
Empirical Testing Of The Neural Network Application Using Feedforward Testing Method

Manoj Kumar Panda
Prof & Head Nuva College of Engineering & Technology ,Nagpur

 Abstract

In the sofware testing methodology there is a

revolution and in the field of testing that how to

conduct a successful testing and the testing shall

be done in such a way that error free product to

be launched in the market and the contemporary

software services and product organizations

should follow a different kind of software testing

methodologies . we propose the feedforward

testing mothod which can be used extensively in

the field the field of neural network softwares in

the proposed system first we should understan

the feed forward neural network here each nuron

has capacity to give a positive and negative

signals to to the middle layer and in the middle

layer the actual processing work must happen

and all the posibility of output must be stored in

a vector and all the possibility of vectors the

strongest output including the threshold must be

taken into account and the out put will come out

whether positive or negative .hence the testing

must consider all the possible patterns

Keywords

Feedforward testing method , lines of code

(LOC), function points (FP),Err , WBS ,

FR,NFR

INTRODUCTION

In recent years, software has become the most

expensive component of computer and various

robots and other neural network systems

projects. The bulk of the cost of software

development is due to the human effort, and

most cost estimation methods focus on this

aspect and give estimates in terms of person-

months. Accurate software cost estimates are

critical to both developers and customers. They

can be used for generating request for proposals,

contract negotiations, scheduling, monitoring

and control. Underestimating the costs may

result in management approving proposed

systems that then exceed their budgets, with

underdeveloped functions and poor quality, and

failure to complete on time. Overestimating may

result in too many resources committed to the

project, or, during contract bidding, result in not

winning the contract, which can lead to loss of

jobs. Accurate cost estimation is important

because: in the above

It can help to classify and prioritize development

projects with respect to an overall business plan.

 (Fig. 1)A Feedforward Testing Method

A multiple-layer neural network can calculate

and compute a continuous in put output instead

of a function. because the network itself is in the

continuous process ,hence the work should not

stop and the testing also should be continuous in

nature A common choice is the so-called

logistic function:

10

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60025

 and another equation

also

In the above equation each nuron has to consider

the weight factor and in the testing also sall the

weights are represented and output came out

successfully without any errors

(In general form, f(X) is in place of x, where

f(X) is an analytic function in set of x's.) With

this choice, the single-layer network is identical

to the logistic regression model, widely used in

statistical modeling. The logistic function is also

known as the sigmoid function. It has a

continuous derivative, which allows it to be used

in backpropagation. This function is also

preferred because its derivative is easily

calculated:and the output is more acceptable

 and further the output

is =

Recall that a single perceptron can classify points

into two regions that are linearly separable. Now

let us extend the discussion into the separation of

points into two regions that are not

linearly separable. Consider the following

network:

(Fig.2) A Feed-Forward Network Testing

Method With One Hidden Layer.

The same (x, y) is fed into the network through

the perceptrons in the input layer. With four

perceptrons that are independent of each other in

the hidden layer, the point is classified into 4

pairs of linearly separable regions, each of which

has a unique line separating the region.

(Fig.3) 4 lines each dividing the plane into 2

linearly separable regions.

The top perceptron performs the various logical

operations on the outputs of the hidden layers so

that the whole network classifies input points in

2 regions that might not be linearly separable.

For instance, using the AND operator on these

four outputs, one gets the intersection of the 4

regions that forms the center region.

(Fig.4) Intersection of 4 linearly separable

regions forms the center region.

By varying the number of nodes in the hidden

layer, the number of layers, and the number of

input and output nodes, one can classification of

points in arbitrary dimension into an arbitrary

number of groups. Hence feed-forward networks

are commonly used for classification.

Backpropagation -- learning in feed-forward

networks:

Learning in feed-forward networks belongs to

the realm of supervised learning, in which pairs

11

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60025

of input and output values are fed into the

network for many cycles, so that the network

'learns' the relationship between the input and

output.

