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Abstract — This paper deals with perception of 3D modules 

which are essential for safe operation of autonomous system. The 

challenge of fast stereo matching for embedded system is 

considered in this paper. Robotic and industrial applications do  

not permit the use of sophisticated stereo vision algorithm. The 

strength and weaknesses of different matching approaches have 

been analyzed and a well suited solution has been found in sparse 

census transform which halves the processing time  with nearly 

unchanging matching quality. .system is  robust easy to 

parameterize and offers high flexibility it also achieves high 

performance on several including resource limited system 

without losing the quality of stereo matching quality and 

processing time is compared to other algorithms on the middle 

bury stereo evaluation website reaching the middle quantity and 

top performance rank. Besides the detection of false positive and 

wrong matches are highly reduced due to the computation and 

analysis of dedicated confidence value. 

 
Keywords—stereo vision, stereo matching, epipolar geometry, 

hamming distance, intensity, pixel, disparity, rectified image 

 

I.INTRODUCTION 

For modern mobile robot platforms, dependable and 

embedded perception modules are important for successful 

autonomous operations like navigation, visual surveying, or 

grasping. Especially 3D information about the area around the 

robot is crucial for reliable operations in human environments. 

State-of-the-art sensors such as laser scanners or time-of-flight 

methods deliver 3D information, which is either rough or has 

low resolution with respect to time and space. Stereo vision is 

a technology that is well suited for delivering a precise 

description within its field of view. Stereo is purely a passive 

technology that primarily uses only two cameras and a 

processing unit to do the matching and 3D reconstruction . 

Advanced Driver Assistance Systems (ADAS) for intelligent 

vehicles will mainly rely on dependable and reliable 3D be 

highly desirable. 

Stereo Vision Algorithm mainly has three steps 

 Rectification 

 Stereo Matching Algorithm  

 Post Processing 

 
 

II.RECTIFICATION 

 

Rectification ensures the compact implementation of 

stereo matching algorithm. It is very necessary to rectify 

captured images so that images are in epipolar geometry. 

Epipolar geometry of stereo vision is that when two cameras 

view a 3D scene from two distinct points, there are number of 

geometric relations between the 3D points and their 

projections on 2D images 

 

 

Fig 1.Epipolar geometry 

This can be illustrated by Classical stereo vision which  uses a 

stereo camera setup built up of two cameras, called a stereo 

camera head, mounted in parallel. It captures a synchronized 

stereo pair consisting of the left camera’s and the right 

camera’s image. A typical classical stereo process is shown in 

Fig.1 the distance between both cameras is called the baseline. 

Once the correct disparity for a pixel is found, it can be used 

to calculate the orthogonal distance between one camera’s 

optical center and the projected scene point with 

 

Z   = b. f/d                  (1) 

 
 
Where d is the disparity, b the baseline and f the camera’s 

focal length. If 3D data should be given in camera coordinates, 

(2) can be used, where K is the camera calibration matrix, the 

pixel is given in homogeneous coordinates and is calculated 

with (1). K and f have to be determined by camera calibration 

which is essential for fast stereo matching. On the one hand, 

camera lens distortion can be removed, and on the other hand, 
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the images can be rectified. Rectified images fulfill the 

epipolar constraint, which means that corresponding pixel 

rows share the same v-coordinate, so the search for 

corresponding pixels is reduced to a search along one pixel 

row instead of through the whole image. For this work it is 

always assumed that the cameras are calibrated and the stereo 

image pairs are rectified. 

 

 

III.STEREO MATCHING ALGORITHM 

 

Stereo Matching Algorithm is achieved by deploying 

census transform, which is highly robust and performs 

matching function by intensity variation within camera images 

independent of offset variation. Offset variation here refers to 

displacement i.e distance between two cameras. For optimal 

industrial application it is achieved by deploying Sum of 

Absolute Differences (SAD). Census transform enables high 

accuracy when compared to non real time algorithm. 

 

Census transform consists of a comparison function ξ which is 

used to compare the center pixel intensity value i1 and center 

pixel intensity value i2 of the neighborhood region.  

