Electric Generation from Dairy Waste Using Microbial Fuel

Anurag Dnyaneshwar Choudhari¹, Shubham J. Punvantwar², Akshay B. Shinde³, Rajat Rajendra Wade⁴ Student, Department of Mechanical Engineering^{1,4} Student, Department of Chemical Engineering^{2,3} Jawaharlal Darda Institute of Engineering & Technology, Yavatmal, Maharashtra, India^{1,2,3,4}

Abstract: The pollution is increase tremendously due to the increasing in demand of people and industrial waste, due to which a large gap between energy demand and availability of fossil fuel. High energy demand of typical waste matter treatment systems are exacting for the choice treatment technology, which can be value effective and need less energy for its economical operation. In our project we generate electricity from dairy waste by using microbial fuel cell, which convert chemical energy from a fuel into electricity. Microbial electric cell is one among the most effective various sources of energy production that add effluent to the list of renewable resources of energy. Effluent contains plenty of simply degradable organic materials that area unit metabolized by the active microorganism species gift within the effluent itself and produces electricity throughout the course.

Keywords: Microbial fuel cell, dairy waste, electricity.

I.INTRODUCTION:

Every year the world energy demand will increase. Around eighty six of the globe energy production comes from fossil fuels. Different sources of energy square measure in high demand as a result of developed similarly as developing countries face serious energy crisis. Additionally, because of international environmental considerations and energy insecurity, there's nascent interest to seek out of property and clean energy supply with borderline or zero use of hydrocarbons. It's evident that group is progressively addicted to energy with the advancement of science and technology. Hyperbolic economic process and social development square measure resulting in an outsized gap between energy demands and also the convenience of fossil fuels. The current day energy situation round the globe is precarious, so driving to the search of the choice to the fossil fuels. Current ways to provide energy aren't property, and considerations regarding the temperature change and warming need developing new ways of energy production exploitation renewable and carbon neutral sources. Depletion of typical energy sources and additionally its negative result on surroundings has junction rectifier several researchers to appear for energy sources. The new sources of ought to be renewable and additionally environmental-friendly. One among the renewable energy sources for the assembly of electricity is fuel cells (FC).A cell may be a device that converts the energy from a fuel into electricity through a chemical change of charged H ions with O or another oxidant. Fuel cells square measure

completely different from batteries therein they need continuous supply of fuel and O or air to sustain the chemical change, whereas associate degree exceedingly in a very battery the chemicals gift within the battery react with one another to get an voltage. Fuel cells will manufacture electricity unendingly for as long as these inputs square measure equipped.

MATERIAL AND METHOD:

The basic style of a two-chamber MFC just like that employed in this study. so as for electricity generation to occur, microorganism within the anode chamber utilize substrates within the analyte to liberate electrons. Electrons that reach the anode surface travel through the anode and also the circuit to the cathode. Electrons at the cathode surface scale back electron acceptors. The electric circuit is closed by suggests that of nucleon migration from the anolyte, through the nucleon exchange membrane and to the catholyte wherever the lepton acceptor is gift.

The anolyte consists of a substrate and also the microbic community active within the substrate. during this study, the anolyte consisted of waste activated sludge as a substrate, and the microorganism pool was that that was naturally gift within the waste activated sludge. For success- Fulani operation, material within the anolyte would wish to be solubilized before microbes might utilize it. The analyte needs combination throughout MFC operation to stay particulate elements in suspension and to help in mass transfer of substrates to the anode surface.

MFC COMPONENTS:

Generally, the MFC consist of anode, cathode, electrode and salt bridge. The anodic chamber is anaerobic chamber which hold the biocatalyst microorganism, and the cathodic chamber was is arobic chamber. The salt bridge is us to transfer an ion and form bridge between anodic and cathodic chamber.

MFC CONSTRUCTION:

A 2 divided electric cells was created. 2 plastic containers every with diameter 20 millimeter were taken and marked cathode and anode. 2 holes of diameter half dozen millimeter and one.5 millimeter were created on every of the lids for the insertion of the salt bridge and electrodes. Within the anode instrumentality, 800 milliliters of the farm waste voi. / Issue 04, April-20

water was used and within the cathode instrumentality 800 milliliter water was used and also the anodal instrumentality lids were closed air tight and sealed with tape.

