)//map function

5. Ct=subset(Ck ,t);

6. For each candidate C in Ct

7. Out(C,1);

8. End foreach

9. End map

10. End foreach

11. End

Reduce Task:

The same reduce task as the previous phase

Fig.3.Algorithm for K-Phase Apriori where K>=2

Proposed Algorithm: Optimised Apriori Algorithm (OAA)

Taking into account the real time functioning of one-phase

and k-phase Apriori Algorithm we have implemented an

Optimised Apriori Algorithm which needs only two Map

Reduce phases to find all frequent k-itemsets

Fig.4. Explains the data flow of our proposed OAA where

each input split is assigned a mapper that employs the map

function, unlike the one-phase and k-phase Apriori, in

OAA the value parameter of key <Key, value> takes the

entire split as input rather than the one line transaction and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060431
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1137

further minimum support count is considered to be a value

equal to the number of transactions in the input split

multiplied by minimum support threshold.The map’s

output is a list of intermediate key/value pairs: grouped by

the key via combiner (optionally), and stored in the map

worker; where the key is an element of partial frequent k-

itemsets and the value is its partial count. When all map

tasks are finished, the reduce task (executed by reduce

worker) is started. The maps output are shuffled (fetched)

to the reduce worker that calls a reduce function. The

output of reduce function is a list (Lp) of key/value pairs,

where the key is an element of partial frequent k-itemsets

and the value equal one, stored in HDFS. Figure 5.shows

the pseudo-code of this phase.

Figure 4. Data Flow of Enhanced Apriori Algorithm (EAA)

Map Task: // one for each split

Input: Si // split i, line=transaction

Output :< key, value> pairs, where key is an element of partial

frequent k-itemsets and value is its partial occurrence

1. Map(object,Si) // Map function

2. L= apply_Apriori_on(Si);/*Partial_min_sup_count is

used*/

3. For each itemset I in L

4. Out(I , partial count);

5. End foreach

6. End map

7. End

Reduce task:

Input: < key 2, value 2>pairs, where key 2 is an element of the

partial frequent k-itemsets and value 2 is its occurrence in each

split

Output: <key 3, 1>pairs, where key 3 is an element of global

candidate frequent k-itemsets

1. Reduce (key2, value2)// reduce fun.

2. Out(key2,1); // collected in Lp

3. End reduce

4. End

Fig:Psuedo Code of Phase one of Optimized Apriori Algorithm(OAA)

In phase two (dashed arrows in figure 6), one extra input is

added to the data flow of the previous phase, which is a file

(copied from Hadoop Distributed Cache, which in the

stand-alone mode in local file system) that contains all

partial frequent k-itemsets. The map function of this phase

counts occurrence of each element of partial frequent k-

itemset in the split and outputs a list of key/value pairs,

where the key is an element of partial frequent k-itemset

and the value is the total occurrence of this key in the split.

The reduce function outputs a list (Lg) of key/value pairs,

where the key is an element of global frequent k-itemsets

(subset of partial frequent k-itemsets) and the value is its

occurrence in the whole data set. Figure 6 shows the

pseudo-code of this phase.[7][8]

Map task: // one for each split

Input: Si, Lp

Output: < key ,value >pairs, key is an element of Lp and

value is its partial occurrence in the split

8. Read Lp from Distributed Cache.

9. Foreach itemset I in Lp

10. Map (object, Si) // Map function

11. Count=count_I_in_ Si (I, Si);

12. Out(I, count);

13. End map

14. End foreach

15. End

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060431
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1138

Reduce Task:

Input: <key2, value2>pairs, where key2 is an element of

the global candidate k-itemsets and value2 is its

occurrence in each split

Output: <key3, value3>pairs, key 3 is an element of

global frequent k-itemsets and value3 is its global

occurrence in the whole data set

12. reduce(key2,value2) // Reduce fun

13.

14. sum=0;

15. while(value2.hasNext0)

16. sum+=value2.getNext0;

17. end while

18. if (sum>=min_sup_count)

19. Out(key2,sum);// collected in Lg

20. End if

21. End reduce

22. End

Fig. Pseudo code for Phase Two of Optimised Apriori Algorithm

Experimental Setup: Result Evaluation

The experimental setup has been framed by building a

Hadoop cluster that constitutes four clusters with each

cluster having 4 nodes and each node had a Ubuntu 14.04

LTS operating system with Hadoop 2.6.0 using Map

Reduce with Java 1.8.0-121.

