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Abstract— In signal processing, adaptive representation of 

signal is very important. Empirical Wavelet Transform is a new 

adaptive signal decomposition technique. This technique is very 

useful for de-noising, decompression etc. This paper presents a 

review and comparison of Empirical Wavelet Transform with 

Empirical Mode Decomposition. Illustration demonstrates the 

comparison of these methods on one dimensional signal.   
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I.  INTRODUCTION  

 

In recent years, a growing field of research has been in 

“adaptive systems” which has resulted in variety of signal 

processing techniques. These developments have made it clear 

that significant performance gains can be achieved beyond 

those achievable using standard adaptive filtering approaches. 

Signal analysis in adaptive manner finds a variety of 

applications in the field of signal processing. In general, a 

signal can be represented as a linear combination of basis 

functions. In Fourier and wavelet transform these basis 

functions are predefined, but in adaptive data analysis 

techniques these functions are derived from the information 

enclosed in the signal. The adaptive data analysis method that 

has gained popularity in signal processing since last decade is 

the algorithm called “Empirical Mode Decomposition” 

(EMD) proposed by Huang et al. [1]. The purpose of this 

method is to decompose the signal into its principal “modes” 

(a mode corresponds to a signal which has a compactly 

supported Fourier spectrum). It has proven to be quite 

versatile in a broad range of applications for extracting signals 

from data generated in noisy nonlinear and non-stationary 

processes. These include  study of wide variety of data 

including rainfall [2], earthquakes detection [3], Sunspot 

number variation, heart-rate variability, financial time series, 

and ocean waves [4], fault diagnosis [5], signal denoising, 

image processing [6], biomedical signal processing ,speech 

signal analysis [7], pattern recognition [8]. Experiments by  

Flandrin [9] show that EMD behaves like an adaptive filter 

bank. However, the main issue of the EMD approach is its 

lack of mathematical theory. 

A new adaptive data analysis method having a similar goal 

like EMD is the Empirical Wavelet Transform (EWT), 

proposed by Gilles [10] which explicitly builds an adaptive 

wavelet filter bank to decompose a given signal into different 

modes. It is a new approach to build adaptive wavelets 

capable of extracting Amplitude modulated-Frequency 

modulated components of a signal which have a compact 

support Fourier spectrum. Separating various modes 

corresponds to segmentation of the Fourier spectrum and to 

apply some filtering corresponding to each detected support. 

The EWT performs local maxima detection of the Fourier 

spectra of the signal, then performs spectrum segmentation 

based on detected maxima and, finally, constructs a 

corresponding wavelet filter bank. The segmentation 

mechanism of the Fourier spectrum is important as this step 

provides the adaptability with respect to the signal under 

analysis. In this paper a review of EWT and EMD is presented 

and their comparison using 1D signals. 

II. EMPIRICAL MODE DECOMPOSITION 

 

In 1998, Huang et al. [1] proposed an adaptive data 

analysis method called Empirical Mode Decomposition 

(EMD) which decomposes a signal into specific modes. The 

EMD works in temporal space directly rather than in the 

corresponding frequency space; it is perceptive, direct, and 

adaptive, with an a posteriori defined basis derived from the 

data. The decomposition is based on a simple assumption that, 

at any given time, the data may have many coexisting simple 

oscillatory modes of significantly different frequencies, one 

superimposed on the other.EMD has proven to be the most 

promising method and widely applied since the last decade [4-

6, 11-14]. EMD aims to decompose a signal f(t) as a (finite) 

sum of N + 1  Intrinsic Mode Functions (IMF)  fk (t) such  

that 

𝑓(𝑡) = ∑𝑓𝑘

𝑁

𝑘=0

(𝑡)                                                        (1) 

An IMF is an amplitude modulated-frequency modulated 

function which can be written in the form 

𝑓𝑘(𝑡) = 𝐹𝑘(𝑡)𝑐𝑜𝑠(𝜑𝑘(𝑡))    (2) 

where   𝐹𝑘(𝑡), 𝜑
′
𝑘
(𝑡) > 0      ∀  𝑡 

The main assumption is that amplitude and frequency 

variations are much slower than phase variations. This 

definition of IMF was proposed by [11] 

The original definition of IMF proposed by [1] that a 

function  is considered to be an IMF if it  satisfies two 

conditions: 

i. The number of zero-crossings of local extreme 

point must be equal or a difference of one at 

most in the whole data set 

ii. The mean value of the envelope of the local 

maxima and minimum must be zero at any point. 

An additional analysis of  this definition was done by 

Yang and Yang [15] and the conclusion was that condition i 
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can be deduced from condition ii and an improved definition 

was given as an Intrinsic Mode Function (IMF) is a function 

that satisfies the condition that at any time instant, the mean 

value of the upper envelope as defined by the local maxima 

and the lower envelope as defined by the local minima is zero. 

