ENSURING DISTRIBUTED ACCOUNTABILITYFOR DATA SHARING IN THE CLOUD

!Anoop Kumar Gupta,’Dhaval VVaghani,®Azhar Imam,
*Mrs. Purnima S.Mittalkod, Assoc Prof.ISE Dept, Global Academy of Technology, Bangalore
*Dr. S. Vagdevi,Prof & HOD,ISE Dept, Global Academy of Technology, Bangalore

Abstract- Cloud computing enables highly scalable
services to be easily consumed over the Internet on
an as-needed basis. A major feature of the cloud
services is that users’data are usually processed
remotely in unknown machines that users do not own
or operate. While enjoying the convenience brought
by this new emerging technology, users’ fears of
losing control of their own data (particularly,
financial and health data) can become a significant
barrier to the wide adoption of cloud services[1-3].
To address this problem, here, we propose a novel
highly decentralized information accountability
framework to keep track of the actual usage of the
users’ data in the cloud. In particular, we propose an
object-centered approach that enables enclosing our
logging mechanism together with users’ data and
policies. We leverage the JAR programmable
capabilities to both create a dynamic and traveling
object, and to ensure that any access to users’ data
will trigger authentication and automated logging
local to the JARs. To strengthen user’s control, we
also provide distributed auditing mechanisms. We
provide extensive experimental studies that
demonstrate the efficiency and effectiveness of the
proposed approaches. we categorized this paper into
five sections. In the first section introduction ,second
and third gives overview of architecture & problem

definition, fourth section algorithm, finally we
discuss future work and conclusion.

Key words: JAR files, Cloud Information
Accountability (CIA), Cloud Service
Provider(CSP)

1 INTRODUCTION

To allay users’ concerns, it is essential to provide an
effective mechanism for users to monitor the usage of
their data in the cloud. For example, users need to be
able to ensure that their data are handled according to
the servicelevel agreements made at the time they
sign on for services in the cloud. Conventional access
control approaches developed for closed domains
such as databases and operating systems, or

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

approaches using a centralized server in distributed
environments, are not suitable, due to the following
features characterizing cloud environments [4-6].

Data handling in cloud can be outsourced by Cloud
Service Provider(CSP) to other entities in the cloud
and other entities can also delegate tasks to others
and so on. Data handling in the cloud goes through a
complex and dynamic hierarchical service chain.

We propose a novel approach, namely Cloud
Information Accountability (CIA) framework, based
on the notion of information accountability. The
design of the CIA framework presents substantial
challenges, including uniquely identifying CSPs,
ensuring the reliability of the log, adapting to a
highly: decentralized infrastructure, etc. Our basic
approach toward addressing these issues is to
leverage and extend the programmable capability of
JAR (Java ARchives) files to automatically log the
usage of the users’ data by any entity in the cloud.
Users will send their data along with any policies
such as access control policies and logging policies
that they want to enforce, enclosed in JAR files, to
cloud service providers. Any access to the data will
trigger an automated and authenticated logging
mechanism local to the JARs. We refer to this type of
enforcement as “strong binding” since the policies
and the logging mechanism travel with the data. This
strong binding exists even when copies of the JARs
are created; thus, the user will have control over his
data at any location. Such decentralized logging
mechanism meets the dynamic nature of the cloud
but also imposes challenges on ensuring the integrity
of the logging. To cope with this issue, we provide
the JARs with a central point of contact which forms
a link between them and the user. It records the error
correction information sent by the JARs, which
allows it to monitor the loss of any logs from any of
the JARs. Moreover, if a JAR is not able to contact
its central point, any access to its enclosed data will
be denied. In summary, our main contributions are as
follows:

.We propose a novel automatic and enforceable
logging mechanism in the cloud. To our knowledge,
this is the first time a systematic approach to data
accountability through the novel usage of JAR files is
proposed.

.Our proposed architecture is platform independent
and highly decentralized, in that it does not require
any dedicated authentication or storage system in
place.

.We go beyond traditional access control in that we
provide a certain degree of usage control for the
protected data after these are delivered to the
receiver.

. We also provide a detailed security analysis and
discuss the reliability

and strength of our architecture.

