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Abstract— Monitoring cow activity, such as standing, sitting, and
ruminating, is essential for optimizing dairy farm management, as
these behaviors provide critical insights into animal health,
welfare, and productivity. Traditional observation methods are
labor-intensive and impractical for large herds, necessitating
automated, cost-effective solutions. This study presents an energy-
efficient, affordable wearable system for real-time cow behavior
detection using accelerometer data and machine learning. The
device, built with an ATmega328P microcontroller, nRF24L01
wireless module, and MOSFET-based power management,
significantly reduces energy consumption by employing sleep
modes, sensor power control, and optimized data transmission
strategies. Experimental results show that the XGBoost classifier
achieved 94.87% accuracy, outperforming Random Forest
(84.81%). The system consumes approximately 23.5 mAh of power
per day , enabling long-term operation with minimal maintenance.
With a total hardware price of approximately NRs. 3345 (~25
USD), it offers a low-cost, energy-efficient solution. Future
improvements could incorporate advanced analytics for estrus
and calving detection, further strengthening automated livestock
monitoring.

Keywords—ATmega328P, Low-power system, zXGBoost classifier

I. INTRODUCTION

Precision livestock farming (PLF) has revolutionized dairy
cattle management by introducing automated monitoring
systems that track animal health, behavior, and welfare.
Traditional methods for monitoring cow activities, such as
standing, eating, sitting, and ruminating, are labor-intensive,
time-consuming, and prone to human error. The adoption of
sensor-based  technologies, particularly  accelerometers,
gyroscopes, and loT-enabled devices, has enabled continuous,
real-time tracking of animal behaviors with improved accuracy
[1]-[3].

Monitoring cow activity is essential for ensuring optimal health
and productivity in dairy farms. Changes in routine behaviors
can indicate potential health concerns, nutritional deficiencies,
or environmental stressors [4], [5]. For instance, a reduction in
eating and ruminating time may signal digestive issues, while
prolonged periods of inactivity could indicate lameness or
illness. Studies have shown that automated movement analysis
using accelerometers can detect early signs of lameness and
illness more effectively than manual observations [6], [7].
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In addition to basic activity monitoring, wearable sensor
technologies have been widely explored for detecting estrus and
calving events in dairy cattle. Estrus detection is a critical aspect
of dairy farm management, as timely identification of heat
cycles improves artificial insemination success rates and
enhances reproductive efficiency [8], [9]. Previous studies have
demonstrated that cows in estrus exhibit increased movement,
restlessness, and mounting behavior, which can be detected
using accelerometer-based systems [10], [11]. Similarly,
calving detection has been investigated through behavioral
changes such as increased lying and standing frequency,
decreased feeding time, and variations in body temperature
[12], [13].

Recent advancements in sensor technologies have further
enhanced the capabilities of PLF systems. Martinez-Rau, Mohr,
and Dresch developed a real-time acoustic monitoring system
for cattle foraging behavior recognition using low-power
embedded devices. Their Noise-Robust Foraging Activity
Recognizer (NRFAR) algorithm, implemented on an ARM
Cortex-MO0+  microcontroller, —achieved mean  power
consumption as low as 1.8 mW, addressing computational
limitations of previous implementations [13].

Similarly, Vannieuwenborg, De Ketelaere, Berckmans, and
Saeys proposed a smart cow monitoring system with a focus on
low power consumption and long-term sustainability. Their
system utilizes LoRaWAN for communication, NFMI for ear
tag data transfer, and UWB for positioning, with a design
optimized for a 7-year lifespan and wireless inductive charging
[14].

Beyond wearable sensors, Nasirahmadi, Edwards, and Sturm
developed an image-based behavior recognition system using
deep learning to track cow movement patterns and postures [2].
Similarly, Li, Chen, and Wang utilized convolutional neural
networks (CNNs) on surveillance footage to classify cow
behaviors, demonstrating high accuracy but with increased
computational demands [15].