We provide the network with a number of

training samples, which consists of an input

vector i and its desired output o. For instance, in

the classification problem, suppose we have

points (1, 2) and (1, 3) belonging to group 0,

points (2, 3) and (3, 4) belonging to group 1, (5,

6) and (6, 7) belonging to group 2, then for a

feed-forward network with 2 input nodes and 2

output nodes, the training set would be:

{ i = (1, 2) , o =(0, 0)

i = (1, 3) , o = (0, 0)

i = (2, 3) , o = (1, 0)

i = (3, 4) , o = (1, 0)

i = (5, 6) , o = (0, 1)

i = (6, 7) , o = (0, 1) }

The basic rule for choosing the number of output

nodes depends on the number of different

regions. It is advisable to use a unary notation to

represent the different regions, i.e. for each

output only one node can have value 1. Hence

the number of output nodes = number of

different regions -1.

In backpropagation learning, and finding errors

every time an input vector of a training sample is

presented, the output vector o is compared to the

desired value d.

The comparison is done by calculating the

squared difference of the two i.e. the desired

output and the actual output :

The value of Err tells us how far away we are

from the desired value for a particular input. The

goal of backpropagation is to minimize the sum

of Err for all the training samples, so that the

network behaves in the most "desirable" way.

Minimize

We can express Err in terms of the input vector

(i), the weight vectors (w), and the threshold

function of the perceptions. Using a continuous

function (instead of the step function) as the

threshold function, we can express the gradient

of Err with respect to the w in terms of w and i.

Given the fact that decreasing the value of w in

the direction of the gradient leads to the most

rapid decrease in Err, we update the weight

vectors every time a sample is presented using

the following formula:

where n is the learning rate (a small

number ~ 0.1)

Using this algorithm, the weight vectors are

modified so that the value of Err for a particular

input sample decreases a little bit every time the

sample is presented. When all the samples are

presented in turns for many cycles, the sum of

Err gradually decreases to a minimum value,

which is our goal as mentioned above.

The testing methods of feed forward software’s

In the given table we have shown the input

values will be passed through the neurons and

successfully passed through the stages it must be

remembered that the stages can be multiple one

as the neural network can accommodate multiple

neuron

12

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60025

Input

Stage 1

hidden

layer

Stage 2

hidden

layer

Output

1,1 1,0 0,0 1

0,1 1,0 0,1 0

1,0 0,1 1,0 1

0,0 0,0 0,1 0

1,1 1,1 0,1 1

1,0 1,1 1,1 0

1,1 1,1 1,0 0

From the above table we have taken all the

logical parameters which are helpful in the

testing of feedforward method

Testing – find out whether the application is

working according to requirements or not

Testing objectives – to find out the differences

between expected values and actual values

To find out the syntax errors which are

unidentified by development team .whether our

application is maintaining company standards or

not

.

Testing Principles for neural network

application

1 Testing should be conducted according to

requirements

2 Testing should be started on smaller modules

then we have to turn on to large ones

3 Testing should be started much before so that

the should be accomplished much before

EXHAUSTIVE TESTING INPUT (ETI)

Testing the application with all possible

combination of values

Examples –find the values of

A, b, c in with respect to

Where and are 8bit registers

The Cost Factor Of The Feed Forward

Software Testing Method

Estimates:

effort (usually in person-months)project

duration (in calendar time)

cost (in Rupees)

Most cost estimation models attempt to generate

an effort estimate, which can then be converted

into the project duration and cost. Although

effort and cost are closely related, they are not

necessarily related by a simple transformation

function. Effort is often measured in person

months of the programmers, analysts and project

managers. This effort estimate can be converted

into a dollar cost figure by calculating an average

salary per unit time of the staff involved, and

then multiplying this by the estimated effort

required. Practitioners have struggled with three

fundamental issues:

Software cost estimation model to use

Software size measurement to use – lines of code

(LOC), function points (FP), or feature point.

 A Good Estimate for the Feed Forward

Software Testing Method

The widely practiced cost estimation for the feed

forward testing method is expert judgment. For

many years, project managers have relied on

experience and the prevailing industry norms as

a basis to develop cost estimate. However,

basing estimates on expert judgment is

problematic:

This approach is not repeatable and the means of

deriving an estimate are not explicit. It is

difficult to find highly experienced estimators for

every new project. The relationship between cost

and system size is not linear. Cost tends to

increase exponentially with size. The expert

13

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60025

judgment method is appropriate only when the

sizes of the current project and past projects are

similar. Budget manipulations by management

aimed at avoiding overrun make experience and

data from previous projects questionable.

