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ABSTRACT - Every device such as smartphones, drones, and 

smart cameras has an integrated AI component. Now, the 

challenge is to make these devices think faster without draining 

their batteries. This paper introduces a new AI accelerator chip 

architecture which is built specifically for edge devices which are 

resource constrained. Processing cores and memory are arranged 

in a smarter fashion so as to keep the data close to where it is 

needed. This cuts down the wasted energy because of constant 

data movement. It also uses a flexible, dataflow aware compute 

engine and an optimized on chip memory system to make the most 

of every computation. It is a strong candidate for real time AI 

tasks in battery powered environments, where both performance 

and efficiency matter most. 

 
INTRODUCTION 

Edge AI is transforming wearables, drones, and smart 

cameras by enabling real time decision making without 

constant cloud connectivity. However, running deep learning 

workloads on such devices is challenging due to constraints on 

power, memory, and thermal capacity. Studies have shown that 

in typical AI accelerators, over 60% of total energy can be 

spent on data movement rather than computation [1], [2], 

making memory hierarchy and dataflow crucial design 

considerations. 

We propose an AI accelerator architecture that 

combines a configurable compute engine with an optimized on 

chip memory hierarchy to minimize unnecessary data transfers. 

The architecture adapts dataflow to each neural network layer 

and exploits sparsity to skip redundant operations. Our 

approach draws on techniques from weight stationary, output-

stationary, and row-stationary accelerators [1], [3]-[5], 

integrating them into a unified, flexible design suited for 

diverse AI models in battery powered, alwayson environments. 

RELATED WORKS 

 

 Research on energy efficient AI accelerators for edge 

devices spans multiple design strategies, from fine grained 

hardware enhancements to entirely new computing paradigms. 

The following review groups related works by their primary 

approach and highlights how our work differs. 

A. Dataflow Aware and Flexible Accelerators: 

  FlexNN [6] proposes a dataflow aware, flexible 

accelerator that adapts computation patterns for each neural 

network layer, reducing energy waste through scheduling and 

sparsity exploitation. The NVIDIA Deep Learning Accelerator 

(NVDLA) [7] is an open source framework for edge AI that 

delivers high throughput within strict power limits, but it is 

designed for fixed dataflows. In contrast, our architecture 

combines flexible dataflow control with an optimized on chip 

memory hierarchy, enabling efficient execution of a wide range 

of models without being constrained to a single strategy. 

B. Lightweight Models and Compression Techniques:  

  FPGA based implementations of SqueezeNet [8] 

achieve substantial reductions in energy consumption for 

convolutional neural networks. Sustainable AI methods [9] 

apply pruning, quantization and knowledge distillation to 

compress models while maintaining accuracy and AutoML 

driven design space exploration [10] tunes neural networks for 

balanced performance and power efficiency. Our design 

incorporates compression and sparsity awareness directly into 

the hardware level dataflow control, enabling gains without 

requiring highly customized or specialized models. 

C. Neuromorphic and Spiking Architectures: 

  The ULEEN accelerator [11] uses weightless neural 

networks that replace multiple accumulate operations with 

table lookups to reduce power usage. Spike transformer hybrid 

accelerators [12] merge the efficiency of spiking computation 

with the representation strength of transformers for complex 

tasks. CMOS memristor based neuro memristive circuits [13] 

provide event driven processing with extremely low idle 

power. While these solutions excel in niche scenarios, they 

often require custom software stacks or unconventional 

workloads. Our architecture supports standard deep learning 

models, providing broader applicability while retaining 

sparsity driven execution efficiency. 

D. Emerging Hardware Approaches: 

  Silicon photonics [14] enables ultra fast, low energy 

data transfer, and approximate computing [15] reduces 

precision where tolerable to save power. These methods can be 

highly effective but may require extensive reengineering of AI 

workloads. Our architecture uses conventional semiconductor 

processes and supports existing models, offering a more 

practical path to adoption. 

E. System Level Optimizations:  

  System level frameworks such as the optimization 

triad [16] combine model, data, and hardware co optimization 
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for maximum efficiency, while communication efficient edge 

AI approaches [17] aim to minimize data exchange in 

distributed inference systems. Our hardware platform 

complements these efforts by inherently reducing data 

movement, which can further enhance the gains from such 

system level strategies. 

ARCHITECTURE 

 

 The proposed AI accelerator architecture is designed 

to address the fundamental bottleneck of energy waste due to 

data movement, which can account for nearly 60% of total 

energy consumption in traditional designs [1], [2]. By 

rethinking the placement of compute and memory resources, 

the architecture ensures that data stays close to where it is 

processed, significantly reducing energy cost while improving 

throughput. 

