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Abstract— Finite field multiplier has wide applications in 

elliptic curve cryptography and error control coding systems. 

Error detection and correction is an effective way to mitigate 

attacks in cryptographic hardware. Security threats arising 

from injected soft (transient) errors into a cryptographic 

circuit can expose the secret information. In this paper, 

Triple Modular Redundancy (TMR) techniques and parity 

prediction technique based on Hamming for error detection 

and correction are used in all one polynomial based finite 

field multiplier. In triple modular redundancy technique 

there are three systems which perform same process and the 

results are processed by a majority voting system to produce 

a single output. Parity Prediction technique are used to detect 

and correct single error based on the Hamming principle. 

TMR techniques and parity prediction technique are 

compared based on area, delay and power consumption. 

Parity prediction technique is better than TMR in terms of 

area and power consumption.  

Keywords— finite field multipliers, irreducible AOP, error 

detection and correction, triple modular redundancy, parity 

prediction. 

I. INTRODUCTION 

The Finite field finds its main application in the field of 

computer algebra, error control coding theory, public key 

cryptosystem and elliptic curve cryptography [1] [2]. 

Among all the finite field arithmetic operations like 

addition, multiplication, exponentiation and multiplicative 

inversion, the multiplication occupies an important and 

irreplaceable part since exponentiation and multiplicative 

inversion can be carried out by iterative multiplication. 

One important factor that affects the hardware 

efficiency in finite fields is the basis chosen to represent a 

field element. There are a few bases available for the finite 

field such as polynomial/standard/canonical basis, normal 

basis and dual basis [3]. Multipliers based on some popular 

polynomials such as All-One Polynomials (AOP) and 

trinomials have low circuit complexity [4-7]. The 

irreducible all one polynomial seems to be more efficient 

for both hardware and software implementations [8]. 

Fault based cryptanalysis attack is a recently developed 

cryptanalysis approach where faults are injected into 

cryptosystems. Inducing faults into the computation of 

elliptic curve scalar multiplication easily enables recovery 

of the secret key. There are many error detection 

approaches developed for private key cryptosystems and 

public key cryptosystems to check the output values. The 

error detection methods for polynomial basis multipliers 

employ parity checking. 

A number of error correction schemes have been 

proposed in the literature [9-13] for error detection. The 

Hamming distance between the code words must be 

greater than one; otherwise it cannot be used to detect an 

error. J. Mathew and A. M. Jabir proposed a bit parallel 

GF multiplier [14] for single error detection and 

correction. The principal techniques that are being used for 

single error correction are: (1) error detection and retry, (2) 

error masking, and (3) using encoded operands.  

In this paper we have used Triple Modular Redundancy 

(TMR) and Parity prediction (Hamming) techniques for 

error detection and error correction. In TMR there are 

three systems which perform the multiplication process 

and the result of the multiplication is given to a majority 

voting system to produce a single output. Since the output 

is processed by a majority voting circuit, even if one of the 

system fails there will be no errors in the output. In parity 

prediction, a parallel circuit (Hamming block) along with 

GF multiplier is used for error control. Hamming 

methodology corrects single error. 

The rest of this paper is organized as follows. The 

algorithm for finite field multiplication over GF (2
m
) based 

on AOP is derived in Section II. In Section III, the error 

control using triple modular redundancy technique is 

discussed. In Section IV, the error detection and correction 

using parity prediction (Hamming) technique is discussed. 

In section V the triple modular redundancy and parity 

prediction techniques for AOP based GF multipliers are 

compared based on area, power consumption and delay. 

Finally the conclusion is given in Section VI. 
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II. ALGORITHM FOR GF MULTIPLIER 

A polynomial of the form f(x) = f0 + f1x + f2x
2
 + f3x

3
 + 

f4x
4
 +……… +fm x

m
 over GF(2

m
) is called all one 

polynomial when fi = 1 for i = 0,1,2,……,m . 

For an all one polynomial to be irreducible (m+1) 

should be a prime number and 2 is the primitive modulo of 

(m+1). The values of ‘m’ satisfying the above conditions 

for irreducibility (m ≤ 100) are 2, 4, 10, 12, 18, 28, 36, 52, 

58, 60, 66, 82 and 100. The algorithm for AOP based GF 

multiplier is referred from [4] and [5]. 

