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Abstract  - Pilot contamination posts a fundamental limit on the 

performance of massive multiple-input–multiple-output (MIMO) 

antenna systems due to failure in accurate channel estimation. 

To address this problem, we propose estimation of channel 

parameters of the desired links in a target cell. In this paper, we 

show that if the propagation properties of massive MIMO 

systems can be exploited, it is possible to obtain an accurate 

estimate of the channel parameters.  The signals are observed in 

the beam domain (using Fourier transform), the channel is 

approximately sparse, i.e., the channel matrix contains only a 

small fraction of large components, and other components are 

close to zero. This observation then enables channel estimation 

based on sparse Bayesian learning methods, where sparse 

channel components can be reconstructed using a small number 

of observations. 

Results illustrate that compared to conventional estimators, the 

proposed approach achieves much better performance in terms 

of the channel estimation accuracy and achievable rates in the 

presence of pilot contamination. In addition to channel 

estimation, efficient energy control technique for massive MIMO 

is adopted in this work.  

 

Index Terms——Bayesian learning, channel estimation, 

massive MIMO, pilot contamination. 

 

I. INTRODUCTION 

 VERY large multiple-input–multiple-output 

(MIMO) or “massive MIMO” systems [1] are widely 

considered as a future cellular network architecture, 

which are anticipated to be energy-efficient, spectrum-

efficient, secure, and robust; see, e.g., [2] and [3] for a 

survey. Such systems employ a few hundred or more 

base station (BS) antennas to simultaneously serve 

many tens of user equipments (UEs) in the same radio 

channel. As such, the array gain is expected to grow 

unboundedly with the number of antennas at the BSs so 

that both multiuser interference and thermal noise for 

any given number of users and any given powers of the 

interfering users can be eliminated.  

 The reports on the great benefits of massive 

MIMO systems, however, were based on the assumption 

that the BSs have an acceptable quality of channel 

knowledge, which in practice has to be estimated via 

finite-length pilot sequences. However, in cellular 

networks, pilot interference from neighboring cells 

limits the ability to obtain sufficiently accurate channel 

estimates, giving rise to the problem of “pilot 

contamination” [1]. It was noted that pilot 

contamination incurs an ultimate limit on the 

interference rejection performance on massive MIMO, 

even if the number of antennas grows without bound 

[1], [4]. In this paper, our focus is on the channel 

estimation problems with pilot contamination in the 

uplink, although there are other related issues in the 

downlink that also greatly limit the performance of 

massive MIMO systems. For the issues in the downlink, 

we refer the readers to [5]–[9]. Several approaches have 

emerged to deal with pilot contamination in the uplink 

recently [10]–[15]. By exploiting the covariance 

information of user channels and applying a covariance-

aware pilot assignment strategy among the cells, [10] 

revealed that pilot contamination could disappear. 

Alternatively, using an eigenvalue decomposition of the 

sample covariance matrix of the received signals, [11]–

[13] claimed that pilot contamination can be effectively 

mitigated by projecting the received signal onto an 

interference-free subspace without the need of 

coordination amongst the cells. Nevertheless, [10]– [13] 

rely heavily on the estimation of the channel or signal 

covariance matrices. Though the covariance matrices 

change slowly over time, the estimation problem under 

massive MIMO ystems is far from trivial [5].  

 The reason is that a covariance matrix is 

typically estimated through the sample covariance 

matrix, and that the sample size should be increased 

proportionally to the dimension of the covariance 

matrices.1 In massive MIMO systems, the dimension of 

the covariance matrices may be comparable to the 

number of available samples within a coherence time. 

The sample covariance estimation method is thus no 

longer sufficient and more sophisticated techniques 

must be used, see, e.g., [16] or [17] for more recent 

progress. Different from the approaches based on 

covariance matrices, e.g., [10]–[13], in this paper, we 

address the pilot contamination problem directly from a 

channel estimation perspective.  

 From [1], we realize that pilot contamination 

results from performing channel estimation ignoring 

pilot interference from the neighboring cells so that the 

estimated channel contains channels of the interference. 

