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Abstract— Monitoring cow activity, such as standing, sitting, and 

ruminating, is essential for optimizing dairy farm management, as 

these behaviors provide critical insights into animal health, 

welfare, and productivity. Traditional observation methods are 

labor-intensive and impractical for large herds, necessitating 

automated, cost-effective solutions. This study presents an energy-

efficient, affordable wearable system for real-time cow behavior 

detection using accelerometer data and machine learning. The 

device, built with an ATmega328P microcontroller, nRF24L01 

wireless module, and MOSFET-based power management, 

significantly reduces energy consumption by employing sleep 

modes, sensor power control, and optimized data transmission 

strategies. Experimental results show that the XGBoost classifier 

achieved 94.87% accuracy, outperforming Random Forest 

(84.81%). The system consumes approximately 23.5 mAh of power 

per day , enabling long-term operation with minimal maintenance. 

With a total hardware price of approximately NRs. 3345 (~25 

USD), it offers a low-cost, energy-efficient solution. Future 

improvements could incorporate advanced analytics for estrus 

and calving detection, further strengthening automated livestock 

monitoring. 
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I. INTRODUCTION

Precision livestock farming (PLF) has revolutionized dairy 

cattle management by introducing automated monitoring 

systems that track animal health, behavior, and welfare. 

Traditional methods for monitoring cow activities, such as 

standing, eating, sitting, and ruminating, are labor-intensive, 

time-consuming, and prone to human error. The adoption of 

sensor-based technologies, particularly accelerometers, 

gyroscopes, and IoT-enabled devices, has enabled continuous, 

real-time tracking of animal behaviors with improved accuracy 

[1]-[3]. 

Monitoring cow activity is essential for ensuring optimal health 

and productivity in dairy farms. Changes in routine behaviors 

can indicate potential health concerns, nutritional deficiencies, 

or environmental stressors [4], [5]. For instance, a reduction in 

eating and ruminating time may signal digestive issues, while 

prolonged periods of inactivity could indicate lameness or 

illness. Studies have shown that automated movement analysis 

using accelerometers can detect early signs of lameness and 

illness more effectively than manual observations [6], [7]. 

In addition to basic activity monitoring, wearable sensor 

technologies have been widely explored for detecting estrus and 

calving events in dairy cattle. Estrus detection is a critical aspect 

of dairy farm management, as timely identification of heat 

cycles improves artificial insemination success rates and 

enhances reproductive efficiency [8], [9]. Previous studies have 

demonstrated that cows in estrus exhibit increased movement, 

restlessness, and mounting behavior, which can be detected 

using accelerometer-based systems [10], [11]. Similarly, 

calving detection has been investigated through behavioral 

changes such as increased lying and standing frequency, 

decreased feeding time, and variations in body temperature 

[12], [13]. 

Recent advancements in sensor technologies have further 

enhanced the capabilities of PLF systems. Martinez-Rau, Mohr, 

and Dresch developed a real-time acoustic monitoring system 

for cattle foraging behavior recognition using low-power 

embedded devices. Their Noise-Robust Foraging Activity 

Recognizer (NRFAR) algorithm, implemented on an ARM 

Cortex-M0+ microcontroller, achieved mean power 

consumption as low as 1.8 mW, addressing computational 

limitations of previous implementations [13]. 

Similarly, Vannieuwenborg, De Ketelaere, Berckmans, and 

Saeys proposed a smart cow monitoring system with a focus on 

low power consumption and long-term sustainability. Their 

system utilizes LoRaWAN for communication, NFMI for ear 

tag data transfer, and UWB for positioning, with a design 

optimized for a 7-year lifespan and wireless inductive charging 

[14]. 

Beyond wearable sensors, Nasirahmadi, Edwards, and Sturm 

developed an image-based behavior recognition system using 

deep learning to track cow movement patterns and postures [2]. 

Similarly, Li, Chen, and Wang utilized convolutional neural 

networks (CNNs) on surveillance footage to classify cow 

behaviors, demonstrating high accuracy but with increased 

computational demands [15]. 

