
Enhancing the Performance of Self-Organizing Superpeer Network 

 

 
L.N.S.INDUMATHI 

M.Tech student(CSE), 

GudlavalleruEngineeringCollege 

Gudlavalleru, JNTUK. 

    
 

G.VIJAYA DEEP 

Asst. Professor, Dept of CSE 

Gudlavalleru Engineering College 

Gudlavalleru, JNTUK

Abstract 
 

In peer to peer networks files are distributed among 

the peers in decentralized manner. Any node can join 

and leave the network at any time. In superpeer 

architectures file sharing and load balancing will be 

handled by the superpeer, which controls all other 

peers. Issues need to be addressed in these 

architectures are how client peers related to 

superpeers, how load is balanced, how superpeers 

locate files and how to handle node failures. The self-

organizing superpeer networks works in 

decentralized manner and solves these issues. It 

maintains two caches, one is supeepeer cache located 

at weak peers and other is file cache located at 

superpeers. Search, load balancing and update 

protocols are addressed in this paper. Weak peer 

selects the superpeer which offers best search 

performance. Loads are balanced by calculating the 

effective loads of superpeers. A superpeer gets 

updated if its error value is larger than predefined 

value. In this way searching, load balancing and 

updating are optimized in SOSPNET. Finally it can 

quickly adjusts to changes, survives even in the case 

of node failures. 

 
 

1. Introduction 

 

A significant amount of work has been done in the 

field of optimizing the performance and reliability of 

content sharing peer-to-peer networks. Among the 

proposed optimizations, the concept of leveraging the 

heterogeneity of peers by exploiting high-capacity 

nodes in the system design has proved to have great 

potential. The resulting architectures break the 

symmetry of pure P2P systems by assigning 

additional responsibilities to high-capacity nodes 

called superpeers. In a superpeer network, a 

superpeer acts as a server to client peers. Weak peers 

submit queries to their superpeers and receive results 

from them. Superpeers are connected to each other by 

an overlay network of their own, submitting and 

answering requests on behalf of the weak peers. 

Several protocols have been proposed to exploit 

super-peers. We add to this work the design of a 

superpeer network capable of optimizing the 

relationships between peers taking into account their 

content interests as deduced from their (possibly 

changing) behavior. We call our architecture the Self-

Organizing Superpeer Network (SOSPNET) because 

the relationships between peers are discovered, 

maintained, and exploited automatically, with-out 

any need for user intervention or explicit 

mechanisms. 

While some researchers have focused on 

exploiting static properties of shared data, also the 

possibility of utilizing patterns in dynamic peer 

behavior has attracted the attention of the research 

community. Such patterns in peer behavior have been 

reported by several measurement studies, which have 

revealed correlations between the search requests 

made by users of popular P2P systems. It was 

observed that the performance of locating content can 

be greatly im-proved by grouping peers interested in 

similar files and routing their search requests within 

these groups. 

The semantic relationships between peers 

and files can be discovered relatively easily. The 

biggest challenge is, thus, to build an architecture that 

maintains and exploits the discovered semantic 

structure existing in all these semantic relationships. 

In this paper, we present the design and evaluation of 

a P2P architecture that combines the homogeneity of 

peer interests with the heterogeneity of peer 

capacities to solve the problem of efficient peer 

relationship management.  

The design of our self-organizing superpeer 

network is guided by the following requirements: 

First, SOSPNET should be self-organizing in that it is 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T



able to discover and exploit the semantic structure 

present in the network, no matter what the initial 

topology is. Second, a new peer joining the network 

does not need to have any knowledge about the 

system; the longer a peer stays in the system, the 

more information it can collect and exploit for 

improving the performance of its searches. Third, the 

time it takes a new peer to achieve its optimal 

performance should be minimized. 

