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ABSTRACT - Every device such as smartphones, drones, and
smart cameras has an integrated Al component. Now, the
challenge is to make these devices think faster without draining
their batteries. This paper introduces a new Al accelerator chip
architecture which is built specifically for edge devices which are
resource constrained. Processing cores and memory are arranged
in a smarter fashion so as to keep the data close to where it is
needed. This cuts down the wasted energy because of constant
data movement. It also uses a flexible, dataflow aware compute
engine and an optimized on chip memory system to make the most
of every computation. It is a strong candidate for real time Al
tasks in battery powered environments, where both performance
and efficiency matter most.

INTRODUCTION

Edge Al is transforming wearables, drones, and smart
cameras by enabling real time decision making without
constant cloud connectivity. However, running deep learning
workloads on such devices is challenging due to constraints on
power, memory, and thermal capacity. Studies have shown that
in typical Al accelerators, over 60% of total energy can be
spent on data movement rather than computation [1], [2],
making memory hierarchy and dataflow crucial design
considerations.

We propose an Al accelerator architecture that
combines a configurable compute engine with an optimized on
chip memory hierarchy to minimize unnecessary data transfers.
The architecture adapts dataflow to each neural network layer
and exploits sparsity to skip redundant operations. Our
approach draws on techniques from weight stationary, output-
stationary, and row-stationary accelerators [1], [3]-[5],
integrating them into a unified, flexible design suited for
diverse Al models in battery powered, alwayson environments.

RELATED WORKS

Research on energy efficient Al accelerators for edge
devices spans multiple design strategies, from fine grained
hardware enhancements to entirely new computing paradigms.
The following review groups related works by their primary
approach and highlights how our work differs.

A.  Dataflow  Aware and  Flexible  Accelerators:

FlexNN [6] proposes a dataflow aware, flexible
accelerator that adapts computation patterns for each neural
network layer, reducing energy waste through scheduling and
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sparsity exploitation. The NVIDIA Deep Learning Accelerator
(NVDLA) [7] is an open source framework for edge Al that
delivers high throughput within strict power limits, but it is
designed for fixed dataflows. In contrast, our architecture
combines flexible dataflow control with an optimized on chip
memory hierarchy, enabling efficient execution of a wide range
of models without being constrained to a single strategy.

B. Lightweight Models and Compression Techniques:

FPGA based implementations of SqueezeNet [§]
achieve substantial reductions in energy consumption for
convolutional neural networks. Sustainable AI methods [9]
apply pruning, quantization and knowledge distillation to
compress models while maintaining accuracy and AutoML
driven design space exploration [10] tunes neural networks for
balanced performance and power efficiency. Our design
incorporates compression and sparsity awareness directly into
the hardware level dataflow control, enabling gains without
requiring highly customized or specialized models.

C. Neuromorphic and Spiking Architectures:

The ULEEN accelerator [11] uses weightless neural
networks that replace multiple accumulate operations with
table lookups to reduce power usage. Spike transformer hybrid
accelerators [12] merge the efficiency of spiking computation
with the representation strength of transformers for complex
tasks. CMOS memristor based neuro memristive circuits [13]
provide event driven processing with extremely low idle
power. While these solutions excel in niche scenarios, they
often require custom software stacks or unconventional
workloads. Our architecture supports standard deep learning
models, providing broader applicability while retaining
sparsity driven execution efficiency.

D. Emerging Hardware Approaches:

Silicon photonics [14] enables ultra fast, low energy
data transfer, and approximate computing [15] reduces
precision where tolerable to save power. These methods can be
highly effective but may require extensive reengineering of Al
workloads. Our architecture uses conventional semiconductor
processes and supports existing models, offering a more
practical path to adoption.

E. System Level Optimizations.

System level frameworks such as the optimization
triad [16] combine model, data, and hardware co optimization
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for maximum efficiency, while communication efficient edge
Al approaches [17] aim to minimize data exchange in
distributed inference systems. Our hardware platform
complements these efforts by inherently reducing data
movement, which can further enhance the gains from such
system level strategies.

ARCHITECTURE

The proposed Al accelerator architecture is designed
to address the fundamental bottleneck of energy waste due to
data movement, which can account for nearly 60% of total
energy consumption in traditional designs [1], [2]. By
rethinking the placement of compute and memory resources,
the architecture ensures that data stays close to where it is
processed, significantly reducing energy cost while improving
throughput.