The concrete steps of EMD decomposition known as the 

sifting process are as follows: 

i. Locate the local maxima Fmax and minimum Fmin 

of signal f(t).  

ii. The upper and lower envelopes are found using 

Fmax and Fmin via cubic spline or some other 

interpolation method respectively. 

iii. The local mean m1 of original data f(t) is 

obtained by averaging  upper and lower 

envelope at individual points, the difference 

between original data and local mean is defined 

as: 

ℎ1 = 𝑓(𝑡) − 𝑚1    (3) 

iv. if h1 is an IMF, then f1=h1, else Replace h1 with 

f(t), and repeat step (i-iii) until standard 

deviation (SD) of two consecutive screening 

𝑆𝐷 =∑
|ℎ𝑘−1(𝑡) − ℎ𝑘(𝑡)|

2

ℎ𝑘−1
2 (𝑡)

𝑇

𝑡=0

              (4)  

is smaller than standard setting (generally 

between 0.2 to 0.3), which is considered that hk 

is an IMF component. 

v. Repeat step i-iv to obtain all modes or residue 

becomes a monotonic function, the EMD 

decomposition end. 

The stoppage criteria mentioned in the sifting process, 

Standard deviation, is difficult to implement this criterion for 

the following reasons: First, how small is SD needs an answer. 

Second, this criterion is not based on the definition of the 

IMFs, the squared difference might be small, but there is no 

guarantee that the function will have the same numbers of 

zero crossings and extrema. To remedy the shortcomings of 

SD criteria, Huang et al. [16] proposed the second type of 

criterion, termed the S stoppage. With this type of stoppage 

criterion, the sifting process stops only after the numbers of 

zero crossings and extrema are either equal or at most differ 

by one and stay the same for S consecutive times. Extensive 

tests by Huang and Wu [13] suggest that the optimal range for 

S should be between 4 and 8, but the lower number is favored. 

Every choice is ad hoc, and a rigorous justification is needed. 

The interesting fact about this algorithm is that it is highly 

adaptable and is able to extract the non-stationary part of the 

original function. The main drawback of the EMD approach is 

that it is a pure nonlinear algorithmic procedure and the 

obtained representation is implementation dependent (e.g it 

depends on how the envelopes are detected, which 

interpolation process is used and the chosen stopping criteria). 

Moreover due to the nonlinear aspects, no theoretical 

background supports this method.  Consequently it is difficult 

to really understand what the EMD provides. For example, 

some problems appear when some noise is present in the 

signal. To deal with this problem, an Ensemble EMD (EEMD) 

was proposed in [17]. The authors propose to compute several 

EMD decompositions of the original signal corrupted by 

different artificial noises. Then the final EEMD is the average 

of each EMD. This approach seems to stabilize the obtained 

decomposition but it increases the computational cost. 

III. EMPIRICAL WAVELET TRANSFORM 

 

In 2013, Jerome Gilles [10] introduced a new adaptive 

data analysis method called Empirical Wavelet Transform 

which explicitly builds an adaptive wavelet filter bank to 

decompose a given signal into different modes. EWT also 

aim’s like the EMD, to extract AM-FM components from a 

signal. The EWT works in frequency space unlike EMD 

which works in temporal space; it is intuitive, direct, and 

adaptive algorithm supported by a strong mathematical 

background. EWT proposes a method to build a family of 

wavelets adapted to the processed signal. If Fourier point of 

view is considered, this construction is equivalent to building 

a set of band pass filters. The idea consists of defining a bank 

of N wavelet filters (one low pass and 𝑁 − 1 band- pass filters 

corresponding to the approximation and details components, 

respectively) based on well chosen" Fourier supports 

(meaning by selecting relevant modes in the signal spectrum). 

One way to reach the adaptability is to consider that the 

filters’ supports depend on where the information in the 

spectrum of the analyzed signal is located. Indeed, the IMF 

properties are equivalent to say that the spectrum of an IMF is 

of compact support and centered around a specific frequency 

(signal dependent). 

In  classical wavelet transforms, a constant prescribed ratio 

is used in the subdivision scheme which limits its adaptability 

,while in EWT these are determined empirically Figure 1 

highlights the difference in both techniques, in EWT  the 

choice of the supports in the Fourier domain is not prescribed 

to a dyadic tiling but chosen accordingly to the analyzed 

signal. 