While our current system is designed to detect fundamental cow
activities such as standing, eating, sitting, and ruminating, the
collected behavioral data can serve as a foundation for future
enhancements in estrus and calving detection. By integrating
advanced analytics and machine learning techniques, the
system could potentially evolve to provide early estrus alerts or
calving predictions based on deviations from normal activity
patterns. Such developments would further strengthen
automated livestock monitoring, enabling better farm
management, reducing labor costs, and ultimately improving
dairy productivity.
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Il. METHODOLOGY

A. Hardware selection

TABLEIl. HARDWARE COMPONENTS AND THEIR FUNCTION
Component Function
ATmega328P Microcontroller
MPU6050 Accelerometer
NRF24L01 Wireless data transmission
DS3231 Real Time Clock
IRFZ44N MOSFET
18650 Li-ion Battery | Power Source
MLX90614 Tempreature Sensor

The system consists of carefully selected components to ensure
efficient operation:

e ATmega328P (Microcontroller): Manages data acquisition,
processing, and communication.

e MPUG6050 (Accelerometer & Gyroscope): Measures maotion
and orientation for monitoring.

e NRF24L01 (Wireless Module): Enables low-power, long-
range data transmission.

¢ DS3231 (Real-Time Clock): Provides precise timekeeping for
event logging.

¢ IRFZ44N (MOSFET): Used for efficient power switching and
control.

e MLX90614 (Infrared Temperature Sensor): Measures non-
contact temperature.

¢ 18650 Li-ion Battery (Power Source): Supplies power,
ensuring portability and long battery life.

B. Power management: Atmega328p

To ensure efficient power consumption, the ATmega328P
microcontroller supports multiple sleep modes. Each mode
disables certain system components while allowing wake-up
through specific sources. Fig. 1, illustrates the various sleep
modes of the ATmega328P microcontroller, along with their
associated active clock domains and possible wake-up sources.
For this project, the Power-down mode was selected due to its
ability to minimize power consumption by disabling the CPU,
Flash memory, and peripheral clocks. The system is configured
to wake only upon an external interrupt (INTO/INT1) or when
the Watchdog Timer (WDT) triggers an event, as described in
the ATmega328P datasheet [18].
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Fig. 1. AVR Microcontroller Sleep Modes with Corresponding Active Clock
Domains, Oscillators, and Wake-up Sources.

To further reduce power consumption:

e ADC (Analog-to-Digital Converter) is disabled, as it is not
required during sleep mode.

e Brown-Out Detection (BOD) is disabled, preventing
unnecessary power draw when the voltage is stable.

C. Power management: MPU6050

The MPU-6050 is a sensor that combines a 3-axis
accelerometer and a 3-axis gyroscope in a single chip, making
it ideal for motion tracking and orientation detection. It was
preferred over other sensors like GY-61 ADLX335 due to the
following reasons.

12C interface

Built in Digital Motion Processor
Configurable Sensitivity

Higher 16-bit resolution

For a cattle monitoring system, gyroscope values might not be
strictly necessary. Accelerometer values are typically sufficient
for most cattle monitoring needs, such as tracking movement,
detecting if an animal is lying down or standing up, and
monitoring general activity levels. It measures acceleration
along the X, Y, and Z axes, which can provide valuable data on
the cattle's position and movement. By only using the
acceleration value in x, y and z direction, the classifier achieved
an accuracy up to 90% [19].

As MPUG6050 also allows temperature and gyroscopic
measurements which definitely plays a certain part in power
consumption, disabling those features will significantly reduce
energy consumption.

D. Powering Down Sensors Using MOSFET

To optimize the power efficiency of the system, a low-side
MOSFET switching mechanism was employed to physically
disconnect the power supply to the MPU6050 (accelerometer
and gyroscope) and MLX90614 (infrared temperature sensor)
when they are not actively engaged in data acquisition. This
method effectively minimizes standby power consumption,
which is crucial for energy-sensitive applications.