The data set used is T1014TD100K which has been

generated by IBM’s Quest Synthetic Data Generator. The

total number of transactions are 25, 00,000 and each

transaction contains 20 items on an average. The total

number of items are 8000.The average length of frequent

Item Sets are 4.[9][10][11]

The following graphs tabulate the performance of the three

algorithms namely: one-phase,K-phase and Optimised

Apriori Algorithm (OAA)

500000

1000000

2000000

2500000

One-

phase

 1.06

1.66

1.78

1.96

K-Phase

0.32

0.64

0.89

1.36

OAA

1.326

2.2

2.64

3.01

Performance Evaluation of Three Algorithms with increasing

number of Transactions

0

1

2

3

4

One -
Phase

K-Phase

OAA

0

0.5

1

1.5

2

2.5

One -
Phase

K-Phase

OAA

500000

1000000

2000000

2500000

One-

phase

1.002

1.64

1.96

2.2

K-Phase

0.94

1.3

1.62

1.7

OAA

0.17

0.26

0.78

0.94

Performance Evaluation of Three Algorithms at a minimum
support threshold of 60

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060431
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1139

CONCLUSION:

It has been evident from the experimental results that the

implementation of Optimised Apriori Algorithm has

yielded better results in all aspects when compared to One-

phase and K-Phase algorithms. Even though the algorithms

has put up better performance when implemented on

distributed environment the optimisation has been more

centric to Hadoop platform but the algorithm has evident

flexibility to equip an further optimisation which can

reduce the number of iterations thus making it

outstandingly efficient. Further the implementation of the

Optimised Apriori algorithm in Apache Spark is also

anticipated to outperform the existing algorithm since

Apache Spark gives more memory based computation

hence reducing the complexity in iterating and I/O access.

REFERENCES:
[1] IJIT - International Journal of Information Technology

Bharati Vidyapeeth’s Institute of Computer Applications and

Management (BVICAM), New Delhi (INDIA) July -

December, 2015; Vol. 7 No. 2; ISSN 0973 – 5658 877

Implementation of Enhanced Apriori Algorithm with Map

Reduce for Optimizing Big Data by Sunil Kumar Khatri and

Diksha Deo.

[2] Journal of Theoretical and Applied Information Technology

31st March 2016. Vol.85. No.3c 2005 - 2016 PARALLEL

IMPLEMENTATION OF APRIORI ALGORITHMS ON

THE HADOOP-MAPREDUCE PLATFORM- AN

EVALUATION OF LITERATURE A.L.SAYETH

SAABITH, ELANKOVAN SUNDARARAJAN, AND

AZURALIZA ABU.

[3] Advanced Computing: An International Journal (ACIJ),

Vol.3, No.6, November 2012 MAP/REDUCE DESIGN

AND IMPLEMENTATION OF APRIORI ALGORITHM

FOR HANDLING VOLUMINOUS DATA-SETS by Anjan

K Koundinya,Srinath N K,K A K Sharma, Kiran Kumar,

Madhu M N and Kiran U Shanbag.

[4] I J C T A, 9(17) 2016, pp. 8541-8548 International Science

Press An Enhanced Apriori Algorithm for finding Frequency

of Items over Big Transactional Data based on MapReduce

Framework by Reshma Gummadi, Sudhir Tirumalasetty and

Sreenivasa Reddy Edara.

[5] Review of Apriori Based Algorithms on Map Reduce

Framework by Sudhakar Singh, Rakhi Garg and P. K.

Mishra

[6] Apriori-Map/Reduce Algorithm Jongwook Woo Computer

Information Systems Department California State University

Los Angeles, CA

[7] R-Apriori: An Efficient Apriori based Algorithm on Spark

by Sanjay Rathee,Indian Institute of Technology

,Mandi,Himachal Pradesh, India, Manohar Kaul ,Technische

Universität Berlin, Berlin, Germany, Arti Kashyap Indian

Institute of technology Mandi Himachal Pardesh, India

[8] International Journal of Networked and Distributed

Computing, Vol. 1, No. 2 (April 2013), 89-96 Published by

Atlantis Press Parallel Implementation of Apriori Algorithm

Based on MapReduce by Ning Li*.

[9] Performance Evaluation of Apriori Algorithm on a Hadoop

Cluster by JA NOSILLE Department of Automation and

Applied Informatics Budapest University of Technology and

Economics Magyar 2. (Building Q), 1117 Budapest

HUNGARY.

[10] K Murali Gopal et al, / (IJCSIT) International Journal of

Computer Science and Information Technologies, Vol. 7 (6)

, 2016, 2442-2444 Performance Analysis of Association

Rule Mining Using Hadoop K Murali Gopal Ranjit Patnaik

Dept. of Computer Science and Engineering, Gandhi

Institute of Engineering and Technology, Gunupur.

[11] Performance Analysis of Apriori Algorithm with Different

Data Structures on Hadoop Cluster International Journal of

Computer Applications · October 2015.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060431
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1140

