
Energetic Reserve Distribution using near

Machine for Cloud Computing Environment

 Ganesh.S Elakkiya Selvi.S Prema.J
AP/CSE Computer Science and Engineering Computer Science and Engineering

SCET,SGI SCET,SGI SCET,SGI

Villupuram , Villupuram, Villupuram,

India India India

 ganeshsu2006@gmail.com elakki.san@gmail.com ekprema.18@gmail.com

Abstract— Energetic introduce the concept of

“skewness” to measure the unevenness in the multi-

dimensional reserve consumption of a server. By

minimizing skewness, we can combine different types of

workloads nicely and improve the overall utilization of

server resources. We develop a set of heuristics that

prevent overload in the system successfully while saving

energy used resource allocation using near equipment

that uses virtualization technology to allocate data

center resources dynamically based on application

demands and support green computing by optimizing

the number of servers in use. We. Trace driven

simulation and experiment results demonstrate that our

algorithm achieves good routine.

Index Terms—Cloud Computing, Resource

Management, Virtualization, Green Computing.

I. INTRODUCTION

 The cloud model is expected to Make such practice

unnecessary by offering automatic scale up and down

in response to load variation. Besides reducing the

hardware cost, it also saves on electricity which

contributes to a significant portion of the operational

expenses in large data centers. Virtual machine

monitors (VMMs) like Xen provide a mechanism for

mapping virtual machines (VMs) to physical

resources. The capacity of PMs can also be

heterogenous because multiple generations of

hardware co-exist in a data center. We aim to achieve

two goals in our algorithm. Overload avoidance,

green computing. We make the following

contributions. We develop a resource allocation

system that can avoid overload in the system

effectively while minimizing the number of servers

used. We introduce the concept of “skewness” to

measure the uneven utilization of a server. By

minimizing skewness, we can improve the overall

utilization of servers in the face of multi-dimensional

resource constraints. We design a load prediction

algorithm that can capture the future resource usages

of applications accurately Without looking inside the

VMs. The algorithm can capture the rising trend of

resource usage patterns and help reduce the

placement churn significantly.

II.SYSTEM OVERVIEW

The architecture of the system is presented in Figure

1.Each PM runs the Xen hypervisor (VMM) which

support a privileged domain 0 and one or more

domain. Each VM in domain U encapsulates one or

more applications such as Web server, remote

desktop, DNS, Mail, Map/Reduce, etc.We assume all

PMs share a backend storage.

 Fig.1. System Architecture.

75

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

The multiplexing of VMs to PMs is managed using

the Usher framework. The main logic of our system

is implemented as a set of plug-ins to Usher .The

scheduler has several components. The predictor

predicts the future resource demands of VMs and the

future load of PMs based on past statistics. We

compute the load

of a PM by aggregating the resource usage of its

VMs. The LNM at each node first attempts to satisfy

the new demands locally by adjusting the resource

allocation of VMs sharing the same VMM. Xen can

change the CPU allocation among the VMs by

adjusting their weights in its CPU scheduler. The

MM Allotter on domain 0 of each node is responsible

for adjusting the local memory allocation. The hot

spot solver in our VM Scheduler detects if the

resource utilization of any PM is above the hot

threshold (i.e. hot spot). If so, some VMs running on

them will be migrated away to reduce their load. The

cold spot solver checks if the Average utilization of

actively used PMs (APMs) is below the green

computing threshold. If so, some of those PMs could

potentially be turned off to save energy. It identifies

the set of PMs whose utilization is below the cold

threshold (i.e., cold spots) and then attempts to

migrate away all their VMs. It then compiles a

migration list of VMs and passes it to the

UsherCTRL for execution. The statistics collected at

each PM are forwarded to the Usher central

controller (Usher CTRL) where our VMscheduler

runs. The VM Scheduler is invoked periodically and

receives from the LNM the resource demand history

of VMs, the capacity and the load history of PMs.