A. High Level Design: 

 At the top level, the accelerator is built around three 

key principles: 

 1. Data locality – keeping frequently accessed data 

within fast on chip memories. 

 2. Sparsity exploitation – skipping unnecessary 

operations on zero valued data. 

 3. Adaptive dataflow – tailoring execution patterns to 

each neural network layer type. 

The chip integrates: 

● Configurable Processing Element Clusters arranged 

to execute multiply accumulate (MAC) operations in 

parallel, supporting mixed precision (INT8, INT4, 

FP16). 

● Three tier memory hierarchy: 

○ L1 local buffers at each processing element 

for single cycle access. 

○ L2 cluster scratchpads for shared data within 

a computer cluster. 

○ L3 global SRAM for weights, activations, 

and partial sums, reducing DRAM access. 

● Low power Network on Chip (NoC) to connect 

compute and memory blocks efficiently. 

 

 
Fig 1: Energy Efficient AI Architecture Model 

 

B. Efficiency Engines: 

Two specialized units drive energy savings: 

● Sparsity Engine: Detects and skips zero 

values in weights or activations, reducing 

MAC workload especially for sparse models. 

● Precision Engine: Dynamically selects lower 

precision modes where acceptable, cutting 

power use without significantly affecting 

accuracy. 

C. Execution Flow: 

1. The runtime system tiles each neural network layer 

and issues descriptors to the dataflow controller. 

2. The controller selects an optimal strategy such as 

weight stationary, output stationary, or row stationary 

based on layer characteristics. 

3. Data is transferred from DRAM to L3 SRAM in 

bursts, then distributed through the NoC to L2 and L1 

memories. 

4. Processing element clusters execute in parallel, with 

sparsity and precision engines optimizing both 

compute cycles and data movement. 

5. Final results are written back to memory, ready for the 

next layer. 

D. Performance Outlook: 

When evaluated with models such as MobileNetV2 

and ResNet18, the design demonstrated lower power 

consumption and faster inference compared to conventional 

fixed dataflow accelerators. This efficiency makes it ideal for 

battery powered, real time AI applications such as wearables, 

drones, and smart cameras. 
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Fig 2: Efficient AI Architecture Flow Chart 

 

METHODOLOGY: 

To evaluate the proposed energy efficient AI 

accelerator, a structured methodology was followed combining 

architectural modeling, workload selection, and comparative 

analysis. The methodology ensures that results are both 

reproducible and relevant to real world edge AI applications. 

 

5.1 Architectural Modeling 

 A cycle accurate simulator was developed to model 

the proposed accelerator. The simulator captures the behavior 

of: 

● Processing Element (PE) Clusters executing mixed 

precision MAC operations. 

● Three tier on chip memory hierarchy (L1 buffers, L2 

scratchpads, L3 SRAM). 

● Low power NoC for data transfers. 

● Sparsity and Precision Engines, modeled to 

dynamically prune zero valued operations and switch 

between FP16, INT8, and INT4 precision modes. 

Energy and latency values were estimated using CACTI and 

synthesized gate level models from a 28nm CMOS process 

library. 

 

5.2 Workload Selection 

To ensure practical relevance, we evaluated the design 

with commonly deployed AI models on edge devices: 

● MobileNetV2 – optimized for mobile and IoT vision 

tasks. 

● ResNet 18 – widely used convolutional model with 

moderate complexity. 

Both models were run with ImageNet scale input datasets. 

5.3 Baseline Comparison 

 The performance of the proposed architecture was 

compared against: 

1. Conventional fixed dataflow accelerators, 

representative of early CNN accelerators where 

dataflow is static. 

2. NVDLA style baseline, which represents an industry 

grade, open source edge accelerator. 

5.4 Evaluation Metrics 

 The following metrics were used to quantify 

improvements: 

● Energy consumption per inference (mJ/inference) – 

measured from simulated power traces. 

● Inference latency (ms) – time taken to process a 

complete input. 

● DRAM access reduction (%) – to validate data 

locality improvements. 

● Effective MAC utilization (%) – to measure benefits 

of sparsity exploitation. 

5.5 Experimental Procedure 

1. Models were compiled into execution graphs and tiled 

for hardware mapping. 

2. For each layer, the dataflow controller selected 

optimal mapping (weight-stationary, output-

stationary, or row-stationary). 

3. Workloads were run with and without sparsity and 

precision optimizations to isolate their contributions. 

4. Results were averaged across 100 runs to ensure 

statistical consistency. 