 SOSPNET uses two-level semantic caches 

deployed at both the superpeer and the weak peer 

level to maintain relationships  between related peers 

and files. The cache maintained by a superpeer 

contains references to those files that were recently 

requested by its weak peers, while the cache of a 

weak peer stores references to those superpeers that 

satisfied most of its requests. We propose a novel 

mixed caching policy that combines the advantages 

of the traditional least frequently used (LFU) and 

least recently used (LRU) policies to improve the 

cache hit rates for less popular files. Furthermore, 

SOSPNET incorporates in its design a mechanism for 

balancing the load among super-peers. Load 

balancing is fully integrated with the content search 

algorithm and does not require any additional 

information exchange between superpeers nor a 

separate, external control component. The load 

balancing decisions are made independently by 

individual superpeers based on local information. 

We also introduce a general performance 

model of a P2P system with semantic relations 

between peers and files based on two 8-month-long 

measurements of a large P2P network. From the 

model, we derive a bound on the search performance 

of a superpeer network using semantic caches.In a 

series of simulations, we show that the performance 

of SOSPNET is very close to the theoretical bound. 

In addition, we evaluate in our simulations the fault 

tolerance, the clustering properties, and the load 

balancing capabilities of SOSPNET. Finally, we 

compare SOSPNET with alternative architectures, 

assess its responsiveness to peer joins and leaves, and 

measure the time needed to find an optimal set of 

connections between peers, which all help in 

understanding how the system would perform in a 

real environment. 

The rest of the paper is organized as follows: 

In Section 2, we specify the problem domain and 

scope of the presented system. Section 3 describes in 

detail the architecture of our self-organizing 

superpeer network. Section 4 summarizes the related 

work. The paper concludes in Section 5 by exploring 

some opportunities for future work. 

 

 

2. Organizing Peer Relationships 

 
The vast majority of mechanisms for optimizing 

different performance aspects of P2P networks rely 

in one way or another on organizing the relations 

between peers. The relationships are organized by 

defining for each peer the set of other peers, called its 

neighbors, it interacts with. 

In symmetric P2P networks such as 

Gnutella, any two peers are potential neighbors. In 

hybrid approaches such as Napster, all peers have a 

single neighbor—a central server that keeps 

information on all peers and responds to requests for 

that information. In superpeer networks such as 

Kazaa, and Chord superpeers, neighbors are selected 

from the set of high-capacity peers called superpeers; 

low-capacity peers—the client peers—cannot 

become neighbors. 

In this paper, we aim at solving the 

problems of the existing superpeer networks related 

to the issue of establishing relationships between 

peers. Before presenting our approach, we identify 

the weak points of existing superpeer architec-tures. 

Each of the popular superpeer protocols proposed in 

the literature, including Kazaa, and Chord superpeers, 

makes at least one of the following three 

assumptions: 

1. Every peer is assigned to a fixed, very small 

number (usually one) of superpeers. 

Consequently, super-peers become bottlenecks in 

erms of fault tolerance. Restoring the system 

structures such as routing tables back to a 

consistent state after a superpeer crash requires a 

considerable effort. 

2. Peers are assigned to superpeers randomly 

and statically. The randomness of the assignment 

is explicit (as in Gnutella) or implicit (as in Chord, 

where the superpeer selection is based on peer 

identifiers, which are selected randomly). This 

static assignment does not adapt to changes in the 

network structure or in peer characteristics (e.g., 

content interests). 

3. The peer-to-superpeer assignment has the so-

called all-or-nothing property. When a peer 

connects to a superpeer, the latter takes 

responsibility for all the content stored at the peer. 

Such an assignment does not take into account the 

possible diversity of the peer’s interests, and 

makes balancing the load among the superpeers 

difficult. In the rest of the paper, we show how to 

overcome all these limitations by introducing our 

self-organizing super-peer architecture SOSPNET. 

 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T



3. The architecture of The self-

organizing Superpeer Network 

 
In this section, we present the SOSPNET system 

design. After a general overview of the SOSPNET 

architecture, we discuss in detail the employed data 

structures and protocols. 

 

3.1 Architecture Overview 
 

The basic idea behind the system architecture we 

propose is simple and intuitive. Weak peers with 

similar interests are connected to the same 

superpeers. As a consequence, super-peers get many 

requests for the same files. The request locality 

suggests the usage of caches that store the results of 

recent searches. But not only superpeers are 

responsible for discovering semantic structure in the 

network. We also allow weak peers to collect 

statistics about the content indexed by the superpeers. 