To overcome this, we therefore propose to estimate not 

only the channel parameters of the desired links in the 
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target cell but also those of the interference links from 

adjacent cells. Although this strategy seems natural, the 

challenge remains that the required estimation problem 

forms an underdetermined linear system which 

generally has infinitely many solutions. To get an 

accurate solution, we rely on a key observation–The 

channels with most of the multipath energy tend to be 

concentrated in relatively small regions within the 

channel angular spread due to limited local scatterers at 

the BSs [18]–[22]. An approximate sparsity of a channel 

can be obtained by transforming the received signal into 

a beam domain. Exploiting the channel sparsity, we can 

obtain much more accurate channel estimates by 

leveraging on more recent techniques in compressive 

sensing (CS) [23]–[26]. MIMO channel estimation 

based on CS techniques has been investigated in, [8], 

[9], [14], [15], [27], and [28]. Most of the earlier works, 

e.g., [27] (and references therein), exploited sparse 

channel estimation methods mainly to improve the 

performance of single-user MIMO systems. Under 

multiuser massive MIMO systems, CS techniques were 

used in [8], [9], and [28] in order to reduce the feedback 

overhead of the channel state information (CSI) at the 

transmitter side. In [14], [15], the authors also advocated 

to estimate the channel parameters of the desired links 

in the target cell and those of the interference links from 

adjacent cells. Nonetheless, they used a CS technique to 

estimate the MIMO channel based on low-rank 

approximation, which is completely different from that 

of our interest. Other popular solvers in the CS 

literature, e.g., the 1 optimization (L1) solver [29] and 

the orthogonal matching pursuit (OMP) solver [30], also 

appear to be not so useful in the concerned channel 

estimation problem. For the L1 solver, the regularization 

parameter has to be chosen carefully to control the 

channel estimation errors while determining the best 

regularization parameter is difficult in practice.  

 Meanwhile, the OMP solver greedily selects the 

best channel vectors for channel representation, and the 

best support number for channel representation is also 

difficult to obtain in practice. Whether channel 

estimation in massive MIMO systems, suffered from 

pilot contamination, could be effectively addressed via 

CS techniques is not understood. 

 Our contributions include the formulation of 

massive MIMO channel estimation with pilot 

contamination as a CS problem. Based on an 

observation of the received signals in the beam domain, 

we model the channel component in the beam domain as 

a Gaussian mixture, i.e., a weighted summation of 

Gaussian distributions with different variances. This 

model enables us to reconstruct the channel components 

based on the probabilistic Bayesian inference with the 

best mean-squared error (MSE) performance [31]. For 

the optimal Bayesian inference, the computational 

complexity is not tractable and the statistical properties 

of the channel component are required.  

 Hence, we employ the approximate message 

passing (AMP) algorithm in [23]–[25] to obtain the 

Bayesian inference and an expectation–maximization 

(EM) algorithm [26] to learn the statistical properties. 

Unlike [10], our Bayesian estimator does not require the 

availability of the channel covariance matrices and the 

background noise level. All the required channel 

knowledge will be learned as part of the estimation 

procedure. By a proper design on pilot sequences, the 

proposed estimator leads to a much reduced complexity 

without compromising performance.  

 Numerical results will show that the developed 

approach provides a huge gain in reducing the channel 

estimation errors. In addition, the achievable rates based 

on the developed channel estimator are comparable to 

those with perfect CSI 

 
 

II. SYSTEM MODEL 

In this section, we first present the massive MIMO 

system model and then discuss the pilot contamination 

problem. The discussions will be useful for aligning the 

requirement of CS techniques to address the pilot 

contamination problem.  
Massive MIMO 

Consider a wireless communication system with B  

cells, in which each cell contains a BS and K  UEs. 

Each BS has N  antennas, whereas each UE is equipped 

with a single antenna. In the considered uplink training 

phase, all UEs in the B cells simultaneously transmit 

pilot sequences of length T symbols. For ease of 

exposition, we let the first cell be our target cell. The 

pilot sequences used in the bth cell can be represented 

by a KxT  matrix, bS , and the corresponding channel 

vector between the UEs in the bth cell and the target BS 

is denoted by
NK

1 C]...[  T

bKbb hhH , where 

NKC bKh  is the channel from UEk in cell b to the 

target BS. The received signals during uplink training at 

the target BS is written as  
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B

b

bb

1

    (1) 

where Z ∈ CT×N denotes the temporally and spatially 

white Gaussian noise with zero mean and element-wise 

variance Δ. Also, in (1), we have defined 
NT

B

 CSSS ]...[ 1 and 
NBKHH

B

H  CHHH ]...[ 1  

for conciseness.  