2CLOUD NFORMATION ACCOUNTABILITY
ARCHITECURE
1.Cloud Information
Framework:

CIA framework lies in its ability of maintaining
lightweight and powerful accountability that
combines aspects of access control, usage control and
authentication. By means of the CIA, data owners
can track not only whether or not the service-level
agreements are being honored, but also enforce
access and usage control rules as needed.

2. Distinct mode for auditing:

Push mode: The push mode refers to logs being
periodically sent to the data owner or stakeholder.
Pull mode: Pull mode refers to an alternative
approach whereby the user
(Or another authorized party) can retrieve the logs as
needed.

3. Major components of CIA:

There are two major components of the CIA, the first
being the logger, and the second being the log
harmonizer.The logger is strongly coupled with
user’s data (either single or multiple data items). Its
main tasks include automatically logging access to
data items that it contains, encrypting the log record
using the public key of the content owner, and
periodically sending them to the log harmonizer. It
may also be configured to ensure that access and
usage control policies associated with the data are
honored. For example, a data owner can specify that
user X is only allowed to view but not to modify the
data. The logger will control the data access even

Accountability (CIA)

after it is downloaded by user X. The log harmonizer
forms the central component which allows the user
access to the log files. The log harmonizer is
responsible for
auditing.

8. send merged
logs to the user

<

s
~J|IO

:
\ 1,JAL

creation w/

| IBE keys

15)

J
~ Generation

[mmm

Certificate
Authority

+__2. JAR Access

Data

Owner

3. Authentication

Encrilpted request

A

4. Authentication

Loggin:
ggz . response

Cloud Service|

Properties file

FIG:2.1 Overview of
accountability

cloud information

3 PROBLEM STATEMENT

While ‘working with cloud users’ fears of losing
control of their own data can become a significant
barrier to the wide adoption of cloud. In order to
track the actual usage of the data[7], we aim to
develop novel logging and auditing techniques which
satisfy the following requirements:

1. The logging should be decentralized in order to
adapt to the dynamic nature of the cloud. More
specifically, log files should be tightly bounded with
the corresponding data being controlled, and require
minimal infrastructural support from any server.

2. Every access to the user’s data should be correctly
and automatically logged. This requires integrated
techniques to authenticate the entity who accesses the
data, verify, and record the actual operations on the
data as well as the time that the data have been
accessed.

3. Log files should be reliable and tamper proof to
avoid illegal insertion, deletion, and modification by
malicious parties. Recovery mechanisms are also
desirable to restore damaged log files caused by
technical problems.

4. Log files should be sent back to their data owners
periodically to inform them of the current usage of
their data. More importantly, log files should be
retrievable anytime by their data owners when

Provider

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

needed regardless the location where the files are
stored.

5.The proposed technique should not intrusively
monitor data recipients’ systems, nor it should
introduce heavy communication and computation
overhead, which otherwise will hinder its feasibility
and adoption in practice.

4 AUTOMATED LOGGING MECHANISM

In this we elaborate on the automated logging
mechanism.

4.1 THE LOGGER STRUCTURE

We leverage the programmable capability of JARs to
conductautomated logging. A logger component is a
nested Java JARfile which stores a user’s data items
and corresponding logfiles. As shown in Fig. 4.1, our
proposed JAR file consists of oneouter JAR
enclosing one or more inner JARS.

OUTER-JAR

;cuw interface [_|00]f

Algorithm to
find correct
Inner-JAR

v
- INNER-JAR

Marc

<marc, View, USA, 08-
08-201212:04>
<marc, View, USA, 08-
09-2012:08:27>

Encrypted image

Decrypted image

Logging Module

Algorithm for
Log file transfer

Fig 4.1 JAR enclosing one or more inner JARs

The main responsibility of the outer JAR is to handle
authentication of entities which want to access the
data stored in the JAR file. In our context, the data
owners may not know the exact CSPs that are going
to handle the data.

Each inner JAR contains the encrypted data, class
files to facilitate retrieval of log files and display
enclosed data in a suitable format, and a log file for
each encrypted item. We support two options:

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

1. PureLog. Its main task is to record every access to
the data. The log files are used for pure auditing
purpose.

2. AccessLog. It has two functions: logging actions
and enforcing access control. In case an access
request is denied, the JAR will record the time when
the request is made. If the access request is granted,
the JAR will additionally record the access
information along wit the duration for which the
access is allowed.

