International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
NCICCT' 14 Conference Proceedings

Energetic Reserve Distribution using near
Machine for Cloud Computing Environment

Ganesh.S Elakkiya Selvi.S Prema.J

AP/CSE Computer Science and Engineering Computer Science and Engineering
SCET,SGI SCET,SGI SCET,SGlI

Villupuram , Villupuram, Villupuram,

India India India

elakki.san@gmail.com ekprema.18@gmail.com

ganeshsu2006 @gmail.com

Abstract— Energetic introduce the concept of measure the uneven utilization of a server. By

“skewness” to measure the unevenness in the multi-
dimensional reserve consumption of a server. By
minimizing skewness, we can combine different types of
workloads nicely and improve the overall utilization of

minimizing skewness, we can improve the overall
utilization of servers in the face of multi-dimensional
resource constraints. We design a load prediction
algorithm that can capture the future resource usages

of applications accurately Without looking inside the
VMs. The algorithm can capture the rising trend of
resource usage patterns and help reduce the
placement churn significantly.

server resources. We develop a set of heuristics that
prevent overload in the system successfully while saving
energy used resource allocation using near equipment
that uses virtualization technology to allocate data
center resources dynamically based on application
demands and support green computing by optimizing
the number of servers in use. We. Trace driven
simulation and experiment results demonstrate that our
algorithm achieves good routine.

I.SYSTEM OVERVIEW

The architecture of the system is presented in Figure
1.Each PM runs the Xen hypervisor (VMM) which
support a privileged domain 0 and one or more
domain. Each VM in domain U encapsulates one or
more applications such as Web server, remote
desktop, DNS, Mail, Map/Reduce, etc.We assume all
PMs share a backend storage.

Index Terms—Cloud Computing, Resource
Management, Virtualization, Green Computing.

I. INTRODUCTION e
The cloud model is expected to Make such practice pommmmsmeessseeesseesemsmsomomonoooeoe 1
unnecessary by offering automatic scale up and down [Preicor || Hotspot Satver || ColisptSaver |- Migration List i
in response to load variation. Besides reducing the r [
hardware cost, it also saves on electricity which Usher CTRL
contributes to a significant portion of the operational
expenses in large data centers. Virtual machine

monitors (VMMS) like X(_en provide a mechanlsm_for Som0 oom 0 o e TR et
mapping virtual machines (VMs) to physical nmE G e
resources. The capacity of PMs can also be z é AR I L2z ¢
. . . AN st | W ﬁ
heterogenous because multiple generations of NNk ooe |1E=][7] [
. . . SIEf = o S|lE|f| = 2
hardware co-exist in a data center. We aim to achieve S
two goals in our algorithm. Overload avoidance, [s Probe | [Ws ke |
green computing. We make the following Xen Hypaneor Ken Hyperiso Xen Hypervsr
contributions. We develop a resource allocation P PM2 PMn

system that can avoid overload in the system Fig.1. System Architecture.
effectively while minimizing the number of servers

used. We introduce the concept of “skewness” to

www.ijert.org 75

The multiplexing of VMs to PMs is managed using
the Usher framework. The main logic of our system
is implemented as a set of plug-ins to Usher .The
scheduler has several components. The predictor
predicts the future resource demands of VMs and the
future load of PMs based on past statistics. We
compute the load

of a PM by aggregating the resource usage of its
VMs. The LNM at each node first attempts to satisfy
the new demands locally by adjusting the resource
allocation of VMs sharing the same VMM. Xen can
change the CPU allocation among the VMs by
adjusting their weights in its CPU scheduler. The
MM Allotter on domain 0 of each node is responsible
for adjusting the local memory allocation. The hot
spot solver in our VM Scheduler detects if the
resource utilization of any PM is above the hot
threshold (i.e. hot spot). If so, some VMs running on
them will be migrated away to reduce their load. The
cold spot solver checks if the Average utilization of
actively used PMs (APMs) is below the green
computing threshold. If so, some of those PMs could
potentially be turned off to save energy. It identifies
the set of PMs whose utilization is below the cold
threshold (i.e., cold spots) and then attempts to
migrate away all their VMs. It then compiles a
migration list of VMs and passes it to the
UsherCTRL for execution. The statistics collected at
each PM are forwarded to the Usher central
controller (Usher CTRL) where our VMscheduler
runs. The VM Scheduler is invoked periodically and
receives from the LNM the resource demand history
of VMs, the capacity and the load history of PMs.