A. High Level Design:
At the top level, the accelerator is built around three
key principles:
1. Data locality — keeping frequently accessed data
within fast on chip memories.
2. Sparsity exploitation — skipping unnecessary
operations on Zero valued data.

3. Adaptive dataflow — tailoring execution patterns to
each neural network layer type.

The chip integrates:

e Configurable Processing Element Clusters arranged
to execute multiply accumulate (MAC) operations in
parallel, supporting mixed precision (INTS, INT4,
FP16).

e Three tier memory hierarchy:

o L1 local buffers at each processing element
for single cycle access.

o L2 cluster scratchpads for shared data within
a computer cluster.

o L3 global SRAM for weights, activations,
and partial sums, reducing DRAM access.

e Low power Network on Chip (NoC) to connect
compute and memory blocks efficiently.
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Fig 1: Energy Efficient AI Architecture Model

B. Efficiency Engines.

Two specialized units drive energy savings:

e Sparsity Engine: Detects and skips zero
values in weights or activations, reducing
MAC workload especially for sparse models.

e Precision Engine: Dynamically selects lower
precision modes where acceptable, cutting
power use without significantly affecting
accuracy.

C. Execution Flow:

1. The runtime system tiles each neural network layer
and issues descriptors to the dataflow controller.

2. The controller selects an optimal strategy such as
weight stationary, output stationary, or row stationary
based on layer characteristics.

3. Data is transferred from DRAM to L3 SRAM in
bursts, then distributed through the NoC to L2 and L1
memories.

4. Processing element clusters execute in parallel, with
sparsity and precision engines optimizing both
compute cycles and data movement.

5. Final results are written back to memory, ready for the
next layer.

D. Performance Outlook:

When evaluated with models such as MobileNetV2
and ResNetl8, the design demonstrated lower power
consumption and faster inference compared to conventional
fixed dataflow accelerators. This efficiency makes it ideal for
battery powered, real time Al applications such as wearables,
drones, and smart cameras.
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Fig 2: Efficient Al Architecture Flow Chart

METHODOLOGY:

To evaluate the proposed energy efficient Al
accelerator, a structured methodology was followed combining
architectural modeling, workload selection, and comparative
analysis. The methodology ensures that results are both
reproducible and relevant to real world edge Al applications.

5.1 Architectural Modeling

A cycle accurate simulator was developed to model
the proposed accelerator. The simulator captures the behavior
of:

e Processing Element (PE) Clusters executing mixed
precision MAC operations.

e Three tier on chip memory hierarchy (L1 buffers, L2
scratchpads, L3 SRAM).

e Low power NoC for data transfers.

e Sparsity and Precision Engines, modeled to
dynamically prune zero valued operations and switch
between FP16, INTS, and INT4 precision modes.

Energy and latency values were estimated using CACTI and
synthesized gate level models from a 28nm CMOS process
library.

5.2 Workload Selection
To ensure practical relevance, we evaluated the design
with commonly deployed Al models on edge devices:
e MobileNetV2 — optimized for mobile and IoT vision
tasks.
e ResNet 18 — widely used convolutional model with
moderate complexity.
Both models were run with ImageNet scale input datasets.

5.3 Baseline Comparison
The performance of the proposed architecture was
compared against:

1. Conventional fixed dataflow accelerators,
representative of early CNN accelerators where
dataflow is static.

2. NVDLA style baseline, which represents an industry
grade, open source edge accelerator.
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5.4 Evaluation Metrics
The following metrics were used to quantify
improvements:

e Energy consumption per inference (mlJ/inference) —
measured from simulated power traces.

e Inference latency (ms) — time taken to process a
complete input.

e DRAM access reduction (%) — to validate data
locality improvements.

e Effective MAC utilization (%) — to measure benefits
of sparsity exploitation.

5.5 Experimental Procedure

1.  Models were compiled into execution graphs and tiled
for hardware mapping.

2. For each layer, the dataflow controller selected
optimal mapping (weight-stationary, output-
stationary, or row-stationary).

