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Abstract— Cryptography is the most standard and efficient way 

to protect the security of web transactions. An efficient 

cryptosystem must be one that is strong enough to ensure a high 

level of security for reliable transmission of information. Elliptic 

Curve Cryptography is one such type of public key cryptosystem 

based on small key size. Elliptic Curve Cryptography is an 

alternative to traditional techniques for public key cryptography. 

It can be called the future generation of public key systems since 

it involves less number of bits suitable for resource constrained 

and wireless applications without compromising on the security 

level. The proposed architecture for elliptic curve scalar point 

multiplication is based on Lopez–Dahab Elliptic Curve Scalar 

Point Multiplication algorithm.. The design can be coded using 

VHDL and simulated using ModelSim 6.2C. 

 

Keywords— Elliptic Curve Cryptosystem,FPGA, public key, 

galois field, scalar point multiplication. 

 

I.  INTRODUCTION   

 Cryptography is the science of providing security for 

information. It is the process of encrypting the plain text into 

an incomprehensible cipher text by the process of Encryption 

and the conversion back to plain text by process of 

Decryption. Many information and communication security 

systems are based on the public key cryptography. Elliptic 

Curve Cryptography(ECC) is one type of public key 

cryptography that has become  popular due to its superior 

strength per bit compared to existing public key algorithms 

such as RSA. As far as cryptographic systems having larger 

key lengths are concerned, the processing load on applications 

using such cryptographic systems will be greater. However 

some devices have limited processing capacity, storage, power 

supply, and bandwidth like the newer wireless devices and 

cellular telephones. When using these devices, efficiency of 

the resource management is very important in these devices. 

ECC provides encryption functionality requiring a smaller 

percentage of the resources required by other algorithms. 

Hence ECC is the best choice of cryptography in these types 

of devices.  

Elliptic Curve Cryptography(ECC) is a crypto-system, 

suggested independently, by Neals Koblitz and Victor Miller. 

At present, Elliptic Curve Cryptography has been 

commercially accepted, and has also been adopted by many 

standardizing bodies such as ANSI, ISO and NIST. Since 

then, it has been the focus of a lot of attention and gained great 

popularity due to the same level of security they provide with 

much smaller key sizes than the level of security provided by 

conventional public key crypto-systems. Intuitively, there are 

numerous advantages of using Field Programmable Gate 

Array (FPGA) technology to implement in hardware the 

computationally intensive operations needed for ECC. In 

particular, performance, cost, efficiency, and the ability to 

easily update the cryptographic algorithm in fielded devices 

are very attractive for hardware implementations of ECC. 

Elliptic curves are rich mathematical structures that 

have shown usefulness in many different types of 

applications[10]. ECC plays an important role in digital 

Signatures, secure key distribution, and encryption and 

decryption. In most cases, the longer the key length, the more 

protection that is provided, but ECC can provide the same level 

of protection with a smaller key size. ECC makes use of the 

properties of elliptic curves in their public key systems. The 

elliptic curves provide ways of constructing groups of elements 

and specific rules of how the elements within these groups 

should combine. Elliptic Curve Cryptography is emerging as 

an attractive public-key cryptosystem for mobile/wireless 

environments. It results in faster Computations, reduced power 

consumption, as well as savings in memory space and 

bandwidth.  

II.  ELLIPTIC CURVE SCALAR POINT 

MULTIPLICATION(ECSM) 

 

Scalar point multiplication is by the most important 

operation in Elliptic Curve Cryptosystems. ECSM is an 

operation in which, on input an integer k and a point P on the 

elliptic curve C, computes another point Q such Q=Kp. In the 

ECSM architecture proposed, a variant of the algorithm due to 

Lopez and Dahab algorithm, which is an improvement of the 

traditional Montgomery ECSM algorithm. The algorithm 

consists of three stages: 1) conversion of point P from affine 

coordinates to projective coordinates; 2) computation of 

Q=Kp in projective coordinate; and 3) conversion of Q from 

projective coordinates back to affine coordinates. 
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Figure 1: Hierarchy of Elliptic Curve Cryptosystem 

 

The design hierarchy of a typical elliptic curve 

cryptosystem is shown in the figure 1. Point multiplication is 

composed of point addition and point doubling. Point 

multiplication, point doubling and point addition are operations 

involving with the points on the elliptic curve. Point addition is 

the process in which two points on an elliptic curve is added to 

give a third point on the elliptic curve. A line drawn through 

both these points intersects the elliptic curve in another point. 