 

 
 

 

In order make the cost of stereo vision algorithm to be less we 

calculate Hamming distance. For the cost function, the 

Hamming distance is calculated over the bit vectors. For a 

resource aware implementation it is necessary to reduce the 

computational complexity of the Census Transform. Here, we 

are using a so called sparse computation, where the hamming 

distance is not computed for all bits within the vector, but only 

for a dedicated amount of values. This way, the images are 

sub-sampled in a raster fashion. 

 

Requirements of embedded real time stereo matching A big 

advantage of stereo sensors is that they deliver a huge number 

of 3D points with a single measurement. This is what makes 

these so attractive for robotic applications. Of course, to 

ensure fast reactions of a robot to environmental changes, the 

sensor has to deliver data at high frame rates and low 

latencies. A minimum of 10 fps should be achieved in any 

case and the algorithm has to be suitable for real-time 

applications, which means the calculation has to be finished 

within that time frame and has to be independent from the 

actual scene. An area-based Census correlation algorithm 

fulfills all these requirements. And also use of certain 

neighborhoods allows the avoidance of double calculation and 

reduces the total number of comparisons. The mask 

configurations obtain a rather irregular structure which is very 

unfavorable for performance-optimized implementations on 

modern processors. The reliability of 3D data is also 

important. For instance, only 3D points with a high probability 

of correctness should be delivered and used for navigation. To 

fulfill this demand a confidence and a texture map are 

calculated which gives an opportunity to identify and filter 

uncertain matches and texture less areas Mobile robotic 

platforms have to often deal with different lighting conditions, 

so the matching algorithm has to be very robust in terms of 

different scene illumination of the stereo cameras. 

 

 

 

 

 

 

 

           
            Fig.2 Computation of the Sparse Census Transform for sparse factor = 

4. 

 

 

The approach used in this work, keeps the mask size as large 

and symmetric as possible by using only every second pixel 

and every second row of the mask for the Census transform, as 

shown in Fig. 2 for an 8x8 mask. The filled squares are the 

pixels used for the Census and the sparse Census transform. 

Avoiding the double comparisons here is not the key to 

minimize the processing time, but it is assumed that large 

sparse Census masks perform better than small normal (dense) 

Census masks with the same weight of the resulting bit strings. 

Thus it is anticipated that sparse 16x16 Census performs better 

than 8x8 normal Census, where both have a bit string weight 

of 64 and thus need the same processing time. 

 

To depict the difference in accuracy when reducing either the 

block size for the Census Transform and when increasing the 

sparse factor, Figure 3 presents the averaged accuracy for the 

Teddy, Cones, Tsukuba and Venus stereo images from the 

middlebury dataset [5], [6] (see Figure 3).  

 

 

 

 

 

 

 

 

 

(a)                                             
(b) 

 

                           
 

(c)                                          (d) 
Fig. 3 Middlebury dataset: Teddy, Cones, Tsukuba and Venus images. 

 

Here, the x-axis presents the number of hamming distance 

computations required for the cost function for the comparison 

of each block, while the y-axis presents the accuracy in pixel 
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percentage where the resulting disparity value is within one 

pixel when compared to the ground truth. 

 

 
Fig. 4. Comparison of the accuracy achieved for different block sizes for the 

Census Transform and different sparse factors for block size 16 x16. 

 

 

The results show, that until a sparse factor of 16, where only 

one pixel out of 16 is selected for the Census Transform, there 

is only a minor drop in accuracy. Reducing the block size 

leads to a far higher reduction in accuracy when compared to 

the total computational complexity. The detailed results for the 

accuracy emerging from the Sparse Census Transform are 

presented in Table I. Here, a sparse factor of 4 results only in a 

drop in accuracy of just 0.55%. Even if a sparse factor of 9, 

i.e. using every third pixelin x and y direction, would result in 

an even higher reduction of computational complexity, the 

reduction in accuracy is already 2.01% which is about 4 more 

loss than at factor 4. Thus, we are using sparse factor 4 in our 

work 

. 