In the last three decades, many quantitative

software cost estimation models have been

developed. An empirical model uses data from

previous projects to evaluate the current project

and derives the basic formulae from analysis of

the particular database available. An analytical

model, on the other hand, uses formulae based on

global assumptions, such as the rate at which

developer solve problems and the number of

problems available. Most cost models are based

on the size measure, such as LOC used in the

software project and FP the various function

points , obtained from size estimation. The

accuracy of size estimation directly impacts the

accuracy of cost estimation which is necessary

for the evaluating the feed forward soft ware

testing project .

Although common size measurements have their

own drawbacks, an organization can make good

use of any one, as long as a consistent counting

method is used. A good software cost estimate

should have the following attributes. It is

conceived and supported by the project manager

and the development team. It is accepted by all

stakeholders as realizable.

It is based on a well-defined software cost model

with a credible basis.

It is based on a database of relevant project

experience (similar processes, similar

technologies, similar environments, similar

people and similar requirements).It is defined

in enough detail so that its key risk areas are

understood and the probability of success is

objectively assessed. Software cost estimation

historically has been a major difficulty in

software development. Several reasons for the

difficulty have been identified: Lack of a

historical database of cost measurement

Software development involving many

interrelated factors, which affect development

effort and productivity, and whose relationships

are not well understood Lack of trained

estimators and estimators with the necessary

expertise Little penalty is often associated with a

poor estimate.

1.2. Process Of Estimation for the Feed

Forward Software Testing Method

Estimation is an important part of the planning

process. For example, in the top-down planning

approach, the cost estimate is used to derive the

project plan:

1.2.1.The project manager develops a

characterization of the overall functionality, size,

process, environment, people, and quality

required for the project.

1.2.2 A macro-level estimate of the total effort

and schedule is developed using a software cost

estimation model.

1.2.3 The project manager partitions the effort

estimate into a top-level work breakdown

structure. He also partitions the schedule into

major milestone dates and determines a staffing

profile, which together forms a project plan.

1.2.4The actual cost estimation process involves

seven steps:

1.2.5 Establish cost-estimating objectives

1.2.6 Generate a project plan for required data

and resources

1.2.7. Pin down software requirements

1.2.8. Work out as much detail about the

software system as feasible

1.2.9. Use several independent cost estimation

techniques to capitalize on their combined

strengths

1.2.10. Compare different estimates and iterate

the estimation process

1.2.11. After the project has started, monitor its

actual cost and progress, and feedback results to

project management.

No matter which estimation model is selected,

users must pay attention to the following to get

best results:coverage of the estimate (some

14

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60025

models generate effort for the full life-cycle,

while others do not include effort for the

requirement stage)calibration and assumptions

of the model sensitivity of the estimates to the

different model parameters deviation of the

estimate with respect to the actual cost.

2 The Outputs Of This Steps Are As Follows:

2.1 Assumptions made to revise estimates

2.2 Methods used to revise estimates

2.3 Revised size, effort, schedule, and cost

estimates

2.4 Revised functionality and procurements

2.5 Updated WBS

2.6 Revised risk assessment

Review and Approve the Estimates

The purpose of this step is to review the software

estimates and to obtain project and line

management approval.

Software Requirement Specification

After gathering all requirements then the

management team starts the development process

from SRS. In SRS they specifies all requirements

for developing the current application

FR (Functional requirements) for developing

the current application all the technical

requirements with according to hardware and

NFR (NON FUNCTIONAL)requirements in

this management team specifies all requirements

other than functional as follows

 Cost –total cost incurred for the testing

activities

 Time – time duration for coducting all the

testing activities for the feedforward testing

method

Standards to maintain-Every company

maintain its own standards. The standards of

every company are depends on the market value

in current trend .some of the common standards

which are maintained by every company are

 N no of defects per SG LOC.

 Number of functions per module.

 Number of functional points.

Design- after completion of preparation of SRS

development team divide the functionality of the

application in to modules and sub modules by

preparing two documents.

 HLD (high level design)-Dividing the

functionality of the applications into modules

and sub modules and defining data validations is

called as HLD.

