

ENSURING DISTRIBUTED ACCOUNTABILITYFOR DATA SHARING IN THE CLOUD

1
Anoop Kumar Gupta,

2
Dhaval Vaghani,

3
Azhar Imam,

4
Mrs. Purnima S.Mittalkod, Assoc Prof.ISE Dept, Global Academy of Technology, Bangalore

5
Dr. S. Vagdevi,Prof & HOD,ISE Dept, Global Academy of Technology, Bangalore

Abstract- Cloud computing enables highly scalable

services to be easily consumed over the Internet on

an as-needed basis. A major feature of the cloud

services is that users’data are usually processed

remotely in unknown machines that users do not own

or operate. While enjoying the convenience brought

by this new emerging technology, users’ fears of

losing control of their own data (particularly,

financial and health data) can become a significant

barrier to the wide adoption of cloud services[1-3].

To address this problem, here, we propose a novel

highly decentralized information accountability

framework to keep track of the actual usage of the

users’ data in the cloud. In particular, we propose an

object-centered approach that enables enclosing our

logging mechanism together with users’ data and

policies. We leverage the JAR programmable

capabilities to both create a dynamic and traveling

object, and to ensure that any access to users’ data

will trigger authentication and automated logging

local to the JARs. To strengthen user’s control, we

also provide distributed auditing mechanisms. We

provide extensive experimental studies that

demonstrate the efficiency and effectiveness of the

proposed approaches. we categorized this paper into

five sections. In the first section introduction ,second

and third gives overview of architecture & problem

definition, fourth section algorithm, finally we

discuss future work and conclusion.

Key words: JAR files, Cloud Information

Accountability (CIA), Cloud Service

Provider(CSP)

1 INTRODUCTION

To allay users’ concerns, it is essential to provide an

effective mechanism for users to monitor the usage of

their data in the cloud. For example, users need to be

able to ensure that their data are handled according to

the servicelevel agreements made at the time they

sign on for services in the cloud. Conventional access

control approaches developed for closed domains

such as databases and operating systems, or

approaches using a centralized server in distributed

environments, are not suitable, due to the following

features characterizing cloud environments [4-6].

Data handling in cloud can be outsourced by Cloud

Service Provider(CSP) to other entities in the cloud

and other entities can also delegate tasks to others

and so on. Data handling in the cloud goes through a

complex and dynamic hierarchical service chain.

We propose a novel approach, namely Cloud

Information Accountability (CIA) framework, based

on the notion of information accountability. The

design of the CIA framework presents substantial

challenges, including uniquely identifying CSPs,

ensuring the reliability of the log, adapting to a

highly decentralized infrastructure, etc. Our basic

approach toward addressing these issues is to

leverage and extend the programmable capability of

JAR (Java ARchives) files to automatically log the

usage of the users’ data by any entity in the cloud.

Users will send their data along with any policies

such as access control policies and logging policies

that they want to enforce, enclosed in JAR files, to

cloud service providers. Any access to the data will

trigger an automated and authenticated logging

mechanism local to the JARs. We refer to this type of

enforcement as “strong binding” since the policies

and the logging mechanism travel with the data. This

strong binding exists even when copies of the JARs

are created; thus, the user will have control over his

data at any location. Such decentralized logging

mechanism meets the dynamic nature of the cloud

but also imposes challenges on ensuring the integrity

of the logging. To cope with this issue, we provide

the JARs with a central point of contact which forms

a link between them and the user. It records the error

correction information sent by the JARs, which

allows it to monitor the loss of any logs from any of

the JARs. Moreover, if a JAR is not able to contact

its central point, any access to its enclosed data will

be denied. In summary, our main contributions are as

follows:

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

40

 .We propose a novel automatic and enforceable

logging mechanism in the cloud. To our knowledge,

this is the first time a systematic approach to data

accountability through the novel usage of JAR files is

proposed.

 .Our proposed architecture is platform independent

and highly decentralized, in that it does not require

any dedicated authentication or storage system in

place.

 .We go beyond traditional access control in that we

provide a certain degree of usage control for the

protected data after these are delivered to the

receiver.