4.2 LOG RECORD GENERATION

Log records are generated by the logger component.
Logging occurs at any access to the data in the JAR,
and new log entries are appended sequentially, in
order of creation LR =(ry; . . . ; r) Each record r; is
encrypted individually and appended to the log file.
In particular, a log record takes the following form:

ri=(ID,Act,T,Loc,h((ID,Act, T,Loc)|r;-1]...|r.),siQ).

Here, r; indicates that an entity identified by | D has
performed an action Act on the user’s data at time T
at location Loc. The component h(ID,Act,T,Loc]r; - 1]
. . +|ry) corresponds to the checksum of the records
preceding the newly inserted one, concatenated with
the main content of the record itself (we use I to
denote concatenation).

In the current system we support four types of actions
i.e,Act has one of the following four
values:view,download,timed_access and location
based access.

View:

The entity can only read the data but is not alloed to
save a raw copy of it anywhere permanently.
.Download

The entity is allowed to save a raw copy of the data
and the entity will have no control over this copy
neither log records regarding access to the copy.
.Timed_access

This action is combined with the the view only access
and it indicates that the data are made available only
for a certain period of time

.Location based access

In this case the pure log will record the location of
the entities.the access log will verify the location of
the entities.

4.3 ALGORITHM:

1. Suppose TS(NTP) be the network time

protocol timestamp

Command from data owner is not received

rec=UID,OID,AccessType,Result, Time,Loc

Curtime := TS(NTP)

Log := log + ENCRYPT(rec) //ENCRYPT

is the encryption function used to encrypt

the record.

6. send a PING to the harmonizer to check if it
is alive.

7. IfPING-CJAR then

8. PUSH RS(rec) //write the error correcting
bits

9. Else

10. EXIT(L) // error if no PING is received.

11. end if

12. write the log file to the harmonizer so that it
passes to owner

13. RS(log) := NULL
correction records

14. theg := TS(NTP) //reset the theg correction

gk~ wn

/lreset the error

5 CONCLUSION & FUTURE RESEARCH

We proposed innovative approaches for
automatically logging any access to the data in the
cloud together with an auditing mechanism.” Our
approach allows the data owner to not only audit his
content but also enforce strong back-end protection if
needed. Moreover, one of the main features of our
work is that it enables the data owner to audit even
those copies of its data that were made without his
knowledge. we plan to design a comprehensive and
more generic object-oriented approach to facilitate
autonomous protection of traveling content. We
would like to support a variety of security policies,
like indexing policies for text files, usage control for
executables, and generic accountability and
provenance controls.

6 REFERENCES
1. P. Ammann and S. Jajodia, “Distributed

Timestamp Generation in Planar Lattice Networks,”
ACM Trans. Computer Systems, vol. 11, pp. 205-
225, Aug. 1993.

2.G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson, and D. Song, ‘“Provable Data
Possession at Untrusted Stores,” Proc. ACM Conf.
Computer and Comm. Security, pp. 598- 609, 2007.

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

3. E. Barka and A. Lakas, “Integrating Usage Control
with SIP-Based Communications,” J. Computer
Systems, Networks, and Comm., vol. 2008, pp. 1-8,
2008.

4. D. Boneh and M.K. Franklin, “Identity-Based
Encryption from the Weil Pairing,” Proc. Int’l
Cryptology Conf. Advances in Cryptology, pp. 213-
229, 2001.

5. R. Bose and J. Frew, “Lineage Retrieval for
Scientific Data Processing: A Survey,” ACM
Computing Surveys, vol. 37, pp. 1- 28, Mar. 2005.

6. P. Buneman, A. Chapman, and J. Cheney,
“Provenance Management

in Curated Databases,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’06), pp. 539-
550, 2006.

7. B. Chun and A.C. Bavier, “Decentralized Trust
Management and Accountability in Federated
Systems,” Proc. Ann. Hawaii Int’l Conf. System
Sciences (HICSS), 2004.

8. R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and
I. Staicu, “A Logic for Auditing Accountability in
Decentralized Systems,” Proc. IFIP TC1 WGI1.7
Workshop Formal Aspects in Security and Trust, pp.
187-201, 2005.

9. B. Crispo and G. Ruffo, “Reasoning about
Accountability within Delegation,” Proc. Third Int’l
Conf. Information and Comm. Security(ICICS), pp.
251-260, 2001.