I11.THE SKEWNESS ALGORITHM

We introduce the concept of skewness to quantify the
unevenness in the utilization of multiple resources on
a Server. Let n be the number of resources we
consider and ri be the utilization of the i-th resource.
By minimizing the skewness, we can combine
different types of workloadsNicely and improve the
overall utilization of server resources. In the
following, we describe the details of our algorithm.

A. Hot and cold spots

We define a server as a hot spot if the
utilization of any of its resource is above a hot
threshold. This indicates that the server is overloaded
and hence some VMs running on it should be
migrated away. We define the temperature of a hot
spot p as the square sum of its resource utilization
beyond the hot threshold. We do so only when the
average resource utilization of all actively used
servers (i.e., APMs)in the system is below a green
computing threshold. A server is actively used if it
has at least one VM running. Otherwise, it is inactive.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
NCICCT' 14 Conference Proceedings

Finally, we define the warm threshold to be a level of
resource utilization that is sufficiently high to justify
having the server running but not so high as to risk
becoming a hot spot in the face of temporary
fluctuation of application resource demands. Thus a
server is a hot spot if either its CPU usage is above
90% or its memory usage is above 80%.

B. Hot spot mitigation

Our goal is to eliminate all hot spots if
possible.Otherwise,keep their temperature as low as
possible. We or tits list of VMs based on the
resulting temperature of the server if that VM is
migrated away. We aim to migrate away the VM that
can reduce the server’s temperature the most. In case
of, we select the VM whose removal can reduce the
skewness of the server the most. For each VM in the
list, we see if we can find a destination server to
accommodate it. The server must not become a hot
spot after accepting this VM. Among all such servers,
we select one whose skewness can be reduced the
most by accepting this VM.

C. Green computing

When the resource utilization of active
servers is too low, some of them can be turned off to
save energy. This is handled in our green computing
algorithm. The challenge here is to reduce the
number of active servers during low load without
sacrificing performance either now or in the future.
We need to avoid oscillation in the system.Our green
computing algorithm is invoked when the average
utilizations of all resources on active servers are
below the green computing threshold. We sort the list
of cold spots in the system based on the ascending
order of their memory size.Since we need to migrate
away all its VMs before we can shutdown an under-
utilized server, we define the memory size of a cold
spot as the aggregate memory size of all VMs
running on it. Recall that our model assumes all VMs
connect to a shared
back-end storage.

IV.EXPERIMENTS AND RESULTS
The servers are connected over a Gigabit Ethernet to
a group of four NFS storage servers where our VM
Scheduler runs. We use the same default parameters
as in the simulation.

A. Algorithm effectiveness

We evaluate the effectiveness of our algorithm in
overload mitigation and green computing. We first increase
the CPU load of the three VMs on PM1to create an

www.ijert.org

76

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
NCICCT' 14 Conference Proceedings

overload. Our algorithm resolves the overload by migrating
VM3 to PM3. It reaches a stable state under high load
around 420 seconds. Around 890 seconds, we decrease the
CPU load of all VMs gradually. Because the FUSD
prediction algorithm is conservative when the load
decreases, it takes a while before green computing takes
effect. Around1700 seconds, VM3 is migrated from PM3 to
PM2 so that PM3can be put into the standby mode. Around
2200 seconds, the two VMs on PM1 are migrated to PM2
so that PM1 can be released as well. As the load goes up
and down, our algorithm. Will repeat the above process,
spread over or consolidate the VMs as needed.

Fig.2 Scalability of the algorithm with system size.

Fig.3 Effect of load prediction

B. Impact of live migration

The use of VM live migration is its impact
on application performance. We focus on these
migrations because That is when the potential impact
on application performance is the most. Among the
139 migrations, we randomly pick 7 corresponding
TPC-W sessions undergoing live migration. All these
sessions run the “shopping mix” workload with 200
emulated browsers. As a target for comparison, we
re-run the session with the same parameters but
perform no migration and wuse the resulting
performance as the baseline.