While our current system is designed to detect fundamental cow 

activities such as standing, eating, sitting, and ruminating, the 

collected behavioral data can serve as a foundation for future 

enhancements in estrus and calving detection. By integrating 

advanced analytics and machine learning techniques, the 

system could potentially evolve to provide early estrus alerts or 

calving predictions based on deviations from normal activity 

patterns. Such developments would further strengthen 

automated livestock monitoring, enabling better farm 

management, reducing labor costs, and ultimately improving 

dairy productivity. 
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II. METHODOLOGY

A. Hardware selection

TABLE I.  HARDWARE COMPONENTS AND THEIR FUNCTION 

Component Function 

ATmega328P Microcontroller 

MPU6050 Accelerometer 

nRF24L01 Wireless data transmission 

DS3231 Real Time Clock 

IRFZ44N MOSFET 

18650 Li-ion Battery Power Source 

MLX90614 Tempreature Sensor 

The system consists of carefully selected components to ensure 

efficient operation: 

• ATmega328P (Microcontroller): Manages data acquisition,

processing, and communication.

• MPU6050 (Accelerometer & Gyroscope): Measures motion

and orientation for monitoring.

• nRF24L01 (Wireless Module): Enables low-power, long-

range data transmission.

• DS3231 (Real-Time Clock): Provides precise timekeeping for

event logging.

• IRFZ44N (MOSFET): Used for efficient power switching and

control.

• MLX90614 (Infrared Temperature Sensor): Measures non-

contact temperature.

• 18650 Li-ion Battery (Power Source): Supplies power,

ensuring portability and long battery life.

B. Power management: Atmega328p

To ensure efficient power consumption, the ATmega328P 

microcontroller supports multiple sleep modes. Each mode 

disables certain system components while allowing wake-up 

through specific sources. Fig. 1, illustrates the various sleep 

modes of the ATmega328P microcontroller, along with their 

associated active clock domains and possible wake-up sources. 

For this project, the Power-down mode was selected due to its 

ability to minimize power consumption by disabling the CPU, 

Flash memory, and peripheral clocks. The system is configured 

to wake only upon an external interrupt (INT0/INT1) or when 

the Watchdog Timer (WDT) triggers an event, as described in 

the ATmega328P datasheet [18]. 

Fig. 1. AVR Microcontroller Sleep Modes with Corresponding Active Clock 
Domains, Oscillators, and Wake-up Sources. 

To further reduce power consumption: 

• ADC (Analog-to-Digital Converter) is disabled, as it is not

required during sleep mode.

• Brown-Out Detection (BOD) is disabled, preventing

unnecessary power draw when the voltage is stable.

C. Power management: MPU6050

The MPU-6050 is a sensor that combines a 3-axis 

accelerometer and a 3-axis gyroscope in a single chip, making 

it ideal for motion tracking and orientation detection. It was 

preferred over other sensors like GY-61 ADLX335 due to the 

following reasons. 

• I2C interface

• Built in Digital Motion Processor

• Configurable Sensitivity

• Higher 16-bit resolution

For a cattle monitoring system, gyroscope values might not be 

strictly necessary. Accelerometer values are typically sufficient 

for most cattle monitoring needs, such as tracking movement, 

detecting if an animal is lying down or standing up, and 

monitoring general activity levels. It measures acceleration 

along the X, Y, and Z axes, which can provide valuable data on 

the cattle's position and movement. By only using the 

acceleration value in x, y and z direction, the classifier achieved 

an accuracy up to 90% [19]. 

As MPU6050 also allows temperature and gyroscopic 

measurements which definitely plays a certain part in power 

consumption, disabling those features will significantly reduce 

energy consumption. 

D. Powering Down Sensors Using MOSFET

To optimize the power efficiency of the system, a low-side 

MOSFET switching mechanism was employed to physically 

disconnect the power supply to the MPU6050 (accelerometer 

and gyroscope) and MLX90614 (infrared temperature sensor) 

when they are not actively engaged in data acquisition. This 

method effectively minimizes standby power consumption, 

which is crucial for energy-sensitive applications. 