3. Workloads were run with and without sparsity and
precision optimizations to isolate their contributions.

4. Results were averaged across 100 runs to ensure
statistical consistency.

DISCUSSION:

The design of energy efficient Al accelerators for
edge devices is not simply about increasing the number of
processing elements or adding larger memories. Instead, the
real challenge lies in carefully balancing energy, performance,
and flexibility. Our proposed architecture attempts to achieve
this balance through three guiding principles such as data
locality, sparsity exploitation, and adaptive dataflow.

One of the most significant insights is that data
movement dominates energy consumption. In conventional
accelerators, moving activations and weights back and forth
between DRAM and compute units consumes more than the
actual multiply accumulate (MAC) operations themselves. By
introducing a three tier memory hierarchy (L1 buffers, L2
scratchpads, L3 SRAM) and ensuring reuse within these levels,
the architecture minimizes expensive off chip memory traffic.
This not only reduces energy but also improves throughput
since external memory bandwidth often becomes a bottleneck.

The sparsity engine addresses the natural redundancy
in deep learning models. Many weights and activations are
zero, especially in compressed or pruned models. Detecting
and skipping these operations allows the accelerator to save
cycles and energy without changing the model structure. This
is particularly valuable for edge workloads, where pruned or
quantized models are already common.

The precision engine highlights another important
design trade off. Lowering precision (from FP16 to INTS or
INT4) brings considerable energy savings, but aggressive
reduction risks numerical instability and accuracy loss. Our
design proposes a dynamic mechanism that selects the
appropriate precision depending on the layer and workload
characteristics, allowing a balance between efficiency and
acceptable accuracy.

A further dimension of discussion is flexibility versus
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specialization. While fixed dataflow accelerators achieve good
performance for specific models, they often struggle with
diverse or evolving workloads. The proposed adaptive
dataflow controller ensures that convolutional, fully connected,
and transformer layers can all be mapped effectively, extending
the accelerator’s lifetime and usability.

Finally, the architecture acknowledges system level
challenges such as thermal limits, chip area overhead from
additional engines, and the complexity of NoC design. While
these add design complexity, the long term benefit of enabling
sustainable Al on resource constrained devices justifies these
trade offs.

FUTURE WORK:

Although the current architecture offers a promising
foundation, several extensions can enhance its practical
adoption:

1. Prototype Implementation: The next step is to move
from simulation to hardware. FPGA or ASIC prototypes
will validate real world energy and latency improvements,
and highlight practical design constraints such as area and
routing.

2. Integration with Model Compression: While the
architecture already supports sparsity and mixed precision,
tighter integration with pruning, quantization, and
knowledge distillation methods can yield even greater
benefits. A joint hardware software co design flow is a
promising direction.

3. Support for Transformer Workloads: With the growing
adoption of transformer models in vision and speech,
extending the accelerator to efficiently handle attention
mechanisms will expand its relevance. Specialized
attention processing units or optimized memory layouts
could be explored.

4. Thermal and Reliability Considerations: Edge devices
often operate in constrained environments with limited
cooling. Thermal aware scheduling and fault tolerant
dataflow strategies can make the accelerator more robust.

5. Edge Cloud Collaboration: Beyond standalone use,
future work could explore how the accelerator collaborates
with cloud inference engines. Dynamic partitioning of
workloads between device and cloud, based on network
availability and battery status, can optimize user
experience.

6. Benchmark  Expansion: Evaluating  additional
benchmarks such as TinyML models, transformer based
vision models, and real time speech recognition tasks will
provide broader validation of applicability.

CONCLUSION:

This paper presented an energy efficient Al
accelerator architecture tailored for edge devices. Unlike
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conventional designs that emphasize only raw performance,
the proposed approach emphasizes balanced efficiency by
reducing unnecessary data movement, exploiting sparsity, and
adapting dataflow to different neural network layers. The
architecture incorporates a three tier memory hierarchy,
configurable PE clusters, and specialized engines for sparsity
and precision, offering a flexible yet practical design.
While the experimental validation remains to be fully
realized, the methodology described including cycle accurate
modeling, workload selection, and baseline comparisons lays a
reproducible framework for future evaluations. The discussion
highlights expected trade offs and design choices that influence
both energy efficiency and adaptability, and the future work
section outlines a clear roadmap for extending the design
toward real world deployment.
In summary, this work underscores the importance of
rethinking Al hardware for edge devices. By prioritizing
energy efficiency alongside performance, the proposed
architecture provides a strong foundation for enabling the next
generation of smart, battery powered, always on devices.
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