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 Abstract - The aim of this paper is to minimize the sensor noise 

in a temperature process station. Kalman filter is an optimal 

estimator that provides an efficient computational means to 

estimate the state of a process. The designed Kalman filter 

algorithm will minimize the noise and extract the true value of 

the process. The Kalman filter uses the two key features such as 

“PREDICTION” and “UPDATION” to give the optimal output. 

The thermocouple reading which is corrupted by Gaussian noise 

can be presented to the Kalman filter algorithm. The estimated 

value is compared with the true value, by computing the Integral 

Absolute Error (IAE) 

 

Keywords: Kalman filter, EKF, Sensor Drift,  Lab VIEW, Optimal 

Estimator, Filtering. 

 

1. INTRODUCTION 

 

The Kalman filter is an optimal estimator that can estimate the 

variables of a wide range of processes. Kalman filter also 

estimates the states of a linear system. The Kalman filter is 

theoretically attractive because apart from all possible filters, 

it minimizes the variance of the estimation error. Kalman 

filters are implemented in control systems because in order to 

control a process, it is required that an accurate estimate of the 

process variables. 

Filtering is desirable in many situations in engineering and 

embedded systems. For example, many radio communication 

signals are corrupted with noise. A good filtering algorithm 

can be used to remove the noise from electromagnetic signals 

while retaining the useful information. Another example we 

can consider is power supply voltages. Filtering, the ability to 

selectively suppress or enhance particular parts of a signal is 

perhaps the most important tool for signal processing. 

The analog filter prototypes are the most common used 

method in order to transform analog to discrete time signals. 

In noise cancellation technique, various techniques are 

available. One of them is Bayesian filter. Bayesian filtering 

uses the available noisy observations to estimate the system 

state. A Bayesian filter uses prediction-correction technique. 

The time update model describes how the state updates from 

one time sample to the next. The measurement model 

describes how the observed data is related to the internal state 

of the system.  This approach overcomes the major limitation 

of the adaptive filtering technique. Adaptive filtering is a 

commonly used method in biomedical signal processing in 

order to remove the unwanted recorded artifacts that 

contaminate the desired measured physiological signals. An 

adaptive filter will modify its filter coefficients according to a 

given optimization algorithm in order to remove the undesired 

noise from a recorded signal. The filter utilizes additional 

external sensors as a reference for the added noise with the 

assumption that the added artifact and the desired signal are 

uncorrelated. Thus the filter will remove all its artifacts from 

the recorded signals by using the reference to the artifact 

input. Thus, the choice of reference is of very important when 

utilizing the adaptive filter technique. The algorithm is very 

simple to implement and it doesn’t requires any calibration 

but the requirement of a reference signal and additional 

sensors increases the hardware costs. The decision of adaptive 

algorithm is dependent on the computational resources 

available to the system in operation. The Bayesian filter 

technique does not require any reference to be used and 

additional sensors.  

Kalman filter  operates on a prediction-correction technique. 

The Kalman filter has two layers of calculations; time update 

equations and measurement update equations and these 

equations require a prior knowledge of the process and 

measurement models. One of the main assumptions of the 

Kalman filter is that the initial uncertainty is Gaussian and that 

the system dynamics are linear functions of the state. As most 

systems are not strictly linear the other form of Kalman filter 

is used that is Extended Kalman Filter. The Kalman filter 

main advantage over other methods is in the computational 

efficiency of the algorithm due to its efficient use of matrix 

operations allowing for longer real-time artifact removal.  

2. KALMAN FILTER 

 

The kalman filter was developed by Rudolph Kalman, 

although Peter Swerling developed a very similar algorithm in 

1958. The filter is named after Kalman because he published 

his results in a more prestigious journal and his work was 
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more general and complete. Sometimes the filter is referred to  

the Kalmam-Bucy filter because of Richard Bucy’s early work 

on the topic, conducted jointly with kalman [2]. 

The Kalman Filter (KF) is the best possible optimal estimator 

for a large class of systems with uncertainty and a very 

effective estimator for an even larger class. it is one of the 

most well-known and often-used tools for so called stochastic 

state estimation from noisy sensor measurements. On certain 

assumptions, the KF is an optimal, recursive data processing 

or filter algorithm [7]. 