III. EXPERIMENTAL SETUP:

The general arrangement of microbic cell for electricity generation includes the subsequent items:

- two plastic bottles of a thousand metric {capacity unit} capacity.
- Salt bridge to interconnect the bottles.
- two plumbago electrodes.
- two electrical leads from plumbago electrodes for voltage measuring.
- zero five V electronic voltmeter or multimeter.

The laboratory setup of MFC is shown in Fig. It consists of 2 electrode-salt-bridge combos, with the salt bridges dipping into one among 2 (control and test) answer beakers.

IV. EXPERIMENTAL PROCEDURE:

- Firstly, 2 chambers were taken of plastic materials (approximately one litre each).
- dairy farm waste water was obtained from a well far-famed firm (Ranade Dairy, Yavatmal).
- Other equipment was organized from near retailers.
- In one chamber 800ml of water was taken and in ordinal chamber 800ml of dairy farm waste water was adscititious.
- Graphite rods were inserted in each the cylinders, anodal chamber contained dairy farm waste water and electrode chamber contained water.
- Readings were taken for setup with none treater or microorganisms and readings were taken down once amount of each a pair of hours.
- In identical setup microorganisms (yeast) were adscititious and in similar means readings were noted.

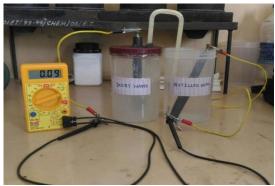


Fig: Laboratory set up of MFC

V. RESULTS AND DISCUSSION:

Microbial cell (MFC) will generate electricity through the metabolic activity of the bacterium. The system is ready to remodel energy into electricity. the quantity of electricity generated is decided by the amount of activity of microorganisms in generating electrons and protons. The double divided MFC was operated with the addition of

applicable medium constituents and anaerobic microorganisms of waste water. once the lapse of ample time, voltage and current within the MFC were measured with a digital multimeter. Out of the many parameters thoughtabout solely some were varied whereas the opposite parameters were fastened as follows.

Fixed parameters:

- 1. conductor material: black lead rods.
- 2. conductor spacing: a pair of.5cm (between the outer surfaces)
- 3. conductor space (anode: cathode): 1:1
- 4. Concentration of Microbes.

Variable parameters:

- 1. Substrate type: waste water from native farm trade.
- 2. Substrate concentration: 800ml.

VI. FUTURE SCOPE IN MFC STUDIES:

The development and utilization remain in infancy of MFCs. there is a sensible scope for development of MFCs as a result of the ability density is simply too low for activity in vehicles and totally different industrial applications. The organism could also be genetically modified to make high reducing recombinant strains producing lots of accessible lepton at anode. Materials of construction could also be studied to lower the inner resistance and corrosion. The membrane is to boot an expensive hindrance and should be fitly replaced to lower the worth and simply the mode of operation. The stacked and up flow mode of MFCs is to boot lower stage of development. The miniaturized kind is to boot anticipated which could be accustomed power up medical implants and hand-held appliances. MFCs could have utilization in defence to power up remote investigating and communication gears to be used in remote-controlled stations. The implementation and operation price could also be down with higher varieties of single chamber fuel cells and up flow mode of fuel cells to be scaled up for waste product treatment facility.

VII. CONCLUSION:

The ultimate action in MFCs is going to be after they are used exclusively as a way of renewable energy production. Right now, the high prices of materials for MFCs and therefore the comparatively low-cost value of fossil fuels makes it unlikely that electricity production is competitive with existing energy production strategies. However, MFCs area unit carbon neutral and power is generated with plastic Thus, advancements in power densities, materials. reductions in materials prices, and a worldwide got to manufacture power while not web greenhouse gas emissions might in the future build MFCs sensible only for electricity production. it'll be an excellent success within the field of renewable energy production if we'll integrate this little production of electricity in to powerful electricity. MFCs area unit individual varieties of FCS that use active biocatalysts like microorganisms or enzymes to come up with energy. MFCs have completely different applications supported generated power. The generated power in MFC remains too low and researcher's area unit operating to boost it for industrial application.