Having this information, weak peers can make local 

decisions about which superpeers to connect to. 

In our architecture, superpeers store the 

information about the location of the content recently 

requested by their weak peers. Weak peers, on the 

other hand, sort the superpeers known to them 

according to the number of positive responses to their 

queries, and prefer to connect to superpeers that have 

satisfied most of their requests. 

 

 

 

 

 

                                                           

 

 

 

                                                    

                                                       

 

 

Fig. 1. The structure of SOSPNET. 

To accelerate the process of grouping peers 

with similar interests under the same superpeers, we 

allow weak peers to exchange their lists of 

superpeers. More precisely, if a search succeeds, the 

requesting peer asks the peer that has the requested 

file for its list of top-ranked superpeers. This list is 

then merged with the list of superpeers known to the 

requesting peer. The intuition here is that if both 

peers were interested in the same file, then it is highly 

probable that they will share interest for more files in 

the future. 

 

3.2 System Model 

 

The information stored at a node in our system 

depends on the type of this node. Each weak peer 

maintains a superpeer cache, which contains the 

identities of superpeers (e.g., their IP addresses and 

port numbers). Each superpeer has a file cache of 

pointers to files stored at the weak peers.The 

relationships between SOSPNET peers are presented 

in Fig. 1. 

All items in the superpeer and file caches are 

assigned priorities, which are nonnegative integer 

numbers. The priority determines the importance of a 

particular item, the higher the better. The initial 

priority assigned to a data item when it is added to 

the cache and the way the priority is modified upon a 

cache hit are determined by the caching policy. There 

are two situations when the priorities are taken into 

account. First, when the cache capacity is exceeded, 

the item with the lowest priority is removed. Second, 

the priorities are used for optimizing query routing. 

Details are presented in Section 3.4. 

The last element of Fig. 1 that has not been 

mentioned until now is the network interconnecting 

the superpeers. We do not specify precisely which 

P2P protocol should be used here. We assume, 

however, that this protocol can efficiently deal with 

frequent changes of the information stored at the 

superpeers. Additionally, we require that the 

probability that a search succeeds is high when the 

requested informa-tion is present at least at one of the 

superpeers. Examples of protocols satisfying these 

criteria are Gnutella and epidemic-based approaches 

such as SCAMP. 

The load balancing mechanisms of 

SOSPNET require introducing some specific 

terminology. We assume that each superpeer 

specifies its capacity as a value in the interval ð0; 1 

,with higher values assigned to more capable peers. 

We do not make any further assumptions about the 

superpeer capacities, which may either reflect static 

node properties (e.g., CPU speed) or change 

dynamically based on the current situation in the 

system (e.g., available bandwidth). 

The particular method of computing the 

capacity values falls outside the scope of this paper. 

The current load of a superpeer is computed by 

counting the number of requests processed by the 

superpeer in a certain time frame called the request 

history window. The size of the request history 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T



window is the same for all superpeers, thus making 

the current-load values consistent across all 

superpeers in the system. However, the values of the 

current load of the superpeers cannot be compared 

directly, as different superpeers may have different 

capacities. Instead, we compute for each superpeer 

the effective load by dividing the current load by the 

capacity of the superpeer. A superpeer controls its 

load simply by dropping some of the search requests 

it receives.The accepted load is defined as the 

fraction of accepted search requests of those sent to 

the superpeer. 

 

3.3 Two-Level Caching 

 

The two-level caching architecture represented by 

superpeer and file caches allows us to separate 

caching policies that can be optimized for a peer role. 

In SOSPNET, the superpeer caches of the weak peers 

and the file caches of the superpeers are controlled 

according to different caching policies. 