. We also provide a detailed security analysis and

discuss the reliability

and strength of our architecture.

2CLOUD NFORMATION ACCOUNTABILITY

ARCHITECURE

1.Cloud Information Accountability (CIA)

Framework:

CIA framework lies in its ability of maintaining

lightweight and powerful accountability that

combines aspects of access control, usage control and

authentication. By means of the CIA, data owners

can track not only whether or not the service-level

agreements are being honored, but also enforce

access and usage control rules as needed.

2. Distinct mode for auditing:

 Push mode: The push mode refers to logs being

periodically sent to the data owner or stakeholder.

Pull mode: Pull mode refers to an alternative

approach whereby the user

(Or another authorized party) can retrieve the logs as

needed.

3. Major components of CIA:

There are two major components of the CIA, the first

being the logger, and the second being the log

harmonizer.The logger is strongly coupled with

user’s data (either single or multiple data items). Its

main tasks include automatically logging access to

data items that it contains, encrypting the log record

using the public key of the content owner, and

periodically sending them to the log harmonizer. It

may also be configured to ensure that access and

usage control policies associated with the data are

honored. For example, a data owner can specify that

user X is only allowed to view but not to modify the

data. The logger will control the data access even

after it is downloaded by user X. The log harmonizer

forms the central component which allows the user

access to the log files. The log harmonizer is

responsible for

auditing.

FIG:2.1 Overview of cloud information

accountability

3 PROBLEM STATEMENT

While working with cloud users’ fears of losing

control of their own data can become a significant

barrier to the wide adoption of cloud. In order to

track the actual usage of the data[7], we aim to

develop novel logging and auditing techniques which

satisfy the following requirements:

1. The logging should be decentralized in order to

adapt to the dynamic nature of the cloud. More

specifically, log files should be tightly bounded with

the corresponding data being controlled, and require

minimal infrastructural support from any server.

2. Every access to the user’s data should be correctly

and automatically logged. This requires integrated

techniques to authenticate the entity who accesses the

data, verify, and record the actual operations on the

data as well as the time that the data have been

accessed.

3. Log files should be reliable and tamper proof to

avoid illegal insertion, deletion, and modification by

malicious parties. Recovery mechanisms are also

desirable to restore damaged log files caused by

technical problems.

4. Log files should be sent back to their data owners

periodically to inform them of the current usage of

their data. More importantly, log files should be

retrievable anytime by their data owners when

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

41

needed regardless the location where the files are

stored.

5.The proposed technique should not intrusively

monitor data recipients’ systems, nor it should

introduce heavy communication and computation

overhead, which otherwise will hinder its feasibility

and adoption in practice.

4 AUTOMATED LOGGING MECHANISM

In this we elaborate on the automated logging

mechanism.

 4.1 THE LOGGER STRUCTURE

We leverage the programmable capability of JARs to

conductautomated logging. A logger component is a

nested Java JARfile which stores a user’s data items

and corresponding logfiles. As shown in Fig. 4.1, our

proposed JAR file consists of oneouter JAR

enclosing one or more inner JARs.

Fig 4.1 JAR enclosing one or more inner JARs

The main responsibility of the outer JAR is to handle

authentication of entities which want to access the

data stored in the JAR file. In our context, the data

owners may not know the exact CSPs that are going

to handle the data.

Each inner JAR contains the encrypted data, class

files to facilitate retrieval of log files and display

enclosed data in a suitable format, and a log file for

each encrypted item. We support two options:

1. PureLog. Its main task is to record every access to

the data. The log files are used for pure auditing

purpose.

2. AccessLog. It has two functions: logging actions

and enforcing access control. In case an access

request is denied, the JAR will record the time when

the request is made. If the access request is granted,

the JAR will additionally record the access

information along wit the duration for which the

access is allowed.

4.2 LOG RECORD GENERATION

Log records are generated by the logger component.

Logging occurs at any access to the data in the JAR,

and new log entries are appended sequentially, in

order of creation LR =(r1; . . . ; rk) Each record ri is

encrypted individually and appended to the log file.