The microcontroller provides a gate-source voltage (\Vgs) of
approximately 4V to turn on the power MOSFET (IRFZ44N).
While the MOSFET typically requires a higher gate voltage
(around 10V) to achieve minimal Rds(on) (8 mQ) and enter full
saturation, a Vgs of 4V is sufficient to overcome the gate
threshold voltage, allowing the MOSFET to turn on and
establish a low-resistance path between the drain and source
[20].
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Given that the current drawn by the sensors is very low
(typically in the microampere to milliampere range), the power
loss due to the MOSFET's Rds(on) is negligible. As a result,
there is no need for additional components such as a
bootstrapping circuit or gate driver to drive the MOSFET,
making this approach both cost-effective and energy-efficient
for managing sensor power consumption.

Fig. 2. Power Control Circuit for MPU6050 and MLX90614 Using an N-
Channel MOSFET (IRFZ44N).

E. NRF24L01 low power mode

The data acquired from the MPU6050 and ML X90614 sensors
were transmitted wirelessly using the nRF24L01 RF module.
The nRF24L01 module, known for its low-power
characteristics and reliable data transmission, facilitated the
communication between the sensor node and the receiving
station.

To further optimize power consumption, the nRF24L01
transmitter was configured to operate in a low-power mode.
The transmitter enters sleep mode when not actively
transmitting data, thereby reducing the overall energy
consumption of the system.

The transmitted data, including the sensor readings and
associated timestamps read from the DS3231 RTC, was
received by a corresponding receiver module. Once received,
the data was saved to a storage medium for subsequent analysis.

F. Firmware Architecture and Workflow

The data-logger consists of a 3-axis accelerometer for recording
acceleration and an NRF module for wireless data transmission.
Both modules are integrated into a custom-designed PCB
board, which includes all necessary circuitry, such as a low-
power switching MOSFET for efficient energy management.
The device is powered by a rechargeable 18650 battery cell,
ensuring long operational life. A cow-mounted unit and a
receiver unit, both equipped with NRF modules, facilitate
wireless communication. The cow-mounted device records one
data point per minute and transmits the collected data to the
receiver every hour. During the intervals between
transmissions, the device enters a low-power sleep mode to
conserve energy. On the receiver side, an microcontroller
paired with an SD card module stores the transmitted data for
further analysis. The system operates at a frequency of 100 Hz
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during active recording, ensuring high-resolution data
collection while maintaining energy efficiency. This setup
enables continuous, low-power monitoring of cow activity,
making it suitable for long-term use in precision livestock
farming.

Fig. 3, illustrates the working logic of a sensor node for cattle
monitoring. The system begins operation upon receiving an
interrupt from the DS3231 RTC. It powers the MPU6050
(accelerometer) and MLX90614 (temperature sensor) via a
MOSFET, collects sensor data along with a timestamp, and then
powers the sensors down. If a receiver station is available, the
data is transmitted wirelessly; otherwise, it is stored in
EEPROM. When a connection becomes available, stored data
is sent until the EEPROM is emptied. Finally, the system enters
a low-power state by putting the nRF24L01 module into sleep
mode and the ATmega328P into power-down mode.

DS3231 inferrupt?

Power the
MPUB050 and
MLX90614 using a
MOSFET

i

Read
accelerometer data,
Read temperature
data,
Acquire Timestamp

l

Power Off Sensors
via MOSFET

Receiver station
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Send EEFROM

?
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data to EEPROM
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ATmega328P
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Fig. 3. Flowchart of the Data Acquisition and Transmission Process

G. Data Collection

Data collection presented significant challenges due to
geographical and technological constraints in Nepal. The
process began with the installation of the data collection device
on the cow, ensuring that the device was well-protected against
moisture and potential physical damage caused by the animal’s
movements (Fig. 4). Special care was taken to securely attach
the device in a manner that did not cause discomfort or interfere
with the cow’s natural behavior. The enclosure for the data
logger was 3D-printed using polylactic acid (PLA) material,