The priority of a superpeer in a superpeer cache 

isincreased by one after every positive feedback 

provided by this superpeer. This leads to the in-cache 

LFU [10] policy. The benefit of LFU is its inherent 

memory property—the priority of a superpeer is 

determined by the number of successful feedbacks it 

has provided in the past. The priority changes slowly, 

so one positive response from an unknown super-peer 

will not discredit a well-proven superpeer that 

satisfied many requests in the past, which would be 

the case if one used a memoryless policy such as 

LRU. 

The caching policy employed for file caches 

should meet some specific requirements. First, 

similar to LRU, the file caches of the superpeers have 

to adapt fast to the changing needs of the weak peers. 

This is important particularly in the initial stage of 

the superpeer lifetime, when it is contacted by 

random peers. Second, like LFU, the file caching 

policy should keep track of long-term file popular-

ity. Addressing the specific requirements of file 

caches, we propose a mixed caching policy 

that combines the desired properties of LRU and 

LFU. According to the mixed policy, if the file 

pointer is not yet present in the cache, then it is added 

to the cache with its priority one higher than the 

highest priority of all other cached items as in LRU. 

Otherwise, the priority corresponding to the file 

pointer is increased by one as in LFU.  

 

3.4 Search Protocol 

 

Peers use the information collected during past  

1  peer_search(p:  peer, f : file_name): 
2        for s in p.S ordered according to decreasing 

priorities do 
3            q  super-peer_local_search(s,f) 

4            if super-peer_local_search succeeded  

then  
5                       t  s 
6                       break 
7         if f was not found until now then 
8              s  super-peer in p.S selected randomly         

with probability proportional to its priority in p.S 

9              < q, t >  super-peer _search (s,f) 
10            If super-peer_search did not succeed 

then  
11                     return ERROR ―File f not found‖ 
12       if p.S contains t then  
13            increase the priority of t in p.S 

14       else  
15            insert t into p.S 
16       merge_super-peer_caches(p, q) 
17       return q  
18 super-peer_local_search(s: super-peer, f: 

file_name): 
19       if an entry < f, q > exists in cache s.F then 
20                   increase the priority of < f, q > in s.F 
21                   return q 
22      else 
23               return ERROR ―File f not found‖ 
24 super-peer_search ( s, f ): 
25     perform a search in the super-peer network to 

locate  

         a super-peer t which has an entry  < f, q > in 

its cache 
26     if search succeeded then  
27               insert < f, q > into s.F 
28               return < q, t > 
29     else 
30               return ERROR ―File f not found‖ 
31 merge_super-peer_caches(p: peer, q: peer): 
32     for s in q.S do 
33               if p.S contains s then  
34                            increase the priority of s in p.S 
35               else 
36                             insert s into p.S                 

 
Fig. 2. Pseudocode of the superpeer search protocol in 

SOSPNET. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T



searches to improve the performance of future 

requests. The contents of the superpeer and file 

caches are reorganized depend-ing on the feedback 

provided by peers involved in the search process. 

 

The pseudocode of the search algorithm 

employed in our self-organizing superpeer network 

presented in Fig. 2 is divided into four subroutines. 

The superpeer cache of peer p is denoted by p:S, 

while the file cache of superpeer s is represented by  

s:F. The main search algorithm is the function 

peer_search. When a weak peer p looks for a file f, it 

first checks the file caches of the superpeers known 

to it (line 2). Note that p starts with the superpeers 

with the highest priorities. When the file is found 

(line 4), a pointer to superpeer s that knows the 

location of f is stored for future reference (line 5). 

However, if the file was not found with this method 

(line 7), the search request is forwarded to one of the 

superpeers in p’s superpeer cache selected according 

to a random distribution biased toward superpeers 

with higher priority (line 8). This superpeer is further 

responsible for locating file f. If the search succeeds, 

a pair <q; t>, where q is a peer that has f and t is a 

superpeer that has a pointer <f; q> in its file cache, is 

returned to p (line 9). At this point, the self-

(re)organization process begins. This process is 

performed in two stages. First, peer p increases the 

priority of the superpeer t that satisfied the search 

request (lines 12-15). As a consequence, in the future, 

p will direct more of its requests to t. Second, p 

integrates the list of superpeers kept by the weak peer 

q with its own superpeer cache (line 16). We exploit 

here a simple, yet powerful principle called interest-

based locality [50], which postulates that if p and q 

are interested in the same file, it is very likely that 

more of their requests will overlap. It is thus 

beneficial for both p and q to use the same set of 

superpeers. 