Pilot Contamination 

In massive MIMO, the statistical knowledge of the 

channel matrix would be practically unknown because 

the size of the channel matrix would mean that an 

unacceptably large number of samples would be 

required. In this case, the standard way of estimating H 

is to employ the least square (LS) approach. If 

orthogonal pilot sequences are adopted in the bth cell, 

i.e., Kb

H

b ISS  , and the same pilot sequences are 

reused in all B cells, i.e.,        S1 = ··· = SB, the outputs 

of the LS estimator at the targeted BS can be written as  

Hˆ 1 = SH 1 S1 

                                                                                           

−1 S1Y=H1+ B 

b

                                                                                           

=1 Hb+ SH 1 S1 

                                                                                           

−1 S1Z. (2)  

From the perspective of the LS estimator, the 

assumption of using the same set of pilot sequences 

makes no fundamental difference in terms of estimation 

performance compared with using different pilots in 

different cells [1]. Clearly, in (2), the interfering 

channels will leak directly to the desired channel 

estimate, which gives rise to “pilot contamination” [1], 

[4], [10]. The fundamental effect of pilot contamination 

can also be understood from other perspective through 

linear estimation theory. First, we note that if the BK × 

N channel matrix H can be estimated from the T × N 

measurement matrix Y with sufficient accuracy, then the 

pilot contamination effect can be mitigated or 

eliminated. A straightforward requirement for an 

accurate channel estimation is T ≥ BK; otherwise, 

unknown variables will outnumber measurements and in 

this case accurate channel estimation is clearly 

impossible. Unfortunately, the requirement for accurate 

channel estimation usually cannot be satisfied in the 

massive MIMO system because most scenarios of our 

interests have T ≈ K and B > 1. 2 The estimation of H 

from the noisy underdetermined measurement has 

infinitely many solutions. For this reason, many 

speculate that the pilot contamination problem will exist 

regardless of which channel estimation method is used 

[1], [4]. Clearly, to get a correct solution, one must 

impose extra constraints in choosing the solution.  

 
Cognitive Radio System with OFDM 

OFDM is Orthogonal Frequency Division 

Multiplexing. It is used to trim down the interference 

among the number of users. In this the single broadband 

frequency is divided into a large number of parallel 

narrow band of frequencies. By this we can transmit the 

in order with less bandwidth. This makes the channel to 

be frequency flat and also it eliminates reverberation. 

The block diagram is shown in Fig  

 

 
Fig 2: Cognitive radio transmitter with OFDM 

 

 
Fig 3: Cognitive radio receiver with OFDM 

 

 Thus from this block diagram we can infer that 

the OFDM intrinsic systemproduce orthogonal carriers 

by using the Inverse Fast Fourier Transform (IFFT). In 

addition to that IFFT is also used to lift up the frequency 

used in the baseband to that of transmittable high 

frequency. Thus this mitigate the interference among the 

carriers of nearer frequencies. Moreover the cyclic 

prefix addition makes us to reduce the most significant 

problem of the digital contact that is the Inter Symbol 

Interference (ISI). 

 By using the frequency response of sub-carrier 

used for broadcast, the amount of information for each 

sub-band can be altered. Conversely these narrow bands 

have a smaller amount frequency selective fading. So 

the OFDM also conserves the bandwidth along with 

improved data rate to the highest degree which is the 

main intention. These character made OFDM to be more 

suitable for MIMO. In addition to that the OFDM 

technique provides very less BER even for negative 

SNR that makes the system to be more consistent. 

 
Approximate message passing (AMP) for Massive 

MIMO detection 

In this exposition, we want to highlight that the 

approximate message passing (AMP) has superior 
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complexity when serving the Massive MIMO uplink 

detection, although AMP was initially proposed for 

solving a LASSO problem [DMM09]. Regarding 

expository detail about why AMP works, please see 

[BM11]. 

Regarding the problem of Massive MIMO uplink 

detection [HBD13], the architecture serves tens of users 

by employing hundreds of antennas,  

y=Hx+w 

y=Hx+w 

where the channel H∈Cm×nH∈Cm×n has its elements 

sampled from NC(0,1/m)NC(0,1/m) , m≫nm≫n , 

y∈Cmy∈Cm is the received signal, AWGN noise 

components wiwi are i.i.d with NC(0,σ2)NC(0,σ2) ; 

regarding the transmitted xx , we only assume that it’s 

zero mean and finite variance σ2sσs2 . 

Before incorporating the AMP algorithm, we should 

be well aware of two facts: 1. directly using maximum a 

priori (MAP) argmaxp(x|y)argmaxp(x|y) or MMSE 

estimation Ep(x|y)(X)Ep(x|y)(X) to work with the exact 

prior degrade the necessity of employing AMP, because 

achieving a full diversity requires an extremely large set 

of constellation points, in which AMP works slowly 

while doing the moment matching process, not to 

mention problems about its inability to converge to the 

lowest fixed point. 2. In the CDMA multiuser detection 

theory [Verdu98, etc.], their “MMSE” detector does not 

mean the one working with exact prior , but rather the 

one assuming a Gaussian prior. 