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (I1JERT)

Published by :
http://lwww.ijert.org

chosen for its durability and flexibility. To protect the internal
circuitry from mechanical shocks, the enclosure was equipped
with shock-absorbing materials. The device was powered by
replaceable cell batteries, accessible by opening the enclosure,
ensuring ease of maintenance and long-term functionality. A
video monitoring system was integrated into the data collection
process using CCTV cameras that streamed live footage to
Twitch. This video data provided an additional layer of
validation by enabling manual annotation and verification of
the behavioral data recorded by the device. On the receiver side,
an SD card-integrated data logger stored the transmitted data,
which was manually retrieved at regular intervals. The dataset
comprised three-dimensional acceleration values (X, Y, and Z
axes), with notable variations in specific axes corresponding to
changes in the cow’s posture. This combination of sensor data
and video annotation ensured robust and reliable behavioral
analysis despite environmental challenges.

Fig. 4. Wearable Device Attached To The Cow's Neck

H. Data Preprocessing

The raw dataset collected from the sensor devices contained
noise, missing values, and irrelevant data points that could
potentially impact the analysis. To ensure data quality,
preprocessing involved multiple stages:

e Noise Removal: Unwanted fluctuations and erroneous
readings were filtered out.

¢ Handling Missing Values: Incomplete data points were either
interpolated or removed.

e Data Consolidation: Multiple datasets collected at different
intervals were merged to maintain consistency and
completeness. The final preprocessed dataset was stored in
CSV format and contained the following key attributes:

o Acceleration values (X, Y , Z axes) Timestamps (to capture
temporal information)

oCow ID (to associate data with individual animals)

I. Temporal Data Segmentation

To capture temporal patterns in cow behavior, a sliding window
approach was employed. This method segments continuous
time-series data into overlapping or non-overlapping windows
of fixed duration. Each window encapsulates a sequence of
sensor readings, allowing for the identification of behavioral
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trends over time rather than relying on isolated data points. The
sliding window technique is particularly effective in analyzing
the dynamic nature of cow activities, such as transitions
between standing, sitting, eating, and ruminating. By leveraging
this approach, the dataset retains valuable temporal
dependencies, enhancing the accuracy of behavioral analysis
and pattern recognition.

I1l.  RESULTS

A. Classification

The methodology for analyzing cow behavior involved a
systematic pipeline comprising data preprocessing, feature
extraction, and classification. The classification process was
structured as follows:

1) Model Selection and Justification

A supervised machine learning approach was used to classify
cow behaviors into four categories: standing, sitting, walking,
and eating. Several classification models were evaluated,
including Random Forest, Support Vector Machine (SVM), and
XGBoost. XGBoost was chosen due to the following
advantages:

e Handles Imbalanced Data Well: Cow behavior data is often

skewed, with certain activities (e.g., standing) occurring
more frequently than others (e.g., ruminating). XGBoost uses
weighted loss functions to mitigate class imbalance.

Feature  Selection: XGBoost automatically
determines the most relevant features, improving
classification accuracy.

e Fast Training Time: Compared to Random Forest and SVM,

XGBoost efficiently processes while
preventing overfitting.

2) Hyperparameter Tuning

To optimize the XGBoost model, a Grid Search with 5-fold

Cross-Validation was conducted, testing the following

hyperparameters:

e Learning Rate: {0.01, 0.1, 0.2}

large datasets

e  Maximum Depth of Trees: {3, 5, 7}

e  Number of Estimators: {100, 300, 500}

e Gamma (min loss reduction required for a split): {0, 0.1,
0.2} The best configuration was found to be:

e Learning Rate: 0.1

e Max Depth: 5

e Number of Estimators: 100

e Gamma: 0.1

B. Sensor Data Analysis and Behavior Visualizations

Fig. 4, depicts the standing behavior of the cow, as captured by
the accelerometer data. During standing, the Z-axis acceleration
values consistently exceed -1, reflecting the cow’s upright
posture. The X and Y axes exhibit significant fluctuations due
to the cow’s natural movements, such as neck rotation (left and
right) and minor postural adjustments. These dynamic
movements result in variability across all three axes,
highlighting the non-static nature of standing behavior. The
observed fluctuations underscore the importance of analyzing
multi-axis data and temporal patterns to accurately characterize
standing and distinguish it from other activities.