The algorithm of the superpeer_local_search 

is straight-forward. The search succeeds only if a 

pointer to file f is present in the file cache of 

superpeer s (line 19). Before returning the peer q that 

possesses file f (line 21), the priority of the 

corresponding cache item is increased (line 20). 

              The function superpeer_search performs the 

search in the superpeer network (line 25). Upon 

receipt of the search results, a pointer to the requested 

file f and to the peer q holding file f is added to the 

file cache of s (line 27). The return value of the 

function (line 28) contains not only the peer q, but 

also the superpeer t that has a pointer to f in its file 

cache.  

             The last function presented in Fig. 2, 

merge_super-peer_caches, takes two parameters 

representing two peers p and q. The superpeer cache 

of peer p is updated with the content of q’s superpeer 

cache (lines 32 and 33). The functionality of merging 

the superpeer caches is not crucial for the system 

operation, but it accelerates the process of grouping 

weak peers under the same superpeers, which 

improves the search performance. 

 

3.5 Insert Protocol 

 
The file-insert protocol deployed by SOSPNET is 

very simple. Once in a while, each weak peer sends 

information on the files which it possesses to one of 

the superpeers in its superpeer cache. This superpeer 

is selected randomly with a probability proportional 

to its priority in the superpeer cache of the weak peer. 

 

3.6 Balancing the Load among Superpeers 

Load balancing is critical to the availability, 

accessibility, scalability, and throughput of a P2P 

system. Poor load balancing may gradually transform 

the superpeer network into a backbone network as 

was observed for Gnutella [13]. The idea here is to 

avoid overloading individual super-peers, which is 

the case when some superpeers are getting 

significantly more queries than others. 

Before describing the load balancing 

mechanism of SOSPNET, we first define the 

requirements of load balancing for a superpeer 

network in general. A minimal requirement is to 

prevent situations in which the load imposed on a 

superpeer exceeds its capacities. A more advanced 

load balancing solution can further guarantee that the 

load assigned to each superpeer is proportional to its 

capacity. 

Finally, the performance overhead and 

implementation burden incurred by adding the load 

balancing extensions should be low. In the remainder 

of this section, we show how the above goals can be 

easily achieved by exploiting the properties of the 

self-organizing superpeer network. 

At first sight, the load balancing problem 

that we face in the SOSPNET  design seems to 

be more difficult than in other superpeer networks 

because the SOSPNET superpeers do not explicitly 

know their weak peers. Furthermore, in the 

SOSPNET architecture, the assignment of weak peers 

to superpeers is not fixed. As a consequence, the 

superpeers cannot transfer weak peers between each 

other without the active cooperation of the weak peer 

layer. Being aware of these limitations, we have built 

into the search protocol a mechanism that indirectly 

influences the set of superpeers contacted by the 

weak peers by discouraging directing requests to 

overloaded superpeers. 

The basic idea behind the load balancing 

mechanism of SOSPNET relies on the observation 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T



that a superpeer may control the number of received 

requests by affecting its priority in the superpeer 

caches of weak peers. An over-loaded superpeer can 

simply start dropping some of the requests, 

effectively decreasing its priority in the superpeer 

caches of the requesting peers. As the priority of a 

superpeer has a direct impact on the probability of 

that superpeer being selected as a request target, the 

load imposed on the overloaded superpeer will 

gradually decrease. Note that if a superpeer s refuses 

to service a request, then eventually, the client peer 

will ask another superpeer t to search for the file and 

to subsequently store a reference in its file cache. In 

other words, t will eventually take over some of the 

file references that were cached by s. 

The requirement that the load experienced 

by a super-peer is proportional to its capacity 

involves relating the effective load of that superpeer 

to the effective loads of other superpeers in the 

system. To avoid introducing an independent load-

information exchange protocol, we let superpeers 

gather load values of other nodes while performing 

searches. 