In particular, a log record takes the following form:

ri=(ID,Act,T,Loc,h((ID,Act,T,Loc)|ri-1|…|r1),sig).

 Here, ri indicates that an entity identified by I D has

performed an action Act on the user’s data at time T

at location Loc. The component h(ID,Act,T,Loc|ri - 1|

. . . |r1) corresponds to the checksum of the records

preceding the newly inserted one, concatenated with

the main content of the record itself (we use I to

denote concatenation).

In the current system we support four types of actions

i.e.,Act has one of the following four

values:view,download,timed_access and location

based access.

.View:

The entity can only read the data but is not alloed to

save a raw copy of it anywhere permanently.

.Download

The entity is allowed to save a raw copy of the data

and the entity will have no control over this copy

neither log records regarding access to the copy.

.Timed_access

This action is combined with the the view only access

and it indicates that the data are made available only

for a certain period of time

.Location based access

In this case the pure log will record the location of

the entities.the access log will verify the location of

the entities.

4.3 ALGORITHM:

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

42

1. Suppose TS(NTP) be the network time

protocol timestamp

2. Command from data owner is not received

3. rec=UID,OID,AccessType,Result,Time,Loc

4. Curtime := TS(NTP)

5. Log := log + ENCRYPT(rec) //ENCRYPT

is the encryption function used to encrypt

the record.

6. send a PING to the harmonizer to check if it

is alive.

7. If PING–CJAR then

8. PUSH RS(rec) //write the error correcting

bits

9. Else

10. EXIT(1) // error if no PING is received.

11. end if

12. write the log file to the harmonizer so that it

passes to owner

13. RS(log) := NULL //reset the error

correction records

14. tbeg := TS(NTP) //reset the tbeg correction

5 CONCLUSION & FUTURE RESEARCH

We proposed innovative approaches for

automatically logging any access to the data in the

cloud together with an auditing mechanism. Our

approach allows the data owner to not only audit his

content but also enforce strong back-end protection if

needed. Moreover, one of the main features of our

work is that it enables the data owner to audit even

those copies of its data that were made without his

knowledge. we plan to design a comprehensive and

more generic object-oriented approach to facilitate

autonomous protection of traveling content. We

would like to support a variety of security policies,

like indexing policies for text files, usage control for

executables, and generic accountability and

provenance controls.

6 REFERENCES

1. P. Ammann and S. Jajodia, “Distributed

Timestamp Generation in Planar Lattice Networks,”

ACM Trans. Computer Systems, vol. 11, pp. 205-

225, Aug. 1993.

2.G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable Data

Possession at Untrusted Stores,” Proc. ACM Conf.

Computer and Comm. Security, pp. 598- 609, 2007.

3. E. Barka and A. Lakas, “Integrating Usage Control

with SIP-Based Communications,” J. Computer

Systems, Networks, and Comm., vol. 2008, pp. 1-8,

2008.

4. D. Boneh and M.K. Franklin, “Identity-Based

Encryption from the Weil Pairing,” Proc. Int’l

Cryptology Conf. Advances in Cryptology, pp. 213-

229, 2001.

5. R. Bose and J. Frew, “Lineage Retrieval for

Scientific Data Processing: A Survey,” ACM

Computing Surveys, vol. 37, pp. 1- 28, Mar. 2005.

6. P. Buneman, A. Chapman, and J. Cheney,

“Provenance Management

in Curated Databases,” Proc. ACM SIGMOD Int’l

Conf. Management of Data (SIGMOD ’06), pp. 539-

550, 2006.

7. B. Chun and A.C. Bavier, “Decentralized Trust

Management and Accountability in Federated

Systems,” Proc. Ann. Hawaii Int’l Conf. System

Sciences (HICSS), 2004.

8. R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and

I. Staicu, “A Logic for Auditing Accountability in

Decentralized Systems,” Proc. IFIP TC1 WG1.7

Workshop Formal Aspects in Security and Trust, pp.

187-201, 2005.

9. B. Crispo and G. Ruffo, “Reasoning about

Accountability within Delegation,” Proc. Third Int’l

Conf. Information and Comm. Security(ICICS), pp.

251-260, 2001.

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

43