VIII. REFERENCES:

- [1] Maksudur R. Khan, M. R. Karim, M. S. A. Amin, "Generation of Bio-electricity by Microbial Fuel Cells", "International Journal of Engineering and Techology,vol 3, (231-237),2012.
- [2] A. G. Capodaglio, D. Molognoni, E. Dallago, A. Liberale, R. Cella, P. Longoni, and L. Pantaleoni "Microbial Fuel Cells for Direct Electrical Energy Recovery from Urban Wastewaters", "The Scientific World Journal", 2013.
- [3] D'souzaRohan, VermaDeepa, GavankarRohan and BhaleraoSatish, "Bioelectricity Production from Microbial Fuel using Escherichia Coli(Glucose and Brewery Waste)", "International Research Journal of Biological Sciences", Vol. 2(7), (50-54) "July 2013.
- [4] Kun Guo, Daniel J. Hassett, and TingyueGu, "Microbial Fuel Cells: Electricity Generation from Organic Wastes by Microbes", "Microbial Biotechnology Energy and Environment", (162-189), 2012.
- [5] Surajit Das, NeelamMangwani, "Recent development in Microbial fuel cells: A Review", "Journal of Science and Industrial Research", vol 69, (727-731), oct 2010.
- [6] B.G. Mahendra, ShridharMahavarkar, "Treatment of Wastewater And Electricity GenerationUsing Microbial Fuel Cell Technology", IJRET: "International Journal Of Research In Engineering And Technology", Nov, (277-282), 2013.
- [7] Debajit Borah, Sejal More and R.N.S. Yadav, "Construction of Double Chambered Microbial Fuel Cell (MFC) Using Household Materials and Bacillus megateriumIsolate from Tea Garden Soil", "Advances in Biological Research", (136-140) 2013.
- [8] Ramya Nair, Renganathan. K, S. Barathi, Venkatraman. K, "Performance of salt-bridge microbial fuel cell at various agarose concentrations using hostel sewage waste as substrate", "International Journal of Advancements in

- Research & Technology", Volume 2, Issue 5, (326-330), May 2013.
- [9] Prof. N. B. Singh, Ruchi Singh and Mohammed Manzer Imam, "Waste Water Management In Dairy Industry: Pollution Abatement And Preventive Attitudes", "International Journal of Science, Environment and Technology", Vol. 3, No 2, (672 – 683), 2014.
- [10] Nawash. B, Vasudevan. G, Yogesh. S, Ramesh Babu. N. G.andHemakalaiRani. "Comparative Study of Parameters for Treatment of Dairy Wastewater by Biomass of Various Plants", "International Journal of Engineering Research & Technology (IJERT)", Vol.3 Issue 1, (1072-1076), January 2014.
- [11] SourishKarmakar, KanikaKundu and SubirKundu, "Design and Development of Microbial Fuel cells", "Microbiology and Microbial Biotechnology", (162-189), 2010.
- [12] AnandParkash, "Design and Fabrication of a Double Chamber Microbial Fuel Cell for Voltage Generation from Biowaste", "J. Bioprocess Biotech", Volume 5, 2015.
- [13] MostafaRahimnejad ,ArashAdhami , SoheilDarvari , AlirezaZirepour , Sang-Eun Oh "Microbial fuel cell as new technology for bioelectricity generation: A review", "Alexandria Engineering Journal",(745-746) ,2015.
- [14] J.S.Sudarsan, K.Prasanna, K.Renganathan, Mirza Abdul BasitBeigh, "Role Of MFC in Wastewater Treatment & Energy Prouction –A Trial Study", 2010.
- [15] S.D. Purswani1, S.S. Atkare, G.Bhumkar, M.B.Patil, "Electricity generation From Dairy Waste Water through Microbial Fuel Cell Technology", "International Journal of Engineering Research and Reviews", Vol. 2, (24-32),October December 2014.
- [16] Rakesh, Chandra, UjwalShreenagMeda, R. Suresh, "Performance Studies Of Microbial Fuel Cell", IJRET: "International Journal Of Research In Engineering And Technology", Volume 3, (169-173), Nov-2014.