The microcontroller provides a gate-source voltage (Vgs) of 

approximately 4V to turn on the power MOSFET (IRFZ44N). 

While the MOSFET typically requires a higher gate voltage 

(around 10V) to achieve minimal Rds(on) (8 mΩ) and enter full 

saturation, a Vgs of 4V is sufficient to overcome the gate 

threshold voltage, allowing the MOSFET to turn on and 

establish a low-resistance path between the drain and source 

[20]. 
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Given that the current drawn by the sensors is very low 

(typically in the microampere to milliampere range), the power 

loss due to the MOSFET's Rds(on) is negligible. As a result, 

there is no need for additional components such as a 

bootstrapping circuit or gate driver to drive the MOSFET, 

making this approach both cost-effective and energy-efficient 

for managing sensor power consumption. 

Fig. 2. Power Control Circuit for MPU6050 and MLX90614 Using an N-
Channel MOSFET (IRFZ44N). 

E. NRF24L01 low power mode

The data acquired from the MPU6050 and MLX90614 sensors 

were transmitted wirelessly using the nRF24L01 RF module. 

The nRF24L01 module, known for its low-power 

characteristics and reliable data transmission, facilitated the 

communication between the sensor node and the receiving 

station. 

To further optimize power consumption, the nRF24L01 

transmitter was configured to operate in a low-power mode. 

The transmitter enters sleep mode when not actively 

transmitting data, thereby reducing the overall energy 

consumption of the system. 

The transmitted data, including the sensor readings and 

associated timestamps read from the DS3231 RTC, was 

received by a corresponding receiver module. Once received, 

the data was saved to a storage medium for subsequent analysis. 

F. Firmware Architecture and Workflow

The data-logger consists of a 3-axis accelerometer for recording 

acceleration and an NRF module for wireless data transmission. 

Both modules are integrated into a custom-designed PCB 

board, which includes all necessary circuitry, such as a low-

power switching MOSFET for efficient energy management. 

The device is powered by a rechargeable 18650 battery cell, 

ensuring long operational life. A cow-mounted unit and a 

receiver unit, both equipped with NRF modules, facilitate 

wireless communication. The cow-mounted device records one 

data point per minute and transmits the collected data to the 

receiver every hour. During the intervals between 

transmissions, the device enters a low-power sleep mode to 

conserve energy. On the receiver side, an microcontroller 

paired with an SD card module stores the transmitted data for 

further analysis. The system operates at a frequency of 100 Hz 

during active recording, ensuring high-resolution data 

collection while maintaining energy efficiency. This setup 

enables continuous, low-power monitoring of cow activity, 

making it suitable for long-term use in precision livestock 

farming. 

Fig. 3, illustrates the working logic of a sensor node for cattle 

monitoring. The system begins operation upon receiving an 

interrupt from the DS3231 RTC. It powers the MPU6050 

(accelerometer) and MLX90614 (temperature sensor) via a 

MOSFET, collects sensor data along with a timestamp, and then 

powers the sensors down. If a receiver station is available, the 

data is transmitted wirelessly; otherwise, it is stored in 

EEPROM. When a connection becomes available, stored data 

is sent until the EEPROM is emptied. Finally, the system enters 

a low-power state by putting the nRF24L01 module into sleep 

mode and the ATmega328P into power-down mode. 