 The KF is optimal, because it can be shown that, 

under certain assumptions; the KF is optimal with respect to 

virtually any criterion that makes sense for example the mean 

squared error. Kalman filter assumes a multivariate Gaussian 

distribution [5]. One of the reasons the filter performs 

optimally is because it uses all available information that it 

gets. It does not matter about the accuracy it just an overall 

best estimate of a state, i.e., the values of the variables of 

interest. The KF is recursive, which brings the useful property 

that not all data needs to be kept in storage and re-processed 

every time when for example a new measurement arrives. 

 The KF is a data processing algorithm or filter, which 

is useful for the reason that only knowledge about system 

inputs and outputs is available for estimation purposes. A 

filter tries to obtain an optimal estimate of variables from data 

coming from a noisy environment. 

The filter also supports in the estimations of past, present and 

also the future states, and it can do so when the precise nature 

of the modeled system is unknown. Mathematically, the filter 

estimates the states of a linear system. The gain, noise 

covariance and prediction covariance are assumed initially. 

Using these values, the Kalman gain has been calculated and 

it predicts the estimated value to update the co variances. The 

estimates produced by this method makes the true values 

equal to the original measurements. Figure 1 shows the 

concept of Kalman filter 

 
Figure1: Concept of kalman filter 

The Kalman filter uses a system's dynamics model, known  

control inputs to that system, and measurements (such as from 

sensors) to form an estimate of the system's varying quantities 

(its state) that is better than the estimate obtained by using any 

one measurement alone. Hence, it is a common sensor 

fusion algorithm. 

2.1. The Kalman Filter Algorithm 

The Kalman Filter is a state estimator which produces an 

optimal estimate in the sense that the mean value of the sum 

of the estimation errors gets a minimal value. The Kalman 

Filter gives the following sum of squared errors: 

E [ex
T
 (k) ex (k)] = E [ex1

2
 (k) +………+exn 

2
 (k)] 

a minimal value. Here, 

   ex (k) =  x est (x) – x(k) 

is the estimation error vector. (The Kaman Filter estimate is 

sometimes denoted the “least mean-square estimate”). This 

assumes that the model is linear, so it is not fully correct for 

nonlinear models. It is assumed that the system for which the 

states are to be estimated is excited by random (“white”) 

disturbances (or process noise) and that the measurements 

(there must be at least one real measurement in a Kalman 

Filter) contain random (“white”) measurement noise. 

 The Kalman Filter has many applications, e.g. in dynamic 

positioning of ships where the Kalman Filter estimates the 

position[3] and the speed of the vessel and also environmental 

forces. These estimates are used in the positional control 

system of the ship. The Kalman Filter is also used in soft-

sensor systems used for supervision, in fault-detection 

systems, and in Model-based Predictive Controllers (MPCs) 

which is an important type of model-based controllers. 

 The Kalman Filter algorithm was originally developed for 

systems assumed to be represented with a linear state-space 

model. However, in many applications the system model is 

nonlinear. Furthermore the linear model is just a special case 

of a nonlinear model. Therefore, I have decided to present the 

Kalman Filter for nonlinear models, but comments are given 

about the linear case. The Kalman Filter for nonlinear models 

is denoted the Extended Kalman Filter (EKF) because it is an 

extended use of the original Kalman Filter. However, for 

simplicity we can denote it the Kalman Filter, dropping 

“extended” in the name. The Kalman Filter will be presented 

without derivation. 

 

2.2. Kalman Filter State Estimation 

1. This step is the initial step and the operations here are 

executed only once. Assume that the initial guess of the state 

is xinit. The initial value xp(0) of the predicted state estimate 

xp (which is calculated continuously as described below) is 

set equal to this initial value: 

               Initial state estimate 

                 xp(0) = xinit 

2. Calculate the predicted measurement estimate from the 

predicted state estimate: 
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              Predicted measurement estimate: 

                yp(k) = g [xp(k)] 

3. Calculate the so-called innovation process or variable – it is 

actually the measurement estimate error – as the difference 

between the measurement y(k) and the predicted measurement 

yp(k): 

                Innovation variable: 

                     e(k) = y(k) − yp(k)  

4. Calculate the corrected state estimate xc(k) by adding the 

corrective term Ke(k) to the predicted state estimate xp(k): 

 

                Corrected state estimate: 

xc(k) = xp(k) + Ke(k)  

 

Here, K is the Kalman Filter gain. The calculation of K is 

described below. 

5. Calculate the predicted state estimate for the next time step, 

xp (k + 1), using the present state estimate xc (k) and the 

known input u(k) in process model: 

 

                      Predicted state estimate: 

                 xp (k + 1) = f [xc(k), u(k)] 

2.3. Flowchart Of Kalman Filter 

Figure 2 shows the flowchart of Kalman filter. Initially, the 

noise covariance and prediction covariance are assumed. 