 

 
 

Suppose the Fourier support [0, π] is divided into N 

contiguous segments, then N-1 boundaries need to be 

extracted excluding 0 and π. To find the boundaries, the local 

maxima in the spectrum are detected and are sorted in 

Fig.1: On top: dyadic wavelet tiling of the frequency line. On 

bottom: a wavelet packet like tiling[10] 
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decreasing order and boundaries are defined as average 

between the consecutive maxima’s. If we denote ωn to be the 

limits between each segments (where ω0=0 and ωn=π) and if 

each segment is denoted as  ˄n = [ωn−1, ωn], 
then   ⋃ ˄n = [0, π]N

n=0 . 

A transition phase Tn of width 2τn (such that 𝜏𝑛 = 𝛾𝜔𝒏   
where 0 < γ < 1) is defined around the centre of each ˄n as 

shown in figure 2. The empirical wavelets are defined as band 

pass filters on each ˄n. For this, the author, Gilles [10] has 

utilized the idea used in the construction of both Littlewood-

Paley and Meyer’s wavelets. 

 

 
Thus, ∀ 𝑛 > 0 the Fourier transform of empirical scaling 

function and the empirical wavelets are defined by Equations 

(5) and (6), respectively. 
∅̂n(ω)

= {

1    if |ω| ≤ (1 − γ)ωn

cos [
π

2
β (

1

2γωn
(|ω|−(1−γ)ωn))] if (1 − γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise

 (5) 

and 
𝝍̂𝒏(𝝎)

=

{
 
 

 
 

1 𝑖𝑓(1 + 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 − 𝛾)𝜔𝑛+1

cos [
𝜋

2
𝛽 (

1

2𝛾𝜔𝑛+1
(|𝜔|−(1−𝛾)𝜔𝑛+1))] 𝑖𝑓 (1 − 𝛾)𝜔𝑛+1 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛+1

sin [
𝜋

2
𝛽 (

1

2𝛾𝜔𝑛
(|𝜔|−(1−𝛾)𝜔𝑛))] 𝑖𝑓 (1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛

0                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

        (6) 

where β(x) is an arbitrary Ck ([0,1]) function such that 

β(x) = {
0 x ≤ 0
1 x ≥ 0

𝑥4(35 − 84𝑥 + 70𝑥2 − 20𝑥3) 𝑥 ∈ [0,1]

  (7) 

and 

β(x) + β(1 − x) = 1    ∀ x ∈ [0,1]   (8) 

Having defined the the empirical wavelet and scaling 

function, the empirical wavelet transform, 𝑊𝑓
∈(𝑛, 𝑡) of a 

signal f(t) is defined in a way similar to the classic wavelet 

transform. The detail coefficients are given by the inner 

products with the empirical wavelets. 

𝑊𝑓
∈(𝑠, 𝑡) = 〈𝑓, 𝜓𝑛〉 = ∫ 𝑓(𝜏)𝜓𝑛(𝜏 − 𝑡)𝑑𝜏  (9) 

And the approximation coefficients by the inner product 

with the scaling function 

𝑊𝑓
∈(0, 𝑡) = 〈𝑓, ∅1〉 = ∫ 𝑓(𝜏)∅1𝑛(𝜏 − 𝑡)𝑑𝜏  (10) 

A. Segmentation of Fourier Transform 

The segmentation of the Fourier spectrum is important as 

it is the step which provides the adaptability with respect to 

the analyzed signal in EWT. The aim is to separate different 

portions of the spectrum which correspond to modes e.g. 

centered around a specific frequency and of compact support. 

In Gilles [10],the author  assumed that the number of modes in 

a signal, N, is given. This implies that a total of N +1 

boundary are needed, but 0 and π are always included and 

consequently  N −  1 extra boundaries are to be found out. To 

find the boundaries the author utilized local maxima method n 

which all the local maxima in the spectrum are detected and 

sorted in decreasing order (0 and π are excluded). Let us 

assume that the algorithm found M maxima. If the number of 

detected maxima is M, then two cases can arise 

i. M > N, then only the first N-1 maxima are kept;  

ii. M < N, then all the detected maxima are kept and N 

is set to appropriate value. 

Now, equipped with this set of maxima plus 0 and π, the 

boundaries ωn of each segment is defined as the center 

between two consecutive maxima.  

 

 

 

 
Gilles et al. [18]   reviewed the concept of segmentation 

Fourier spectrum to detect useful supports in EWT. With local 

maxima method, the problems of flat picked modes and global 

Vs local modes occur. Flat picked modes occur where two 

close consecutive modes where one has a wide support while 

the other has a narrow support. Thus the corresponding 

boundary obtained from the local maxima detection will fall in 

the largest support of the first mode. The problem of global Vs 

local modes occurs when several local maxima belong to the 

same mode and are larger than other modes. The fact that the 

segmentation method considers only local information but it 

should be better to also take into account the spectrum global 

Fig.4: Global Vs local modes [18] 

Fig.3: Flat mode issue [18] 

Fig.2: Fourier line decomposition principle and EWT 

basis construction [18] 
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trend to avoid such issues. To eliminate the problem of flat 

picked modes (as shown in figure 3) , lowest minima method 

has been proposed and for global Vs local modes(shown in 

figure 4), global trend removing approach is followed where 

in place of spectrum its logarithmic is considered to detect the 

supports. The methods of segmentation of Fourier spectrum 

are discussed in [18, 19] in detail. 