Let „α‟ be the root of f(x), then f(α) = 1 + α + α
2
 + α

 3
 + 

α
 4
 +… + α

 m
 = 0. Therefore, 

 

f(α) + αf(α) = (1 + α + α
2
 +…+ α

 m-1
 + α

 m
) + α (1 + α 

+   α
2
 + α

 3
 + α

 4
 +…+ α

 m-1
 + α

 m
) 

   α
 m+1

 = 1                                (1) 

 

Since ‘α’ is the root of an irreducible all one polynomial 

of degree ‘m’. Any element „y‟ in the Galois field GF(2
m
) 

can be represented as y = y0 + αy1 + α
2
y2 +……..+ α

m-1
ym-1 

where yi ϵ GF(2) for (0 ≤ i ≤ m-1) and {1, α, α
2
, …… α 

m-1
} 

forms the polynomial basis for degree m-1. 

Any element „Y‟ in the Galois field GF(2
m
) can also be 

represented as Y = Y0 + αY1 + α
2
Y2 +…+ α

m-1 
Ym-1 + α

m 
Ym 

where Yi ϵ GF(2) for (0 ≤ i ≤ m) and {1, α, α
2
, …… α 

m-1
, 

α
m
 } forms the extended polynomial basis for degree m. 

The elements in Galois field a, b and c where c is the 

product of elements a and b, are represented in polynomial 

basis as, 

 

a = a0 + a1 α + a2 α
 2
 +…+ am-1 α

m-1
             (2)         

b = b0 + b1 α + b2 α
 2
 +…+ bm-1 α

m-1
              (3) 

 

c = ab (mod f(α))                         (4) 

c = c0 + c1 α + c2 α
 2
 +…+ cm-1 α

m-1
                     (5) 

 

where ai Є GF(2) for (0 ≤ i ≤ m-1), bj Є GF(2) for (0 ≤ j 

≤ m-1) and ck Є GF(2) for (0 ≤ k ≤ m-1) and {1, α, α
2
,… 

α
m-1

} forms the canonical basis. The coefficients of c, ck 

can be calculated only by considering the extended 

polynomial basis representation. The algorithm is referred 

to [4]. 

The elements A, B are represented in extended 

polynomial basis as, 

 

A = A0 + A1 α + A2 α
 2
 + A3 α

3
 +…+ Am α

m
              (6)         

B = B0 + B1 α + B2 α
 2
 + B3 α

3
 +…+ Bm α

m
             (7) 

         

where Ai Є GF(2) for (0 ≤ i ≤ m) and Bj Є GF(2) for (0 ≤ 

j ≤ m). 

If C is the product of two elements A and B, then 

  

C = AB mod [f (α)]                        (8) 

C = (A0 + A 1 α +…+ A m α
 m

)(B0 + B1 α +…+ B m α
 m

) 

       [mod f(α)] 

 

C = C0 + C1 α + C2 α
 2
 + …+ Cm α

 m
              (9) 

where Ck Є GF(2) for (0 ≤ k ≤ m) 

 

Therefore, the coefficient of „C‟ is given by, 

Ck =  

 

According to the theorem quoted in [4], let y(x) = y0 + α 

y1 + α
2 
y2 +…+ α

m-1 
ym-1 and Y(x) = Y0 + α Y1 + α

2 
Y2 +…+ 

α
m-1 

Ym-1 + α
m 

Ym be the polynomials over GF(2
m-1

) and 

GF(2
m
). If Y(x) and y(x) satisfy the condition, Y(x) = y(x) 

(mod p(x)), where p(x) is an AOP of degree „m‟, then the 

coefficients of y(x) is given by yk = Yk ⨁ Ym (mod 2) for (0 

≤ k ≤ m-1) 

Thus, the coefficients of c [= ab(mod f(α)], ck = Ck ⨁ 

Cm for (0 ≤ k ≤ m-1). The coefficient of c gives the final 

polynomial equation of GF multiplier output using AOP. 
The above algorithm is followed for the AOP based Galois 

field multiplier. 