III.THE SKEWNESS ALGORITHM

We introduce the concept of skewness to quantify the

unevenness in the utilization of multiple resources on

a Server. Let n be the number of resources we

consider and ri be the utilization of the i-th resource.

By minimizing the skewness, we can combine

different types of workloadsNicely and improve the

overall utilization of server resources. In the

following, we describe the details of our algorithm.

A. Hot and cold spots

We define a server as a hot spot if the

utilization of any of its resource is above a hot

threshold. This indicates that the server is overloaded

and hence some VMs running on it should be

migrated away. We define the temperature of a hot

spot p as the square sum of its resource utilization

beyond the hot threshold. We do so only when the

average resource utilization of all actively used

servers (i.e., APMs)in the system is below a green

computing threshold. A server is actively used if it

has at least one VM running. Otherwise, it is inactive.

Finally, we define the warm threshold to be a level of

resource utilization that is sufficiently high to justify

having the server running but not so high as to risk

becoming a hot spot in the face of temporary

fluctuation of application resource demands. Thus a

server is a hot spot if either its CPU usage is above

90% or its memory usage is above 80%.

B. Hot spot mitigation

Our goal is to eliminate all hot spots if

possible.Otherwise,keep their temperature as low as

possible. We or tits list of VMs based on the

resulting temperature of the server if that VM is

migrated away. We aim to migrate away the VM that

can reduce the server’s temperature the most. In case

of, we select the VM whose removal can reduce the

skewness of the server the most. For each VM in the

list, we see if we can find a destination server to

accommodate it. The server must not become a hot

spot after accepting this VM. Among all such servers,

we select one whose skewness can be reduced the

most by accepting this VM.

C. Green computing

When the resource utilization of active

servers is too low, some of them can be turned off to

save energy. This is handled in our green computing

algorithm. The challenge here is to reduce the

number of active servers during low load without

sacrificing performance either now or in the future.

We need to avoid oscillation in the system.Our green

computing algorithm is invoked when the average

utilizations of all resources on active servers are

below the green computing threshold. We sort the list

of cold spots in the system based on the ascending

order of their memory size.Since we need to migrate

away all its VMs before we can shutdown an under-

utilized server, we define the memory size of a cold

spot as the aggregate memory size of all VMs

running on it. Recall that our model assumes all VMs

connect to a shared

back-end storage.

IV.EXPERIMENTS AND RESULTS

The servers are connected over a Gigabit Ethernet to

a group of four NFS storage servers where our VM

Scheduler runs. We use the same default parameters

as in the simulation.

A. Algorithm effectiveness

We evaluate the effectiveness of our algorithm in

overload mitigation and green computing. We first increase

the CPU load of the three VMs on PM1to create an

76

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

overload. Our algorithm resolves the overload by migrating

VM3 to PM3. It reaches a stable state under high load

around 420 seconds. Around 890 seconds, we decrease the

CPU load of all VMs gradually. Because the FUSD

prediction algorithm is conservative when the load

decreases, it takes a while before green computing takes

effect. Around1700 seconds, VM3 is migrated from PM3 to

PM2 so that PM3can be put into the standby mode. Around

2200 seconds, the two VMs on PM1 are migrated to PM2

so that PM1 can be released as well. As the load goes up

and down, our algorithm. Will repeat the above process,

spread over or consolidate the VMs as needed.

Fig.2 Scalability of the algorithm with system size.

 Fig.3 Effect of load prediction

B. Impact of live migration

The use of VM live migration is its impact

on application performance. We focus on these

migrations because That is when the potential impact

on application performance is the most. Among the

139 migrations, we randomly pick 7 corresponding

TPC-W sessions undergoing live migration. All these

sessions run the “shopping mix” workload with 200

emulated browsers. As a target for comparison, we

re-run the session with the same parameters but

perform no migration and use the resulting

performance as the baseline.

Fig.4 Impact of live migration on TPC-W

performance.

The two curves show the moving average over a 30

second window as computed by TPC-W. We marked

in the figure when live migration starts and finishes.