The Kalman gain is calculated then the innovation error is 

been calculated. Using Kalman gain obtained and initialized 

noise covariance[3] the priori covariance estimate is done. 

The priori estimate is performed using the Kalman gain, 

innovation vector and initial state of the system. The new 

system is formed by updating the posterior estimate and 

posterior covariance estimate. The settling point is been 

checked- if yes the settling point remains the same 

otherwise the state is increased and cycle is again repeated 

until the settling point is reached. 

 

Figure 2: Flowchart for the Concept of Kalman     Filter 

3. SYSTEM DESCRIPTION 

3.1 Block diagram: 

 

Figure 3: Block diagram of the proposed method 

In the proposed method, a Kalman filter is used inorder to 

minimize the noise[6] and extract the true value of the 

process. Here, the thermocouple reading which is corrupted by 

Gaussian noise is given to the Kalman filter algorithm as 

shown in Figure 3. The estimated value is compared with the 

set value, by computing the Integral Absolute Error (IAE). 
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3.2 Process Description: 

      

Figure 4: Block Diagram of the Temperature Process 

In this process, the thermocouple senses the temperature and 

the output in mill volt range is amplified to 0-5 V. Then, the 

process temperature will be given to the PC where the process 

temperature and the set point is compared and the error will be 

given to the controller. The control signal produced by the 

controller will act as a gate pulse for the SCRs in the thyristor 

based power control circuit which will control the 230 V 

given to the heater as shown in the Figure 4. By controlling 

voltage given to the SCR from 0-5V the temperature of the air 

flowing through the process tube can be controlled from room 

temperature to 100˚C. 

4. RESULTS AND DISCUSSIONS: 

 

There has been a great amount of research work on the tuning 

of PI, PID controllers, since these types of controllers have 

been widely used in industries for several decades. Here, 

Zeigler Nichols tuning method is used for tuning the 

parameters of PI, PID controllers. 

The transfer function obtained from the open loop response 

for the given temperature system is 

209.81

225 1

se
s



  

 The state space parameters obtained for the process is 

A = -0.0014 

B = 1 

C = 0.04 

D = 0 

 

Thus the state space equation is, 

ẋ = -0.0014 x(t) + 1 u(t) 

y = 0.04 x(t)  

The tuning parameters obtained for PI controller are 

Kp=0.8868, Ki=0.01183 and for PID controller are Kp=1.182, 

Kd=13.29, Ki=0.0262. 

This section presents the results and discussion of the 

response when Kalman Filter is being used.  

 

 

Figure 5: Response of PI controller without using Kalman Filter 

 

 

Figure 6: Response of PI controller using Kalman Filter 

 

The Figure 5 and Figure 6 shows the front panel of a 

LabVIEW simulator of a temperature estimator. In this 

simulation the setpoint is varied and the Kalman filter 

estimates the correct steady state value without any noise. 

Also the PI controller is replaced with a PID controller and the 

response is evaluated next. 
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Figure 7: Response of PID controller using Kalman Filter 

While comparing the responses in Figure 6 and Figure 7, it is 

clear that the settling time has been significantly reduced. So 

PID controller has a better settling time when compared to the 

PI controller. 

 

4.1 Comparison: 

The comparison between the responses of the PID controller 

with and without  Kalman filter is done based on the 

parameters as listed in Table1.  

 

TABLE I 

COMPARISON OF RESPONSES 

 

 Parameters PID-controller 

response(without 

Kalman Filter) 

PID-controller 

response(with 

Kalman Filter) 

IAE 1.996 0.044 

Rise time 30sec 15 sec 

Settling 

time 

40sec (with noise) 40 sec 

 

Hence it is concluded that, by using a Kalman Filter, the 

settling time is less, Integral Absolute Error is very less and 

the Rise time is also comparatively less.  

5. CONCLUSION AND FUTURE WORK: 

 

Using the Kalman filter algorithm, the noise in the system was 

eliminated and the estimation of temperature was done. The 

tuned parameters of PID controller were  used for simulation 

to find out the response.  From the responses it is viewed that, 

by using Kalman filter the noise was minimized. The 

parameters such as  IAE, rise time and Settling time were 

compared for with and without Kalman filter and  found that  

Kalman filter gives the better response. 

            The future work includes simulation and real time 

implementation of Kalman filter in the temperature process 

station in order to minimize the noise. 
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