Fig. 3. Flowchart of the Data Acquisition and Transmission Process 

G. Data Collection

Data collection presented significant challenges due to 

geographical and technological constraints in Nepal. The 

process began with the installation of the data collection device 

on the cow, ensuring that the device was well-protected against 

moisture and potential physical damage caused by the animal’s 

movements (Fig. 4). Special care was taken to securely attach 

the device in a manner that did not cause discomfort or interfere 

with the cow’s natural behavior. The enclosure for the data 

logger was 3D-printed using polylactic acid (PLA) material, 
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chosen for its durability and flexibility. To protect the internal 

circuitry from mechanical shocks, the enclosure was equipped 

with shock-absorbing materials. The device was powered by 

replaceable cell batteries, accessible by opening the enclosure, 

ensuring ease of maintenance and long-term functionality. A 

video monitoring system was integrated into the data collection 

process using CCTV cameras that streamed live footage to 

Twitch. This video data provided an additional layer of 

validation by enabling manual annotation and verification of 

the behavioral data recorded by the device. On the receiver side, 

an SD card-integrated data logger stored the transmitted data, 

which was manually retrieved at regular intervals. The dataset 

comprised three-dimensional acceleration values (X, Y, and Z 

axes), with notable variations in specific axes corresponding to 

changes in the cow’s posture. This combination of sensor data 

and video annotation ensured robust and reliable behavioral 

analysis despite environmental challenges. 

Fig. 4. Wearable Device Attached To The Cow's Neck 

H. Data Preprocessing

The raw dataset collected from the sensor devices contained
noise, missing values, and irrelevant data points that could
potentially impact the analysis. To ensure data quality,
preprocessing involved multiple stages:

• Noise Removal: Unwanted fluctuations and erroneous
readings were filtered out.

• Handling Missing Values: Incomplete data points were either
interpolated or removed.

• Data Consolidation: Multiple datasets collected at different
intervals were merged to maintain consistency and
completeness. The final preprocessed dataset was stored in
CSV format and contained the following key attributes:

• Acceleration values (X, Y , Z axes) Timestamps (to capture
temporal information)

• Cow ID (to associate data with individual animals)

I. Temporal Data Segmentation

To capture temporal patterns in cow behavior, a sliding window 

approach was employed. This method segments continuous 

time-series data into overlapping or non-overlapping windows 

of fixed duration. Each window encapsulates a sequence of 

sensor readings, allowing for the identification of behavioral 

trends over time rather than relying on isolated data points. The 

sliding window technique is particularly effective in analyzing 

the dynamic nature of cow activities, such as transitions 

between standing, sitting, eating, and ruminating. By leveraging 

this approach, the dataset retains valuable temporal 

dependencies, enhancing the accuracy of behavioral analysis 

and pattern recognition. 

III. RESULTS

A. Classification

The methodology for analyzing cow behavior involved a 

systematic pipeline comprising data preprocessing, feature 

extraction, and classification. The classification process was 

structured as follows:  

1) Model Selection and Justification

A supervised machine learning approach was used to classify

cow behaviors into four categories: standing, sitting, walking,

and eating. Several classification models were evaluated,

including Random Forest, Support Vector Machine (SVM), and

XGBoost. XGBoost was chosen due to the following

advantages:

• Handles Imbalanced Data Well: Cow behavior data is often

skewed, with certain activities (e.g., standing) occurring

more frequently than others (e.g., ruminating). XGBoost uses

weighted loss functions to mitigate class imbalance.

• Robust Feature Selection: XGBoost automatically

determines the most relevant features, improving

classification accuracy.

• Fast Training Time: Compared to Random Forest and SVM,

XGBoost efficiently processes large datasets while

preventing overfitting.

2) Hyperparameter Tuning

To optimize the XGBoost model, a Grid Search with 5-fold

Cross-Validation was conducted, testing the following

hyperparameters:

• Learning Rate: {0.01, 0.1, 0.2}

• Maximum Depth of Trees: {3, 5, 7}

• Number of Estimators: {100, 300, 500}

• Gamma (min loss reduction required for a split): {0, 0.1,

0.2} The best configuration was found to be:

• Learning Rate: 0.1

• Max Depth: 5

• Number of Estimators: 100

• Gamma: 0.1

B. Sensor Data Analysis and Behavior Visualizations

Fig. 4, depicts the standing behavior of the cow, as captured by 

the accelerometer data. During standing, the Z-axis acceleration 

values consistently exceed -1, reflecting the cow’s upright 

posture. The X and Y axes exhibit significant fluctuations due 

to the cow’s natural movements, such as neck rotation (left and 

right) and minor postural adjustments. These dynamic 

movements result in variability across all three axes, 

highlighting the non-static nature of standing behavior. The 

observed fluctuations underscore the importance of analyzing 

multi-axis data and temporal patterns to accurately characterize 

standing and distinguish it from other activities. 
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Fig. 5. Standing Behaviour of The Cow 

Fig. 5, illustrates the eating behavior of cows, as captured by 

the accelerometer data. During eating, the X and Y axes exhibit 

significant movement, with the Y-axis showing comparatively 

higher variability. This increased activity in the Y-axis is 

attributed to the repetitive head and neck movements associated 

with feeding. In contrast, the Z-axis acceleration values remain 

relatively stable and resemble those observed during standing 

behavior, reflecting the cow’s upright posture while eating. The 

distinct patterns in the X and Y axes, combined with the stable 

Z-axis, provide clear discriminative features for differentiating 

eating behavior from other activities such as standing. 

Fig. 6. Eating Behaviour of The Cow 

Fig. 6, illustrates the sitting behavior of cows, as captured by 

the accelerometer data. During sitting, the acceleration values 

for all three axes (X, Y, and Z) consistently fall below the 0 

threshold, reflecting the cow’s lowered posture. Notably, the Y 

and Z axes exhibit significant changes compared to other 

activities, with pronounced variability in their acceleration 

patterns. These changes are attributed to the cow’s body 

position and movements while transitioning to or maintaining a 

seated posture. The distinct patterns in the Y and Z axes, 

combined with the consistent sub-zero values across all axes, 

provide clear discriminative features for identifying sitting 

behavior and distinguishing it from other activities such as 

standing or eating. 

Fig. 7. Sitting Behaviour of The Cow 

Fig. 7, depicts the ruminating behavior of the cow, as captured 

by the accelerometer data. During ruminating, the Z-axis 

acceleration values fluctuate between negative values , 

reflecting the rhythmic vertical jaw and neck movements 

associated with chewing cud. The X-axis remains relatively 

stable near 0, indicating minimal lateral head movement. In 

contrast, the Y-axis shows moderate fluctuations, capturing 

slight forward and backward neck motions. These distinct axis 

patterns highlight the relatively stationary but active nature of 

ruminating. The consistent, periodic movements across the Y 

and Z axes emphasize the value of multi-axis temporal analysis 

for accurately identifying and differentiating ruminating 

behavior from othe rcow activities. 

Fig. 8. Ruminating Behaviour of The Cow 

Fig. 8, shows the daily activity distribution of the cow over a 3 

Energy-Efficient and Affordable Wearable Solution for Cow 

Behavior Detection Using Machine Learning Day. The cow 

spent the most time eating (28.9%), followed by standing 

(29.7%), sitting (23.1%), and ruminating (18.3%). 

Fig. 9. Daily Activity Distribution 
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C. Classification Performance

The performance of XGBoost and Random Forest classifiers 

was evaluated using precision, recall, and F1-score across four 

behavioral classes. 

For XGBoost, the classifier achieved excellent precision scores 

of 1.00 for sitting and eating, and 0.95 for ruminating, while 

precision for standing was slightly lower at 0.76. Recall values 

were highest for standing (1.00) and ruminating (0.95), 

followed by sitting (0.83) and eating (0.88). Corresponding F1-

scores were 0.90 (sitting), 0.86 (standing), 0.94 (eating), and 

0.95 (ruminating). 

In comparison, Random Forest yielded similar precision for 

sitting (1.00) but lower values for standing (0.74), eating (0.88), 

and ruminating (0.83). Its recall scores were 0.70 (sitting), 0.89 

(standing), 0.88 (eating), and 0.95 (ruminating), with respective 

F1-scores of 0.82, 0.81, 0.88, and 0.88. 