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)
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Fig. 5. Standing Behaviour of The Cow

Fig. 5, illustrates the eating behavior of cows, as captured by
the accelerometer data. During eating, the X and Y axes exhibit
significant movement, with the Y-axis showing comparatively
higher variability. This increased activity in the Y-axis is
attributed to the repetitive head and neck movements associated
with feeding. In contrast, the Z-axis acceleration values remain
relatively stable and resemble those observed during standing
behavior, reflecting the cow’s upright posture while eating. The
distinct patterns in the X and Y axes, combined with the stable
Z-axis, provide clear discriminative features for differentiating
eating behavior from other activities such as standing.
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Fig. 6. Eating Behaviour of The Cow

Fig. 6, illustrates the sitting behavior of cows, as captured by
the accelerometer data. During sitting, the acceleration values
for all three axes (X, Y, and Z) consistently fall below the 0
threshold, reflecting the cow’s lowered posture. Notably, the Y
and Z axes exhibit significant changes compared to other
activities, with pronounced variability in their acceleration
patterns. These changes are attributed to the cow’s body
position and movements while transitioning to or maintaining a
seated posture. The distinct patterns in the Y and Z axes,
combined with the consistent sub-zero values across all axes,
provide clear discriminative features for identifying sitting
behavior and distinguishing it from other activities such as
standing or eating.
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Fig. 7. Sitting Behaviour of The Cow

Fig. 7, depicts the ruminating behavior of the cow, as captured
by the accelerometer data. During ruminating, the Z-axis
acceleration values fluctuate between negative values
reflecting the rhythmic vertical jaw and neck movements
associated with chewing cud. The X-axis remains relatively
stable near 0, indicating minimal lateral head movement. In
contrast, the Y-axis shows moderate fluctuations, capturing
slight forward and backward neck motions. These distinct axis
patterns highlight the relatively stationary but active nature of
ruminating. The consistent, periodic movements across the Y
and Z axes emphasize the value of multi-axis temporal analysis
for accurately identifying and differentiating ruminating
behavior from othe rcow activities.
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Fig. 8. Ruminating Behaviour of The Cow

Fig. 8, shows the daily activity distribution of the cow over a 3
Energy-Efficient and Affordable Wearable Solution for Cow
Behavior Detection Using Machine Learning Day. The cow
spent the most time eating (28.9%), followed by standing
(29.7%), sitting (23.1%), and ruminating (18.3%).
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]

Standing Sitting Eating Ruminating

Fig. 9. Daily Activity Distribution
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C. Classification Performance

The performance of XGBoost and Random Forest classifiers
was evaluated using precision, recall, and F1-score across four
behavioral classes.

For XGBoost, the classifier achieved excellent precision scores
of 1.00 for sitting and eating, and 0.95 for ruminating, while
precision for standing was slightly lower at 0.76. Recall values
were highest for standing (1.00) and ruminating (0.95),
followed by sitting (0.83) and eating (0.88). Corresponding F1-
scores were 0.90 (sitting), 0.86 (standing), 0.94 (eating), and
0.95 (ruminating).

In comparison, Random Forest yielded similar precision for
sitting (1.00) but lower values for standing (0.74), eating (0.88),
and ruminating (0.83). Its recall scores were 0.70 (sitting), 0.89
(standing), 0.88 (eating), and 0.95 (ruminating), with respective
F1-scores of 0.82, 0.81, 0.88, and 0.88.