CONCLUSION-: from the above discussion we

came to that the feedforward testing method is

unique and using this method we can test various

neural network methods , in the proposed

system first we should understan the feed

forward neural network here each nuron has

capacity to give a positive and negative signals

to to the middle layer and in the middle layer the

actual processing work must happen and all the

posibility of output must be stored in a vector

and all the possibility of vectors the strongest

output including the threshold must be taken into

account and the out put will come out whether

positive or negative .hence the testing must

consider all the possible patterns

REFERENCES

1. ^ Rául Rojas (1996). Neural networks: a systematic

introduction. Springer. p. 336. ISBN 978-3-540-60505-8.

2. ^
a

b
 Cruse, Holk; Neural Networks as Cybernetic Systems,

2nd and revised edition

3. ^ H. Jaeger. Harnessing nonlinearity: Predicting chaotic

systems and saving energy in wireless communication.

Science, 304:78–80, 2004.

4. ^ W. Maass, T. Natschläger, and H. Markram. A fresh

look at real-time computation in generic recurrent neural

circuits. Technical report, Institute for Theoretical

Computer Science, TU Graz, 2002.

5. ^
a

b
 Hochreiter, Sepp; and Schmidhuber, Jürgen; Long

Short-Term Memory, Neural Computation, 9(8):1735–

1780, 1997

6. ^ Gers, Felix A.; and Schmidhuber, Jürgen; LSTM

Recurrent Networks Learn Simple Context Free and

Context Sensitive Languages, IEEE Transactions on

Neural Networks, 12(6):1333–1340, 2001

15

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60025

7. ^ Graves, Alex; and Schmidhuber, Jürgen; Offline

Handwriting Recognition with Multidimensional Recurrent

Neural Networks, in Bengio, Yoshua; Schuurmans, Dale;

Lafferty, John; Williams, Chris K. I.; and Culotta, Aron

(eds.), Advances in Neural Information Processing

Systems 22 (NIPS'22), December 7th–10th, 2009,

Vancouver, BC, Neural Information Processing Systems

(NIPS) Foundation, 2009, pp. 545–552

8. ^ Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45:2673–81, November

1997.

9. ^ A. Graves and J. Schmidhuber. Framewise phoneme

classification with bidirectional LSTM and other neural

network architectures. Neural Networks, 18:602–610,

2005.

A. J. Albrecht, and J. E. Gaffney, "Software function, source

lines of codes, and development

10. effort prediction: a software science validation", IEEE

Trans Software Eng. SE-9, 1983,

11. pp.639-648.

12. 2. U. S. Army, Working Schedule Handbook, Pamphlet

No. 5-4-6, Jan 1974.

13. 3. J. D. Aron, Estimating Resource for Large

Programming Systems, NATO Science Committee,

14. Rome, Italy, October 1969.

15. 4. R.K.D. Black, R. P. Curnow, R. Katz and M. D. Gray,

BCS Software Production Data, Final

16. Technical Report, RADC-TR-77-116, Boeing Computer

Services, Inc., March 1977.

17. 5. B. W. Boehm, Software engineering economics,

Englewood Cliffs, NJ: Prentice-Hall, 1981.

18. 6. B.W. Boehm et al "The COCOMO 2.0 Software Cost

Estimation Model", American

19. Programmer, July 1996, pp.2-17.

20. 7. L. C. Briand, K. El Eman, F. Bomarius, “COBRA: A

hybrid method for software cost

21. estimation, benchmarking, and risk assessment”,

International conference on software

22. engineering, 1998, pp. 390-399.

23. 8. G. Cantone, A. Cimitile and U. De Carlini, “A

comparison of models for software cost

24. estimation and management of software projects”, in

Computer Systems: Performance and

25. Simulation, Elisevier Science Publishers B.V., 1986.

26. Measuring, Monitoring & Testing the Quality of the
Software Using Exhaustive Testing Input (ETI) &
Software Test Resposibility Matrix

(STRM),IJETAE,2013 Manoj Kumar Panda.
27. 'Pragmatic Peer Review Project Contextual Software Cost

Estimation 泡 novel approach ' bearing paper id 'IJCSI-

2011-8-6-982',Manoj Kumar Panda

About the author:-

Manoj kumar panda , The author is a prominent academic

,and well known researcher & the author worked in

numerous research projects in the field of Computer

Science & Engineering & Computer Application and a

Professor And Head In Computer Engineering And

Computer Application Dept. and the area of interest of

author is in Software Engineering ,Software Testing

Methodology ,Human Computer Interaction , Software

Project Management ,Neural Network And Artificial

Inteligence .

16

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60025