The integration of the SOSPNET load 

balancing functionality with the search protocol is 

presented in Fig. 3. The function 

superpeer_local_search of Fig. 2 is extended with 

lines 18.1-18.4, which control the fraction of requests 

that are handled by superpeers. Only a fraction of 

s:accepted load randomly selected requests are 

accepted and processed as described in Section 3.4. 

The remaining requests are dropped, forcing the 

requesters to decrease the priority of s. If a request is 

accepted, its time stamp is saved in the request 

history window denoted by s:W (line 18.4). Request 

time stamps are used later for computing the current 

load of the superpeer. 
 

The value of the accepted load of superpeer s is 

updated every time s discovers another superpeer t 

during the invocation of superpeer_search by taking 

into account the load of t in the 

update_accepted_load function. The values of the 

effective loads of s and t, denoted by s:effective load 

and t:effective load, respectively, are computed by 

dividing the numbers of requests in the request 

history windows of the two peers by their capacities . 

The imbalance between the loads of s and t is then 

quantified by computing the relative difference 

between the effective loads, which is then used to 

compute the value of the parameter new accepted 

load of s. Finally, the accepted load of s is updated by 

applying exponential smoothing. We use exponential 

smoothing instead of just replacing the accepted 

loads with the new values to avoid drastic changes in 

the accepted loads, giving the system time to adapt to 

the new settings.  

 

18  super-peer_local_search(s : super-peer, f :           

                                                 file_name): 

18.1         r  random value from range ( 0, 1 ) 
18.2        if r > s.accepted_load then 
18.3                 return ERROR ―Super-peer s       

                                                   overloaded‖ 

18.4         add request timestamp to request history  

                                    window s.W 
19         if an entry < f, q > exists in cache s.F then 
                        … 
24 super-peer_search( s, f ): 
                        … 
26         If search succeeded then  
26.1               update _accepted_load( s, t ) 
27                   insert  < f , q > into s.F 
                         …     
37 update_accepted_load( s : super-peer, t: super- 

                                             peer): 
38          s.requests  number of requests in  

                                    window s.W 
39          t.requests  number of requests in  

                                    window t.W 
40          s.effective_load  s.requests/s.capacity 
41          t.effective_load  t.requests/t.capacity 

42          (t.effective_load – s.effective_load)/ 
                     (t.effective_load + s.effective_load) 
43          new_accepted_load  s.accepted_load +   

                                                     
44        if new_accepted_load > 1 then 
45                 new_accepted_load  1 

46          if new_accepted_load < 0 then 
47                  new_accepted_load  0 

48          s.accepted_load  . S.accepted_load +  

                                    (1- ).New_accepted_load 

     
Fig. 3. Pseudocode of the superpeer load balancing 

protocol in SOSPNET. 
 

In one specific case, the behavior of the load 

balancing algorithm can be confusing. Let’s assume 

that superpeer s is overloaded and that it has in its 

cache the pointer <f; q> to file f requested by p. The 

request will be forwarded to another superpeer, say t. 

Superpeer t will then perform a superpeer search, find 

s, store a pointer to f in its own cache, and return <q; 

s> to p. As a consequence, peer p will increase the 

priority of s in its superpeer cache. This behavior is 

counterintuitive as p should be discouraged to contact 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T



s in the near future. However, the increase of the 

priority of s should be interpreted as a one-time trade-

off. If a different peer subsequently sends a request 

for file f to t, superpeer t will satisfy the request from 

its local file cache. Our load balancing algorithm has, 

thus, the highly desired property of replicating file 

pointers cached by the over-loaded superpeers at 

lighter loaded peers. 

The load balancing scheme that we presented 

here is simple yet powerful and extremely flexible. 

While many state-of-the-art load balancing 

algorithms assume that all peers have equal 

capacities, our self-organizing architecture can deal 

with arbitrary capacity values and even allows these 

values to be changed during system operation. The 

load imbalance caused by a change of the parameters 

of the superpeer s is automatically taken into account, 

and the system gradually adapts to the new 

circumstances. Because neither the weak peers nor 

the file pointers have to be explicitly reassigned from 

one super-peer to another, no complex overlay 

infrastructure such as virtual servers or buckets of file 

identifiers needs to be introduced. 