Fig. 9, and Fig. 10, illustrate that the confusion matrix for 

XGBoost  and Random Forest  respectively which exhibits 

fewer misclassifications across all behavior classes, particularly 

for "sitting" and "standing," for XGBoost  when compared to 

Random Forest. This observation is consistent with the higher 

F1-scores achieved by XGBoost for these behaviors. 

Fig. 10. Confusion Matrix of Random Forest 

Fig. 11. Confusion Matrix of XGBoost 

 

KiCad. This approach allowed for compact routing and better 

layout control. The board was manually etched using Ferric 

Chloride, with top and bottom layers aligned using printed 

transparencies. Vias were made by drilling holes and 

connecting layers with soldered jumpers. Key components 

include the NRF24L01 wireless module, an IRF3205 

MOSFET, MPU6050 and a push-button input. Manual 

soldering was done carefully to ensure reliable connections. 

This method offered flexibility in design and reduced the cost 

and time typically needed for prototyping. 

Fig. 12. Top and Bottom View of The Circuit 

E. Power Consumption

Figure X shows the device’s current consumption over time, 

showcasing powered-on, setup, data collection, sleep, and 

wake-up phases. During activity (approx. 4 seconds), the device 

consumes around 11.54 mA (fig. 12) ,  followed by a low-power 

sleep state (approx. 60 seconds) at ~0.25 mA(fig. 13). This 

duty-cycled behavior significantly reduces average energy use. 

The average current per 64-second cycle is((4s×11.54mA) 

+(60s×0.3mA))/64s ≈1.00mA. Using two 3200 mAh batteries 

(totaling 6400 mAh), the estimated Battery Life is 6400mAh / 

1.00mA =6400hours ≈266 days.   

This result confirms that the system can function for nearly 9 

months without recharging or battery replacement, ensuring 

practical, long-term deployment for livestock monitoring in 

field conditions. 

Fig. 13. Current Consumption of The Device When Powered-ON 

Fig. 14. Current Consumption of The Device During Sleep Mode 

D. Fabricated Circuit
The circuit used in this project as shown in Fig. 11, was self-
fabricated using a double-sided PCB, which was designed using
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Fig. 15. Current Consumption of The Device in Milliampere vs Time in 
Seconds 

F. 3D Printed Case

The image shows a 3D-printed enclosure designed to house the 

PCB. The enclosure was designed using Autodesk Fusion 360 

and printed using PLA (Polylactic Acid), a biodegradable and 

durable thermoplastic well-suited for outdoor and agricultural 

use. The design contains side openings to attach to a collar, 

allowing the device to be comfortably worn around a cow’s 

neck. Internally, the enclosure includes space to accommodate 

two 18650 Li-ion batteries, ensuring extended operational time 

in the field whereas at the bottom it has a cutout for temperature 

sensor. 

Fig. 16. Top and Bottom View of The Design 

G. Cost Breakdown

The table summarizes the cost breakdown of the components 

used in the proposed wearable cow monitoring device. The total 

hardware cost amounts to approximately NRs. 3750 (~28 

USD), making the system an affordable and cost-effective 

solution for large-scale deployment in dairy farms. Major 

components include the ATmega328P microcontroller, 

MPU6050 accelerometer and gyroscope, MLX90614 infrared 

temperature sensor, nRF24L01 wireless transceiver, DS3231 

real-time clock, IRFZ44N MOSFET for power management, 

and two 18650 Li-ion batteries. The pricing reflects the 

feasibility of developing a reliable, energy-efficient, and 

scalable system without incurring high expenses, making it 

suitable for both small and large dairy operations. 

TABLE II.  COMPONENTS AND THEIR PRICES IN NRS 

Component Price (Rs) 

ATmega328P 400 

MPU6050 250 

nRF24L01 350 

DS3231 350 

IRFZ44N 45 

18650 Li-ion Battery 400 

PCB and others 800 

MLX90614 750 

Total 3345 
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