The point where this line intersects with the curve is noted. 

The negative of this intersection point is used as the result of 

point addition. Point doubling is achieved by adding a point on 

the elliptic curve to itself. The bottom level of the ECC system 

is the galois field arithmetic [6]. The galois field arithmetic 

involves addition, multiplication, squaring and inversion in 

galois field. The trapdoor function is achieved by the scalar 

point multiplication.The strength of ECC security comes from 

the difficulty of Elliptic Curve Discrete Logarithm Problem. 

Suppose the points P and Q on an elliptic curve are given, then 

according to ECDLP, it is difficult to find a number k such that 

Pk=Q [6]. 

III.   SYSTEM ARCHITECTURE 

 

Elliptic curve cryptographic systems are based on point 

multiplication which involves time consuming operations like 

finite field inversion. A scalar point multiplication architecture 

is proposed in which the number of finite field inversions are 

reduced. The most important operations for designing an 

efficient ECC processor are finite field multiplication, finite 

field inversion and finite field squaring. Field addition and 

subtraction in GF(2𝑚 ) are defined as polynomial addition and 

can be implemented simply as the XOR addition of the two m-

bit operands. For the design of the architecture for ECSM, two 

different parts are considered: the first part involves 

calculations in the projective coordinate system, and the other 

part involves the calculations for converting projective 

coordinates to affine coordinates. 

 
 

Figure 2. Block diagram of Lopez Dahab Scalar Point Multiplication 

The basic block diagram of Lopez Dahab Scalar Point 

Multiplication is shown in the Figure 2. The architecture of 

scalar point multiplication proposed here consists of three 

important blocks. They are namely finite field multiplier, finite 

field squarer and finite field inverter. These are the most 

important operations required for performing elliptic curve 

cryptography. Field addition and subtraction in GF(2𝑚  ) are 

defined as polynomial addition and can be implemented simply 

as the XOR addition of the two m-bit operands. The galois 

field chosen here is GF(24), where m=4 and there are 16 

distinct symbols in this field. 

A.  Finite field multiplier 

Several type of multiplier architectures can be used for 

finite field multiplication. The finite field multiplier used in 

this system is based on the Shift and Add algorithm. Finite 

field calculations must be such that any operation that takes 

place between elements that belongs to the finite field results 

in an element within the same field. Thus arithmetic in finite 

field is different from standard integer arithmetic. Finite field 

multiplication can be achieved if a reduction step is also 

incorporated in the conventional Shift and Add algorithm [5]. 

This can be achieved by interleaving the Shift and Add steps 

with the reduction step.  
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Figure 3. Flowchart of finite field multiplication  

An irreducible polynomial is used to perform the reduction 

step. The irreducible polynomial is unique for each kind of 

galois field chosen. An irreducible polynomial is a polynomial 

which cannot be factored into the product of two or more 

polynomials whose coefficients are of a specified type. 

Addition in binary galois field is performed by XOR 

operation. In order to ensure finite field operation, an overflow 

condition needs to be checked in each iteration along with 

performing the Shift and Add algorithm.  

B.  Finite field squarer 

Squaring is a particular case of multiplication in finite 

binary field. Classic squarer is one in which the multiplicand 

and the multiplier is the same value. Its procedure can be 

optimized to save the time spent on multiplication.  

 

 
 

Figure 4. Zeros inserted in am element 

However, a squarer can be designed using a more simple 

method compared to the finite field multiplication. Since 

squaring a binary polynomial is a linear operation, it is much 

faster than multiplying two arbitrary polynomials [2]. Similar 

to the finite field multiplication, a reduction step is also 

incorporated to achieve finite field square. An element in the 

chosen galois field can be represented in the following manner. 

𝐴 𝑥 = 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥
1 + 𝑎0𝑥

0           (1) 

Zeros are inserted in between the bits of A in order to 

obtain square of the element A∈GF(2𝑚 ).The reduction step 

must be performed using an irreducible polynomial. 