Sparse Teddy Cones Tsukuba Venus Age 

81 55.62 40.85 55.66 62.94 53.77 

36 75.51 68.18 70.30 79.16 73.29 

25 83.43 82.38 78.58 86.34 82.68 

16 83.59 82.36 78.63 85.71 82.57 

9 86.00 89.88 83.71 89.18 87.43 

4 87.19 91.55 85.94 90.89 88.89 

1 86.74 91.70 87.07 92.24 89.44 
 

TABLE I: ACCURACY OF THE SPARSE CENSUS TRANSFORM 

FOR DIFFERENT SPARSE FACTORS, USING THE TEDDY, 

CONES, TSUKUBA AND VENUS DATASETS FOR CENSUS 

BLOCK SIZE 16x16. 

 

IV. POST PROCESSING 

 

For the post-processing, we are using parabola-fitting 

for the sub-pixel refinement. Here, the cost values’ absolute 

minimum matching costs and the neighboring costs are 

interpolated and a two bit sub-pixel refinement is 

implemented: Furthermore, occluded regions are detected 

using a Left/Right Consistency Check. Here, the disparity 

values centered on the left and right camera images are 

calculated and compared. Pixels showing a depth deviation of 

more than one pixel between both disparity maps are 

disregarded for the further computation. Industrial applications 

highly enforce the reduction of false positives within the depth 

map. Therefore, we implemented the computation of a 

confidence value. Here, the matching costs for the disparity 

range of each pixel are analyzed and both the absolute 

minimum, i.e., the global minimum, as well as the second 

lowest local minimum are being searched for. Here, the 

difference of these two matching costs determine the 

possibility that another disparity value also could have been a 

good match, or not, as depicted in Figure 4. If the difference is 

large, all other local minima can be considered to be rather 

bad matches. However, if the difference is low, there is a high 

possibility that other disparity levels would be good matches 

too and the difference is mainly caused by camera noise. A 

typical example for this situation is a chess board, where all 

fields look the same and the stereo matching algorithm cannot 

compute trustworthy results. Even if the chess board is a rather 

abstract example, this is quite often the case, due to the 

popularity of repeated textures in human design. Furthermore, 

un textured surfaces also show only slight differences in the 

disparity ranges’ matching costs and also allow for a removal 

of uncertain values using our confidence value.  

 

Applications of stereo vision 

 

 Stereo vision finds its main applications in people 

tracking , Surgeries , 3D underwater mosaicking 

 Stereo vision system is mainly used in Advance 

Driver Automated System(ADAS) 

 They find extensive applications in Robotics 

 They play a major role in extraction of information in 

aerial surveys 

 Stereo vision  is used in target recognition of mobile 

robots. 

 They are  used in Forensics i.e  crime scenes , Traffic 

accidents ,  

 Mining and Mine face measurements 

 Civil engineering and structure monitoring. 

 Collision avoidance 

 Manufacturing and process monitoring. 

 

Advantages of stereo vision 

 

 Robustness 

 Gives a  very dense depth 

 Use to calculate shape of objects 

 Human motion detection is possible instead of using 

sensors for it. 

 

Disadvantages of stereo vision 

 

 The system must be pre calibrated 

 Has to be used in indoor environment 

Shadow and sunlight present in experimental area 

makes difficult in distance calculation. 

 

Limitations of stereo vision 

 Correspondence problem- 

 Calibration problem 

 Synchronization problem 

 Shadow  problem 
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 Sunlight problem 

 

 

V. CONCLUSION 

 

The design of a real-time stereo vision system 

suitable for automotive and industrial applications leads to 

very demanding requirements. The typical limitations of the 

computational resources in embedded systems require a stereo 

matching algorithm that offers a low complexity while the 

drop in accuracy has to be at a minimum level. Here, the 

implemented Sparse Census Transform reduces the 

computational complexity by a factor of 4, while the accuracy 

is still in the same levels as for the dense computation. The 

reduction of noise and false positives is another very 

challenging requirement. While most stereo vision algorithms 

depend on a left/right consistency check for the removal of 

occluded regions only, we implemented the computation of a 

confidence value that allows for a more dependable removal 

of mismatched areas. The concept can also be applied on 

upcoming multi-core DSP models with up to 6 DSP cores on-

chip. This will enable future systems with higher frame rates 

at higher image resolution and still at reasonable energy 

requirements. 
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