So we use a proxy prior for detecting xx , i.e., 

assuming that xi∼NC(0,σ2s)xi∼NC(0,σs2) , even 

though it may be inexact. In this occurrence, we have 

the signal power σ2s=2σs2=2 in QPSK, σ2s=10σs2=10 

in 16QAM, etc. So the target function becomes: 

min∥ y−Hx∥ 2,s.t.xi∼NC(0,σ2s) 

min‖y−Hx‖2,s.t.xi∼NC(0,σs2) 

The AMP algorithm to solve the above problem only 

requires three lines 

 

 
where the initialization is to let r0=0r0=0 , x0=0x0=0 

, α0=σ2sα0=σs2 . In terms of complexity, it only costs 

2mn×(#Iteration)2mn×(#Iteration) . Also, according to 

the second equation of the algorithm, it is converging 

extremely fast. On the contrary, MMSE has complexity 

O(mn2)O(mn2) . It is noteworthy that known 

approximation methods to MMSE, such as Richardson’s 

method or Newman series approximation, both fall 

behind the complexity-performance trade-off of AMP 

according to our simulations. 
 

A. Channel Stipulation 

Based on the estimated channel stipulation, 

Beamforming cognitive transmitter is premeditated and 

is shown to be able of directing Cognitive Users (CU’s) 

transmit signals through the channel and thus removing 

the interference. When the PUs channel is free, it will be 

owed among the number of secondary users. If there are 

a number of users in cognitive radio scheme, the 

interference among the CUs will enhance. These 

interferences among the CUs will be reduced by 

Beamforming technique. Beamforming is a technique 

that is done for the transmission or reception of data. 

This technique is done by concentrating a particular user 

at an instance. The Beamforming will be done during 

the transmission of data on the transmission side of the 

CUs. 

 
III.  RESULTS AND DISCUSSION 

The performance analysis of the channel is improved 

by using Beamforming technique that was revealed in 

this work. The noise added by the channel is also 

reputed to be Gaussian random noise. The purpose of 

our scrutiny is to draw attention to the concert of this 

system by comparing them with various interconnected 

systems. For an analysis of the efficiency of this system 

a performance measure is made between the SNR (in 

dB) and BER. 

 

 
Fig.5 BER vs. SNR for 4-QAM for various dimensions of MIMO 

 

The Fig 5 the performance analysis of a MIMO-

OFDM system with 4-QAM modulation with a 

subcarrier of 8 for diverse dimensions of MIMO 

systems i.e. for 2×2,2×3,2×4,3×4. It is experiential that 

the probability of error is low down in the MIMO 
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dimension of 2×4 and 3×4 due to receiver’s diversity. 

The penalty are simulated only with MIMO’s particular 

features of spatial diversity where identical information 

is transmitted in all the transmitting antennas for 

improved feature. This makes obtainable good 

adaptation of the signal all the way through one or more 

paths, thus tumbling the probability of error as the 

affable faded signals can be left alone. 

If the number of subcarriers enlarges, then the amount 

of the error reduces. This makes OFDM more 

appropriate for MIMO systems. The orthogonal carriers 

cause a reduced amount of interference in a MIMO 

antenna that is narrowly positioned. MIMO-OFDM 

gives supplementary capacity than the conventional 

MIMO in existence of multipath as shown in Fig 6. 

 
 

Table I 
 

SNR (dB) TECHNIQUE  PROBABILITY OF 

ERROR 

2 

MMSE  1.468  

AMP-2  1.468  

AMP-4  1.468  

4 

MMSE  0.144  

AMP-2  0.188  

AMP-4  0.144  

6 

MMSE  0.011  

AMP-2  0.020  

AMP-4  0.014  

10 

MMSE  0.001  

AMP-2  0.002  

AMP-4  0.001  

 

The implication of Fig 6is given in the Table I. It is 

inferred that when the number of subcarriers increases, 

the probability of error decreases. 

In the above proposed system including the MIMO-

OFDM proposal we find PAPR to be a cause that need 

to be measured. So the porch of this system for a better 

performance will be probable by reducing this PAPR to 

the minimal value promising by an apt technique. 

Analysis can be made on the system based CDF. The 

preliminary analysis here is done for an untutored 

system concerning different subcarriers without any 

technique to condense PAPR. 

The fig 7 is the estimation of PAPR for the system 

with different subcarriers. 
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