Fig.4 Impact of live migration on TPC-W
performance.

The two curves show the moving average over a 30
second window as computed by TPC-W. We marked
in the figure when live migration starts and finishes.
The figure verifies that live migration causes no
noticeable performance degradation. The duration of
the migration is under 10 seconds. Recall that our
algorithm is invoked every 10 minutes.

C.Resource balance

The memory intensive applications are
created by allocating memory on demand. Again we
start with a small scale experiment consisting of two
PMs and four VMs so that we can present the results
for all servers in Figure 5.Initially,the two VMSs on
PM1 are CPU intensive while the two VMs on PM2
are network intensive. We increase the load of their
bottleneck resources gradually. Around 500seconds,
VM4 is migrated from PM2 to PM1 due to the
network overload in PM2. Then around 600 seconds,
VM1 is migrated from PM1 to PM2 due to the CPU
overload in

PM1. Now the system reaches a stable state with a
balanced resource utilization for both PMs — each
with a CPU intensive VM and a network intensive
VM.

Fig.5 Resource balance for mixed workloads.

www.ijert.org

7

V. RELATED WORK

A. Resource allocation at the application level

All works above do not use virtual machines
and require the applications be structured in a multi-
tier architecture with load balancing provided
through an front-end dispatcher. In contrast, our work
targets Amazon EC2-style environment where it
places no restriction on what and how applications
are constructed inside the VMs. A VM is treated like
a black box. Resource management is done only at
the granularity of whole VMs.

B. Resource allocation by live VM migration

VM live migration is a widely used
technique for dynamic resource allocation in a
virtualized environment. It uses VM and data
migration to mitigate hot spots not just on the servers,
but also on network devices and the storage nodes as
well. It introduces the Extended Vector Product
(EVP) as an indicator of imbalance in resource
utilization. They model it as a bin packing problem
and use the well-known first-fit approximation
algorithm to calculate the VM to PM layout
periodically. That algorithm, however, is designed
mostly for off-line use. It is likely to incur a large
number of migrations when applied in on-line
environment where the resource needs of VMs
change dynamically.

VI.CONCLUSION
We use the skewness metric to combine VMs with
different resource characteristics appropriately so that
the capacities of servers are well utilized. Our
algorithm achieves both overload avoidance and
green computing for systems with multi-resource
constraints.

REFERENCES
[1] M. Armbrust et al, “Above the clouds: A
berkeley view of cloud computing,” University of
California, Berkeley, Tech. Rep., Feb 2009.
[2] L. Siegele, “Let it rise: A special report on
corporate IT,” in The Economist, Oct. 2008.
[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, |. Pratt, and A.
Warfield, “Xen and the art of virtualization,” in Proc.
of the ACM Symposium on Operating Systems
Principles (SOSP’03), Oct. 2003.
[4] “Amazon elastic compute cloud (Amazon EC2),
http://aws.amazon.com/ec2/.”
[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, 1. Pratt, and A. Warfield, “Live
migration of virtual machines,” in Proc. of the
Symposium on Networked Systems Design and
Implementation (NSDI’05), May 2005.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
NCICCT' 14 Conference Proceedings

[6] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast
transparent migration for virtual machines,” in Proc.
of the USENIX Annual Technical Conference, 2005.
[71 M. McNett, D. Gupta, A. Vahdat, and G. M.
Voelker, “Usher: An extensible framework for
managing clusters of virtual machines,” in Proc. of
the Large Installation System Administration
Conference (LISA’07), Nov. 2007.

[8] T. Wood, P. Shenoy, A. Venkataramani, and M.
Yousif, “Black-box and gray-box strategies for
virtual machine migration,” in Proc. Of the
Symposium on Networked Systems Design and
Implementation (NSDI’07), Apr. 2007.

[9] C. A. Waldspurger, “Memory resource
management in VMware ESX server,” in Proc. of the
symposium on Operating systems design and
implementation (OSDI’02), Aug. 2002.

[10] G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L.
Xiao, and F. Zhao, “Energy-aware server
provisioning and load dispatching for connection-
intensive internet services,” in Proc. of the USENIX

Symposium on Networked Systems Design and
Implementation (NSDI’08), Apr. 2008.

www.ijert.org

78