 

3.6 Update Superpeer 
 

Once a superpeer S (previously S1) receives 

UpdateSuperpeer(S1, S2, rtS1, rtS2
) 

from peer P , it 

saves the previous hop P ′ out of this message and 

proceeds with the following algorithm: 

  

The arrival of a message increases the total error of 

the superpeer, proportional to the distance to the peer 

stimulating the network. If the error increment is 

greater than a predefined threshold moveThreshold, 

a super-peer movement is triggered: the superpeer 

‖moves‖ closer to the stimulus source. The peer 

movement is punished by another total error increase 

to discourage excess of peer migration. If the total 

superpeer error exceeds a predefined value 

createNewThreshold,thenCreateSuperpeerInTheMidl

e is sent to the neighbor with the maximum error 

value Smax to trigger the creation of a new superpeer. 

 

1 newError ← rtS1 ∗ errorIncrementFactor 
2 S.error ← S.error + newError 
3 for all f ∈ S.f ingerList do 
4       f.age ← f.age + 1 
5       if f.age ≥ f ingerDeleteT hreshold then 
6            S.f ingerList.remove(f ) 
7        end if 
8 end for 
9 if S2 ∈ S.f ingerList then 
10      S.getF ingerT o(S2).age ← 0 
11 Else 
12      S.f ingerList ← S.f ingerList + S2 
13 end if 
14 if newError ≥ moveT hreshold then 

15      S.send(M oveSuperpeer, P ′ ) 

 

16      S.error ← S.error + moveP unishment 
17 end if 
18 Smax ← fingerList.f indM axErrorN eighbor() 
19 if S.error ≥ createN ewT hreshold then 
20      S.send(CreateSuperpeerInT heM iddle, 

Smax
) 

21      S.error ← 0 
22 end if 

Fig 4: pseudocode for Updating Superpeers 

 

4. Related Work 
 

The concept of leveraging the heterogeneity of peers 

by exploiting high-capacity nodes as superpeers has  

proved to have great potential and has resulted in 

implementations in popular P2P networks. KaZaa 

and Morpheus, which are both based on the 

FastTrack  protocol, are widely used file sharing 

systems that make use of superpeers. Although 

FastTrack is a proprietary technology with no 

detailed documentation, it is known that FastTrack 

peers are automatically elected to become superpeers 

if they have sufficient bandwidth and processing 

power (users can disable this feature). A central 

bootstrapping server provides new peers with a list of 

one or more superpeers to which they can connect. 

Superpeers index the files shared by client peers 

connected to them and proxy search requests on 

behalf of these peers. All queries are therefore 

initially directed to the superpeers. 

An extension of the basic Gnutella system 

has an architecture based on ultrapeers, which are 

conceptually equivalent to superpeers. Any new peer 

with enough bandwidth and CPU power immediately 

becomes an ultrapeer and establishes connections 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T



with other ultrapeers, forming an overlay network. A 

new ultrapeer is required to establish a predefined 

minimum number of connections to client peers.  

The Edutella network proposes a superpeer 

architecture based on the concept of semantic 

clusters. It creates a logical layer on top of the base 

P2P network topology by grouping peers with similar 

content interests.The clustering is performed by 

matching the semantic information provided by the 

peers to clusters, with each cluster being maintained 

by a superpeer. In addition to controlling the internal 

structure of the cluster, superpeers are responsible for 

routing messages between peers from different 

clusters. In contrast to SOSPNET where peers are 

clustered based on patterns automatically discovered 

in their requests, in the Edutella network, the policies 

defining the peer clustering rules have to be defined 

manually by domain experts. 

Superpeer architectures have also been 

proposed for structured P2P networks. Such 

architectures group nearby peers based on some 

criteria, such as network latency or adjacency in the 

key space, and organize the communication between 

groups using a superpeer layer. To find a peer that is 

responsible for a key, the top layer overlay network 

routes among the superpeers to determine the group 

responsible for the key, which, in turn, uses an 

intragroup overlay network to find the target peer. 