Fig. 9, and Fig. 10, illustrate that the confusion matrix for
XGBoost and Random Forest respectively which exhibits
fewer misclassifications across all behavior classes, particularly
for "sitting" and "standing," for XGBoost when compared to
Random Forest. This observation is consistent with the higher
F1-scores achieved by XGBoost for these behaviors.

Actual Labels
RUMINATING EATING STANDING SITTING

i |
STANDING EATING
Predicted Labels

'
SITTING

RUMINATING

Fig. 10. Confusion Matrix of Random Forest
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SITTING
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Fig. 11. Confusion Matrix of XGBoost
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D. Fabricated Circuit
The circuit used in this project as shown in Fig. 11, was self-
fabricated using a double-sided PCB, which was designed using

KiCad. This approach allowed for compact routing and better
layout control. The board was manually etched using Ferric
Chloride, with top and bottom layers aligned using printed
transparencies. Vias were made by drilling holes and
connecting layers with soldered jumpers. Key components
include the NRF24L01 wireless module, an IRF3205
MOSFET, MPUG6050 and a push-button input. Manual
soldering was done carefully to ensure reliable connections.
This method offered flexibility in design and reduced the cost
and time typically needed for prototyping.

Fig. 12. Top and Bottom View of The Circuit

E. Power Consumption

Figure X shows the device’s current consumption over time,
showcasing powered-on, setup, data collection, sleep, and
wake-up phases. During activity (approx. 4 seconds), the device
consumes around 11.54 mA (fig. 12), followed by a low-power
sleep state (approx. 60 seconds) at ~0.25 mA(fig. 13). This
duty-cycled behavior significantly reduces average energy use.
The average current per 64-second cycle is((4sx11.54mA)
+(60sx0.3mA))/64s ~1.00mA. Using two 3200 mAh batteries
(totaling 6400 mAh), the estimated Battery Life is 6400mAh /
1.00mA =6400hours ~266 days.

This result confirms that the system can function for nearly 9
months without recharging or battery replacement, ensuring
practical, long-term deployment for livestock monitoring in
field conditions.

L

Fig. 13. Current Consumption of The Device When Powered-ON

V > »41

Fig. 14. Current Consumption of The Device During Sleep Mode
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Fig. 15. Current Consumption of The Device in Milliampere vs Time in
Seconds

F. 3D Printed Case

The image shows a 3D-printed enclosure designed to house the
PCB. The enclosure was designed using Autodesk Fusion 360
and printed using PLA (Polylactic Acid), a biodegradable and
durable thermoplastic well-suited for outdoor and agricultural
use. The design contains side openings to attach to a collar,
allowing the device to be comfortably worn around a cow’s
neck. Internally, the enclosure includes space to accommodate
two 18650 Li-ion batteries, ensuring extended operational time
in the field whereas at the bottom it has a cutout for temperature
sensor.

Fig. 16. Top and Bottom View of The Design

G. Cost Breakdown

The table summarizes the cost breakdown of the components
used in the proposed wearable cow monitoring device. The total
hardware cost amounts to approximately NRs. 3750 (~28
USD), making the system an affordable and cost-effective
solution for large-scale deployment in dairy farms. Major
components include the ATmega328P microcontroller,
MPUG050 accelerometer and gyroscope, MLX90614 infrared
temperature sensor, nNRF24L01 wireless transceiver, DS3231
real-time clock, IRFZ44N MOSFET for power management,
and two 18650 Li-ion batteries. The pricing reflects the
feasibility of developing a reliable, energy-efficient, and
scalable system without incurring high expenses, making it
suitable for both small and large dairy operations.
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TABLE Il. COMPONENTS AND THEIR PRICES IN NRS

Component Price (Rs)
ATmega328P 400
MPU6050 250
nRF24L01 350
DS3231 350
IRFZ44N 45
18650 Li-ion Battery 400
PCB and others 800
MLX90614 750
Total 3345
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