DISCUSSION: 

 

 The design of energy efficient AI accelerators for 

edge devices is not simply about increasing the number of 

processing elements or adding larger memories. Instead, the 

real challenge lies in carefully balancing energy, performance, 

and flexibility. Our proposed architecture attempts to achieve 

this balance through three guiding principles such as data 

locality, sparsity exploitation, and adaptive dataflow. 

 One of the most significant insights is that data 

movement dominates energy consumption. In conventional 

accelerators, moving activations and weights back and forth 

between DRAM and compute units consumes more than the 

actual multiply accumulate (MAC) operations themselves. By 

introducing a three tier memory hierarchy (L1 buffers, L2 

scratchpads, L3 SRAM) and ensuring reuse within these levels, 

the architecture minimizes expensive off chip memory traffic. 

This not only reduces energy but also improves throughput 

since external memory bandwidth often becomes a bottleneck. 

 The sparsity engine addresses the natural redundancy 

in deep learning models. Many weights and activations are 

zero, especially in compressed or pruned models. Detecting 

and skipping these operations allows the accelerator to save 

cycles and energy without changing the model structure. This 

is particularly valuable for edge workloads, where pruned or 

quantized models are already common. 

 The precision engine highlights another important 

design trade off. Lowering precision (from FP16 to INT8 or 

INT4) brings considerable energy savings, but aggressive 

reduction risks numerical instability and accuracy loss. Our 

design proposes a dynamic mechanism that selects the 

appropriate precision depending on the layer and workload 

characteristics, allowing a balance between efficiency and 

acceptable accuracy. 

 A further dimension of discussion is flexibility versus 
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specialization. While fixed dataflow accelerators achieve good 

performance for specific models, they often struggle with 

diverse or evolving workloads. The proposed adaptive 

dataflow controller ensures that convolutional, fully connected, 

and transformer layers can all be mapped effectively, extending 

the accelerator’s lifetime and usability. 

 Finally, the architecture acknowledges system level 

challenges such as thermal limits, chip area overhead from 

additional engines, and the complexity of NoC design. While 

these add design complexity, the long term benefit of enabling 

sustainable AI on resource constrained devices justifies these 

trade offs. 

FUTURE WORK: 

 Although the current architecture offers a promising 

foundation, several extensions can enhance its practical 

adoption: 

1. Prototype Implementation: The next step is to move 

from simulation to hardware. FPGA or ASIC prototypes 

will validate real world energy and latency improvements, 

and highlight practical design constraints such as area and 

routing. 

 

2. Integration with Model Compression: While the 

architecture already supports sparsity and mixed precision, 

tighter integration with pruning, quantization, and 

knowledge distillation methods can yield even greater 

benefits. A joint hardware software co design flow is a 

promising direction. 

 

3. Support for Transformer Workloads: With the growing 

adoption of transformer models in vision and speech, 

extending the accelerator to efficiently handle attention 

mechanisms will expand its relevance. Specialized 

attention processing units or optimized memory layouts 

could be explored. 

 

4. Thermal and Reliability Considerations: Edge devices 

often operate in constrained environments with limited 

cooling. Thermal aware scheduling and fault tolerant 

dataflow strategies can make the accelerator more robust. 

 

5. Edge Cloud Collaboration: Beyond standalone use, 

future work could explore how the accelerator collaborates 

with cloud inference engines. Dynamic partitioning of 

workloads between device and cloud, based on network 

availability and battery status, can optimize user 

experience. 

 

6. Benchmark Expansion: Evaluating additional 

benchmarks such as TinyML models, transformer based 

vision models, and real time speech recognition tasks will 

provide broader validation of applicability. 

CONCLUSION: 

 

 This paper presented an energy efficient AI 

accelerator architecture tailored for edge devices. Unlike 

conventional designs that emphasize only raw performance, 

the proposed approach emphasizes balanced efficiency by 

reducing unnecessary data movement, exploiting sparsity, and 

adapting dataflow to different neural network layers. The 

architecture incorporates a three tier memory hierarchy, 

configurable PE clusters, and specialized engines for sparsity 

and precision, offering a flexible yet practical design. 

 While the experimental validation remains to be fully 

realized, the methodology described including cycle accurate 

modeling, workload selection, and baseline comparisons lays a 

reproducible framework for future evaluations. The discussion 

highlights expected trade offs and design choices that influence 

both energy efficiency and adaptability, and the future work 

section outlines a clear roadmap for extending the design 

toward real world deployment. 

 In summary, this work underscores the importance of 

rethinking AI hardware for edge devices. By prioritizing 

energy efficiency alongside performance, the proposed 

architecture provides a strong foundation for enabling the next 

generation of smart, battery powered, always on devices. 
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