C.  Finite Field Inverter 

Finite field inversion is much more time-consuming 

than finite field addition and finite field multiplication and 

several attempts have been made to carry out this operation 

fast. In Elliptic Curve Scalar point Multiplication algorithm 

finite field inversions ae required to perform the calculations to 

convert projective coordinates back to affine coordinates. The 

algorithm proposed for multiplicative inversion in GF(2𝑚 ) is 

based on the Fermat's theorem. Fermat’s theorem implies that, 

since the multiplicative group of the galois field GF(2𝑚 ) is 

cyclic of order 2𝑚 − 1 , then for any non-zero element 

𝑎𝜖GF(2𝑚 ), the finite field inversion of the element denoted as 

𝑎−1 is given by  𝑎−1 = 𝑎2𝑚−2 [9]. The square and multiply 

algorithm is used here to compute the inverse of an element in 

finite field.  

The three important building blocks needed for scalar point 

multiplication namely the finite field multiplier, the finite field 

squarer and the finite field inverter are designed. These blocks 

are combined to perform the Lopez Dahab algorithm for scalar 

point multiplication. Elliptic Curve Cryptosystems can make 

use of this algorithm for public key generation. 

IV.  CONCLUSIONS 

The scalar multiplication operation which is the underlying 

mathematical operation of elliptic curve cryptography is 

performed based on the Lopez Dahab algorithm. It is 

performed in the projective coordinate system; in order to 

reduce the number of finite field inversions. The x and y 

coordinates in the affine coordinate system is given as input. 

These affine coordinates are converted to projective 

coordinate initially and then the computation of scalar 

multiplication in projective coordinate is performed. The 

resulting projective coordinate values are converted back to 

the affine coordinates. 

This gives the public key generation in cryptosystems based 

on elliptic curves. 

 

REFERENCES 

[1] Renuka H.Korti and Vijayalaxmi A.Hiremath, “Implementation of 
Finite field arithmetic unit for cryptographic applications”, 

Proceedings of International conference, July 2013. 

[2] Amar said and Moncef Amara, “Hardware implementation of 

arithmetic for Elliptic Curve Cryptosystems over GF(2m)” , World 

conf. Internet security, 2011. 

[3] Syed Wasi Alam, Nauman Qureshi, Muhammad Hammad Ahmed and 
Irum Baig, “Security for Wireless Sensor Network based on Elliptic 

Curve Cryptography”, International conference on Computer 

Networks and Information Technology (ICCNIT),2011. 
[4] Hero Modares, Yasser Salem, Rosli Salleh and Majid Talebi 

Shahgoli, “A bit-serial multiplier architecture for finite field over 

galois field”, Journal of Computer Science, 2010. 
[5] Rahila Bilal and Dr.M.Rajaram, “High speed point arithmetic 

architecture for Eliiptic Curve Cryptography on FPGA”, International 

journal on Computer science and Engineering (IJCSE), Vol.02, No. 
06, 2010. 

[6] W. N. Chelton and M. Benaissa, “Fast elliptic curve cryptography on 

FPGA” , IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, 
no. 2,  pp. 198–205, Feb. 2008. 

327

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030475



[7] S. Kummar, T. Wollinger, and C. Paar, “Optimum digit serial GF(2m ) 

multipliers for curve based cryptography,”  IEEE Trans. Comput., vol. 
55,no. 10, pp. 1306–1311, Oct. 2006. 

[8] K. Jarvinen, M. Tommiska, and J. Skytta, “A scalable architecture for 

elliptic curve point multiplication,” in Proc. IEEE Int. Conf. Field-
Program, Dec. 2004,pp. 303–306. 

[9] Naufumi Takagi and Kazuyoshi Takagi, “A fast algorithm for 

multiplicative Inversion in GF(2𝑚 ) using normal basis”, IEEE 
transactions on computers, Vol.50, No.5, May 2001. 

[10] Julio Lopez and Ricardo Dahab, “ Fast multiplication on elliptic 

curves  over GF(2m) without precomputation ”, in Proc. 1st Int. 
Workshop Crypto-graph. Hardw. Embedded Syst., 1999, pp. 316–327. 

[11] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative 

inverses in GF(2m ) using normal basis,” J. Inf. Comput., vol. 78, no. 
3, pp. 171–177, 1998. 

 

  

 

328

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030475