The figure verifies that live migration causes no

noticeable performance degradation. The duration of

the migration is under 10 seconds. Recall that our

algorithm is invoked every 10 minutes.

C.Resource balance

The memory intensive applications are

created by allocating memory on demand. Again we

start with a small scale experiment consisting of two

PMs and four VMs so that we can present the results

for all servers in Figure 5.Initially,the two VMs on

PM1 are CPU intensive while the two VMs on PM2

are network intensive. We increase the load of their

bottleneck resources gradually. Around 500seconds,

VM4 is migrated from PM2 to PM1 due to the

network overload in PM2. Then around 600 seconds,

VM1 is migrated from PM1 to PM2 due to the CPU

overload in

PM1. Now the system reaches a stable state with a

balanced resource utilization for both PMs – each

with a CPU intensive VM and a network intensive

VM.

Fig.5 Resource balance for mixed workloads.

77

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

V. RELATED WORK

A. Resource allocation at the application level

All works above do not use virtual machines

and require the applications be structured in a multi-

tier architecture with load balancing provided

through an front-end dispatcher. In contrast, our work

targets Amazon EC2-style environment where it

places no restriction on what and how applications

are constructed inside the VMs. A VM is treated like

a black box. Resource management is done only at

the granularity of whole VMs.

B. Resource allocation by live VM migration

 VM live migration is a widely used

technique for dynamic resource allocation in a

virtualized environment. It uses VM and data

migration to mitigate hot spots not just on the servers,

but also on network devices and the storage nodes as

well. It introduces the Extended Vector Product

(EVP) as an indicator of imbalance in resource

utilization. They model it as a bin packing problem

and use the well-known first-fit approximation

algorithm to calculate the VM to PM layout

periodically. That algorithm, however, is designed

mostly for off-line use. It is likely to incur a large

number of migrations when applied in on-line

environment where the resource needs of VMs

change dynamically.

VI.CONCLUSION

We use the skewness metric to combine VMs with

different resource characteristics appropriately so that

the capacities of servers are well utilized. Our

algorithm achieves both overload avoidance and

green computing for systems with multi-resource

constraints.

REFERENCES
[1] M. Armbrust et al., “Above the clouds: A

berkeley view of cloud computing,” University of

California, Berkeley, Tech. Rep., Feb 2009.

[2] L. Siegele, “Let it rise: A special report on

corporate IT,” in The Economist, Oct. 2008.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield, “Xen and the art of virtualization,” in Proc.

of the ACM Symposium on Operating Systems

Principles (SOSP’03), Oct. 2003.

[4] “Amazon elastic compute cloud (Amazon EC2),

http://aws.amazon.com/ec2/.”

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield, “Live

migration of virtual machines,” in Proc. of the

Symposium on Networked Systems Design and

Implementation (NSDI’05), May 2005.

[6] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast

transparent migration for virtual machines,” in Proc.

of the USENIX Annual Technical Conference, 2005.

[7] M. McNett, D. Gupta, A. Vahdat, and G. M.

Voelker, “Usher: An extensible framework for

managing clusters of virtual machines,” in Proc. of

the Large Installation System Administration

Conference (LISA’07), Nov. 2007.

[8] T. Wood, P. Shenoy, A. Venkataramani, and M.

Yousif, “Black-box and gray-box strategies for

virtual machine migration,” in Proc. Of the

Symposium on Networked Systems Design and

Implementation (NSDI’07), Apr. 2007.

[9] C. A. Waldspurger, “Memory resource

management in VMware ESX server,” in Proc. of the

symposium on Operating systems design and

implementation (OSDI’02), Aug. 2002.

[10] G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L.

Xiao, and F. Zhao, “Energy-aware server

provisioning and load dispatching for connection-

intensive internet services,” in Proc. of the USENIX

Symposium on Networked Systems Design and

Implementation (NSDI’08), Apr. 2008.

78

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