B. Frame 

Concerning the choice of τn, several options are possible. 

The simplest is to choose τn proportional to ωn , i.e. 𝜏𝑛 =  𝛾𝜔𝑛 

where 0 < γ < 1. The parameter γ must be chosen properly in 

order to obtain a tight frame. The parameter allows us to 

ensure that two consecutive transitions areas (dashed regions 

in Figure 2) do not overlap. A necessary condition on γ is 

proved by Gilles in order to have the tight frame property is as 

follows. 

𝛾 = minn (
ωn+1−ωn

ωn+1+ωn
)     (11) 

C. Automatic Detection of the number of modes 

To estimate the appropriate number of modes, where there 

is no prior information of the signal, a more robust method is 

required. EWT can decompose a signal into its components, 

but a user input of number of modes present in a signal is 

required. The Gilles et al. [18] in  paper has proposed a 

technique for automatic detection of number of modes, Fine to 

Coarse histogram segmentation but it is computationally 

expensive.  In cases where no information is there about the 

signal, it should be interesting to estimate the appropriate 

number of modes. A parameter less scale space approach is 

presented in [19] by Jerome Gilles in which a parameter less 

algorithm to automatically find meaningful modes in an 

histogram or spectrum. The approach is based on a scale-

space representation of the considered histogram which 

permits to define the notion of “meaningful modes” in a 

simpler way by defining a threshold on the length of scale 

space curves. The methods to define these thresholds 

discussed by author are probabilistic approach (half normal 

distribution), Otsu’s method and K-means clustering (binary). 

It is shown that finding N (where N itself is unknown) modes 

is equivalent to perform a binary clustering. This method is 

simple and runs very fast. 

IV. COMPARISON EMD VS EWT 

 

While the EMD automatically estimate the number of 

modes, we fix a priori the number of modes, N, for the EWT. 

Also it is observed that, the EMD always overestimates the 

number of modes and then separates some information which 

is originally part of the same component. Except for the high 

frequencies, it is difficult to interpret the EMD outputs 

compared with the known “true” components constituting the 

test signals. Although EWT, can detect the presence of modes 

in the spectrum and provides different components which are 

close to the original ones. 

For a chirp signal while EWT can detect the modes, EMD 

can’t. EMD fails in case of chirp signals as there is no 

variation in amplitude so the output is chirp signal only. The 

results for EWT are as shown in figure: 

 

 

 

 
As discussed in [20] ,experiments on the real ECG signal 

seem to give the advantage to the EWT because the EMD 

provides too many modes. Typically, the EMD modes six to 

nine are really difficult to interpret as such behavior is clearly 

not visible in the signal itself. A contrary, the EWT focuses on 

the oscillating patterns. Also EWT is computationally faster 

than EMD 

 However, in some cases, the EWT can fail (like any other 

wavelet approaches) compared to the EMD. For instance, if 

the input signal is composed of two chirps which overlap in 

both the time and frequency domains then the EWT will not 

be able to separate them while the EMD is supposed to be able 

to extract the most oscillating part first and the lowest one 

next. Such cases should probably be addressed by building 

adaptive frames with enough redundancy. 

 

 

Fig.6: EWT Decomposition of chirp input 

Fig.5: Chirp input 
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V. CONCLUSION 

 

In this paper a review of EWT & EMD is presented. The 

key idea is to build a wavelet filter bank based on Fourier 

supports detected from the information contained in the 

processed signal spectrum. A comparison with the Empirical 

Mode Decomposition (EMD) showed that the EWT gives a 

more consistent decomposition while, generally, the EMD 

exhibits too much modes, which are sometime really difficult 

to interpret. Another advantage of the EWT compared to the 

EMD is that we can adapt the classic wavelet formalism to 

understand it. The EWT has one obvious advantage over 

EMD, that it is a computationally fast algorithm as compared 

to EMD. EMD & EWT both are promising adaptive time 

frequency representation techniques, where, EMD has already 

been explored in vast engineering and related applications and 

proves to be potential, it still lacks mathematical background. 

EWT is an emerging technique with immense potential to be 

explored, it still needs to be fully adaptive. The automatic 

detection of number of modes is an area where it still holdup 
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