The lookup time in structured superpeer networks 

depends on the size of the state maintained by each 

superpeer and on the total number of superpeers. 

Some architectures are even able to guarantee a 

constant-time lookup. The rigid organization of 

content items based on their identifiers in structured 

P2P networks hampers optimization efforts that 

exploit the semantic properties of the content. 

Exploiting the semantic properties of peers 

and content has also attracted a significant interest of 

the research community. Various approaches to 

capturing the semantic proximity between peers have 

been proposed. Some of them rely on a predefined 

ontology. 

Unfortunately, defining ontologies is often a 

manual, time consuming process and the resulting 

semantic classes have to be continuously adjusted to 

reflect changes in semantic profiles of the content. 

Another approach is based on adding semantic 

shortcuts (i.e., extra links) between peers that share 

some interest. These links are created dynamically 

based on the set of most recent downloads, for 

instance. Such a mechanism is very reactive to 

evolving download patterns. Nevertheless, the 

nonintrusive nature of this approach does not allow to 

exploit available information such as the overlap 

between caches, which has also been used to 

approximate the semantic proximity between peers. 

A refined proximity measure takes into account not 

only the content of peers’ caches but also their 

generosity and the popularity of shared files. None of 

the approaches discussed here combines a dynamic 

discovery of semantic proximity between peers and 

files with a multilevel P2P architecture as SOSPNET 

does. 

 

5. Conclusions 

 
Self-organizing superpeer network architecture called 

SOSPNET, was introduced which has unstructured 

topology. At first peers will have random sets of 

neighbors and they can make local decisions 

regarding which superpeer to select based on the 

information collected during previous searches. 

Furthermore, we have demonstrated that a new peer 

can join at any time into the network and can very 

quickly finds a set superpeers which offers highest 

performance. Finally, SOSPNET is robust to node 

failures and can effectively balance the load between 

superpeers. 

 

6. References 
 

[1] http://gnutella.wego.com, 2007. 

[2] http://www.fasttrack.nu, 2009. 

[3] http://www.kazaa.com, 2009. 

[4] http://www.napster.com, 2007. 

[5] http://www.suprnova.org, 2009. 

[6] http://www.thepiratebay.org, 2009. 

[7] Y. Breitbart, R. Vingralek, and G. Weikum, ―Load 

Control in Scalable Distributed File Structures,‖Distributed 

and Parallel Databases, vol. 4, no. 4, pp. 319-354, Oct. 

1996. 

[8] V. Cholvi, P. Felber, and E. Biersack, ―Efficient Search 

in Unstructured Peer-to-Peer Networks,‖        Proc. 

Symp. Parallelism in Algorithms and Architectures (SPAA 

’04), June 2004. 

[9] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, 

―Freenet: A Distributed Anonymous Information Storage 

and Retrieval System,‖ Lecture Notes in Computer 

Science, pp.46-66, Springer,2001. 

[10] B. Cohen, ―Incentives Build Robustness in 

Bittorrent,‖ Proc. First Workshop Economics of Peer-to-

Peer Systems, May 2003. 

[11] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, 

and L.Massoulie, ―Clustering in Peer-to-Peer File Sharing 

Workloads,‖ Proc. Int’l Workshop Peer-to-Peer Systems 

(IPTPS ’04), Feb. 2004. 

[12] A.J. Ganesh, A.-M. Kermarrec, and L. Massouli, 

―Peer-to-Peer Membership Management for Gossip-Based 

Protocols,‖ IEEE Trans. Computers, vol. 52, no. 2, 

pp. 139-149, Feb. 2003. 

[13] T. Decker, R. Luling, and S. Tschoke, ―A Distributed 

Load Balancing Algorithm for Heterogeneous Parallel 

Computing System,‖Proc. Int’l Conf. Parallel and 

Distributed Processing Techniques and Applications, Nov. 

2000. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T