III. TRIPLE MODULAR REDUNDANCY 

Triple Module Redundancy (TMR) is a very common 

fault tolerance technique. The principle of TMR is to 

triplicate the hardware circuit and a voter is added to the 

outputs. In this paper we are using TMR for standard AOP 

based GF multiplier. All standard AOP based GF 

multiplier are tripled and its respective outputs are 

connected to a voter. The voter will select the output of the 

majority of the modules. So, if one module fails, the error 

will not be reflected in the voter output. 

  A triple modular redundancy circuit with one voter for 

an all one polynomial based Galois field multiplier is 

shown in Fig.1. 

 
Fig.1 TMR with single voter 

 

„a‟ and „b‟ are the two inputs (each of four bits) given to 

the modules 1, 2 and 3. Each module is made up of All 

One Polynomial (AOP) based GF multiplier circuit. The 

output of each module is given simultaneously to the voter 

circuit. 

Voter circuit does the majority gate function. It 

compares the output of the three modules and provides the 

majority output. In simple words, it performs the logical 

operation similar to the carry function derived in a full 

adder circuit. The Fig.2 explains the functionality of voter 

circuit. 
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Fig.2 Block diagram of single voter circuit 

 

The voter performing carry logical function compares 

the output of each GF multiplier on a bit-by-bit basis and 

is given by, 

o = x.y + y.z + x.z 

where o is the output of voter and x, y and z are the 

outputs of modules 1, 2 and 3. Thus even if fault occurs in 

any one module, there occurs no error in final output.  

Although in some cases the majority gate could fail or 

the systems with only one voter could itself fail. Due to 

this the complete system will fail. In order to mask this, 

voters can be tripled. Three voters are used, one for each 

copy of the next stage of TMR logic. In such systems there 

is no single point of failure. 

The Fig.3 explains TMR with four voters. In order to 

avoid occurrence of error in a single voter circuit from the 

previous concept, three more voter circuits are added to it. 

Here each voter (V1, V2 and V3) compares the AOP 

multiplier output provided by three modules. The final 

fourth voter circuit (Va) chooses the majority voter output 

from V1, V2 and V3. 

 
Fig.3 TMR with four voters 

 

The Fig.4 explains TMR with seven voter circuit. To 

reduce the error occurrence caused by the voter circuit 

from the previous concept, three more voter circuits are 

added to it. The voter circuit V1, V2 and V3 gives the 

majority output of the modules. The majority output of 

voters V1, V2 and V3 is chosen by the voters Va, Vb and Vc. 

The final voter Vf gives the majority output of Va, Vb and 

Vc.  Thus, even if an error occurs in any one of the voter, 

the output masks it and provides the correct output. 

The advantage of TMR design is that it provides fault-

tolerance without the need for separate detection and 

recovery functions. TMR approach provides real-time 

masking of the faulty-module outputs. Also TMR is faster 

than the code-based techniques since the voting speed is 

independent of the information bit length because the 

voting is always performed on three bits. 

 

 
Fig.4 TMR with seven voters 

 

The traditional TMR voter masks the faults affecting 

only one module and the faulty module cannot be 

recovered in a traditional TMR system, as the system 

cannot identify the faulty module. 

IV. PARITY PREDICTION 

In this section the error detection and correction are 

done in a parallel manner by parity prediction technique 

where the parity bits are generated based on the Hamming 

principle. The Hamming codes are simplest of group of 

codes known as Linear Block codes. In Hamming, number 

of parity bits increases logarithmically with number of 

output bits which serves as the main advantage.  

The principle difference between the Hamming codes 

which are used for memory application and our approach 

is that, instead of encoder we have parity prediction circuit 

and its size depends upon the number of input bits.  

Parity prediction technique is one of the ways to detect 

errors. Since the parity prediction circuit runs in parallel 

with the multiplier, only the decoding and correction logic 

provides the delay penalty. The scheme is given in the 

Fig.5. 

In the Galois Field multiplier block the standard AOP 

based GF multiplier is implemented. For a 4-bit input (A 

and B), the GF multiplier output is of 4 bits c4, c3, c2 and 

c1. In the multiple parity prediction circuit block 

polynomial multiplication takes place i.e. the two 4 bit 

multiplier inputs are multiplied and the resultant 7 bits are 

stored as d0, d1, d2, d3, e0, e1 and e2. 
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Parity bits p0, p1, p2 are calculated from the standard 

multiplier output. 

ps = d0 xor d1 xor d2 xor d3 xor e0 xor e1 xor e2 

p0 = ps xor d2 xor e0 

p1 = ps xor d1 xor e0 xor e2 

p2 = ps xor d0 xor e1 

The parity bits ,  are calculated from the GF 

multiplier output. 

= c3 xor c4 xor c1 

= c4 xor c2 xor c1 

= c4 xor c3 xor c2 

These two sets of parity bits are XORed to generate 

syndrome bits s0, s1 and s2. 

If the syndrome bits are equal to zero then there is no 

error in the multiplication. If it is other than zero then the 

value denotes the position of the error. 

The output of the Hamming block is formed from the 

syndrome bits.  

h1= (not s0) and s1 and (not s2) 

h2 = s0 and (not s1) and s2 

h3 = s0 and (not s1) and s2 

h4 = s0 and s1 and s2 

The standard GF multiplier output and Hamming output 

are XORed to get the correct GF multiplication output.  

 
Fig.5. Galois Field multiplier with parity prediction technique 

(Hamming) 

V. RESULTS AND DISCUSSION 

The standard AOP based GF multiplier, Error control 

for AOP based GF multiplier using TMR techniques and 

Error detection and correction for AOP based Galois Field 

multiplier using parity prediction technique (Hamming) 

are simulated to check the functionality. All the five GF 

multipliers (standard AOP, three TMR and parity 

prediction) are synthesized in FPGA and the results are 

tabulated in TABLE I 
 

 

TABLE I COMPARISON OF ERROR CONTROL TECHNIQUES FOR 
AOP BASED GF MULTIPLIER 

 

PARAMETERS 

Standard 

AOP 

based GF 

multiplier 

TMR 

with 

one 

voter 

TMR 

with 

four 

voters 

TMR 

with 

seven 

voters 

Parity 

prediction 

(Hamming) 

Gate count 84 234 732 2,226 207 

Power(mW) 96 101 116 162 99 

Delay(ns) 12.3 12.326 13.807 18.755 16.183 

 

From the comparative results of gate count shown in 

Fig.6, it is seen that while using TMR techniques, a 

standard AOP based GF multiplier needs an additional 

increase of more than 175% of its actual area (i.e., area 

required by standard AOP multiplier), whereas parity 

prediction technique needs an area overhead of nearly 

150%. Hence parity prediction requires less area than 

TMR. 
 

 
 

Fig. 6 Comparison of gate count 

 

From the comparative results of power consumption 

shown in Fig.7, it is seen that while using TMR techniques 

for a standard AOP based GF multiplier, an additional 

increase of more than 5% of its actual power (i.e., power 

consumed by standard AOP multiplier)is needed, while 

parity prediction technique consumes an additional power 

of nearly 3% of its actual power. Hence parity prediction 

technique requires less power than TMR. 

From the comparative results of delay shown in Fig.8, it 

is seen that when standard AOP based GF multiplier uses 

parity prediction circuit there is an additional delay of 

31%. While using TMR with less number of voters there is 

an increase in delay of only 2-12%. An increase in the 

number of voters in TMR increases the delay abruptly. 
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Fig. 7 Comparison of power consumption 

 

 
 

Fig.8 Comparison of time delay 

VI. CONCLUSION 

Thus all one polynomial based Galois field multiplier, 

error control using TMR techniques and parity prediction 

technique for GF multiplier are implemented using Xilinx 

ISE 8.1 and the results are compared. The comparative 

results of gate count proves that TMR techniques require 

an area overhead of more than 175%, while parity 

prediction technique requires an area overhead of only 

150%. Similarly, power consumed by AOP based GF 

multiplier using TMR techniques are larger than the one 

with parity prediction technique. Hence, parity prediction 

technique (Hamming) is more efficient than Triple 

Modular Redundancy techniques for controlling error in 

AOP based GF multiplier considering the gate count and 

power as the important factors. TMR techniques lead to an 

increase in delay of 2-12% while parity prediction 

technique leads to an increase in delay of 31%. This can be 

taken up as a future work and the delay for parity 

prediction technique can be reduced.  
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