
Efficient Privacy and Data Confidentiality using

A Trusted Outsourced Database

M. Kannan
Assistant Professor

Department of Computer Science and Engineering

Kongunadu College of Engineering Technology

D. Vikneshkumar
Assistant Professor

Department of Computer Science and Engineering

Sri Guru Institute of Technology, Coimbatore

Abstract:- Any software-based cryptographic constructs then

deployed, for server-side query process on the encrypted

information, inherently limit query quality. Traditionally, as

shortly as confidentiality became a priority, need arises to

encrypt data before outsourcing to a service supplier Here,

Trusted data base has been introduced, an outsourced

database prototype that allows client to execute SQL queries

with privacy and beneath restrictive compliance constraints

by leverage server-hosted, tamper-proof trusted hardware in

important question process stages, thereby removing any

limitations on the sort of supported queries. Despite the value

overhead and performance limitations of trusted hardware, it

has been shown that the prices per question are orders of

magnitude less than any potential future software-only

mechanisms.

Keywords - Database architectures, security, privacy, special-

purpose hardware

1. INTRODUCTION

The overview of outsourcing and clouds are well

known, significant challenges yet lie in the path of large-

scale adoption since such services often require their

customers to inherently trust the provider with full access

to the outsourced data sets. Numerous instances of illicit

insider behavior or data leaks have left clients reluctant to

place sensitive data under the control of a remote, third-

party provider, without practical assurances of privacy and

confidentiality, especially in business, healthcare, and

government frameworks. Moreover, today’s privacy

guarantees for such services are at best declarative and

subject customers to unreasonable fine-print clauses. It

allows the server operator to use customer behavior and

content for commercial profiling or governmental

surveillance purposes. Tamper resistant designs, however,

are significantly constrained in both computational ability

and memory capacity which makes implementing fully

featured database solutions using Secure Coprocessors

(SCPUs) very

challenging. Despite the cost overhead and performance

limitations of trusted hardware, we show that the costs per

query are orders of magnitude

lower than any (existing or) potential future software-only

mechanisms. In most of these efforts, data is encrypted

before outsourcing. Once encrypted however, inherent

limitations in the types of primitive operations that can be

performed on encrypted data lead to fundamental

expressiveness and practicality constraints.

The introduction of new cost models and

insights that explain and quantify the advantages of

deploying trusted hardware for data processing; the design,

development, and evaluation of Trusted, a trusted hardware

based relational database with full data confidentiality; and

detailed query optimization techniques in a trusted

hardware-based query execution model. The cost-

performance trade off seem to suggest that things stand

somewhat differently. Specifically, at scale, in outsourced

contexts, computation inside secure processors is orders of

magnitude cheaper than any equivalent cryptographic

operation performed on the provider’s unsecured server

hardware, despite the overall greater acquisition cost of

secure hardware. This is so because the overheads for

cryptography that allows some processing by the server on

encrypted data are extremely high even for simple

operations. This fact is rooted not in cipher implementation

inefficiencies but rather in fundamental cryptographic

hardness assumptions and constructs, such as trapdoor

functions.

New mathematical hardness problems will need to

be discovered to allow hope of more efficient

cryptography. As a result, it has been posit that a full-

fledged privacy enabling secure database leveraging server-

side trusted hardware can be built and run at a fraction of

the cost of any (existing or future) cryptography-enabled

private data processing on common server hardware.

Query processing engines run on both the server

and in the SCPU. Attributes in the database are classified

as being either public or private. Private attributes are

encrypted and can only be decrypted by the client or by the

SCPU. Since the entire database resides outside the SCPU,

its size is not bound by SCPU memory limitations. Pages

that need to be accessed by the SCPU-side query

processing are pulled in on demand by the Paging Module.

A client defines a database schema and partially populates

it. Sensitive attributes are marked using the SENSITIVE

keyword which the client layer transparently processes by

encrypting the corresponding attributes. A client sends a

query request to the host server through a standard SQL

interface. The query is transparently encrypted at the client

site using the public key of the SCPU. The host server thus

cannot decrypt the query. The host server forwards the

encrypted query to the Request Handler inside the SCPU.

The Request Handler decrypts the query and forwards it to

the Query Parser. The query is parsed generating a set of

plans. Each plan is constructed by rewriting the original

client query into a set of sub queries, and, according to

their target data set classification, each sub query in the

plan is identified as being either public or private. The

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Volume 8, Issue 08

Special Issue - 2020

Published by, www.ijert.org

NCICCT - 2020 Conference Proceedings

1

www.ijert.org
www.ijert.org

Query Optimizer then estimates the execution costs of each

of the plans and selects the best plan (one with least cost)

for execution forwarding it to the dispatcher. The Query

Dispatcher forwards the public queries to the host server

and the private queries to the SCPU database engine while

handling dependencies. The net result is that the maximum

possible work is run on the host server’s cheap cycles.

The final query result is assembled, encrypted,

digitally signed by the SCPU Query Dispatcher, and sent to

the client query parsing and execution. Sensitive attributes

can occur anywhere within a query, e.g., in SELECT,

WHERE, or GROUP-BY clauses, in aggregation operators,

or within sub queries. The Query Parser’s job is then: To

ensure that any processing involving private attributes is

done within the SCPU. All private attributes are encrypted

using a shared data encryption keys between the client and

the SCPU hence, the host server cannot decipher these

attributes to optimize the rewrite of the client query such

that most of the work is performed on the host server. To

exemplify how public and private queries are generated

from the original client query, use an example from the

TPC-H benchmark. TPC-H does not specify any

classification of attributes based on security. Therefore, it

has been defined an attribute set classification into private

(encrypted) and public (no encrypted). In brief, all

attributes that convey identifying information about

customers, suppliers, and parts are considered private. The

resulting query plans, including rewrites into main CPU

and SCPU components for TPC-H queries Q3 and Q6 are

illustrated for queries that have WHERE clause conditions

on public attributes, the server can first SELECT all the

tuples that meet the criteria. The private attributes’ queries

are then performed inside the SCPU on these intermediate

results, to yield the final result. The host server first

executes a public query that filters all tuples which fall

within the desired ship date and quantity range, both of

these being public attributes.

The result from this public query is then used

by the SCPU to perform the aggregation on the private

attributes extended price and discount. While performing

the aggregation the private attributes are decrypted inside

the SCPU. Since the aggregation operation results in a new

attribute composing of private attributes it is re encrypted

within the SCPU before sending to the client. That the

execution of private queries depends on the results from the

execution of public queries and vice a-versa even though

they execute in separate database engines. This is made

possible by the Trusted DB Query Dispatcher in

conjunction with the Paging Module.

2. RELATED WORK

 Researchers have recently discovered several

interesting, self-organized regularities from the World

Wide Web, ranging from the structure and growth of the

Web to the access patterns in Web surfing. What remains

to be a great challenge in Web log mining is how to explain

user behavior underlying observed Web usage regularities.

In this paper, we will address the issue of how to

characterize the strong regularities in Web surfing in terms

of user navigation strategies, and present an information for

aging agent based approach for describing user behavior.

By experimenting with the agent-based decision

models of Web surfing, we aim to explain how some Web

design factors as well as user cognitive factors may affect

the overall behavioral patterns in Web usage. In order to

further characterize user navigation regularities as well as

to understand the effects of user interests, motivation, and

content organization on the user behavior. An information

for aging agent based model that takes into account the

interest profiles, motivation aggregation, and content

selection strategies of users and, thereafter, predicts the

emerged regularities in user navigation behavior. In

summary, our work offers a means for explaining strong

Web regularities with respect to user Interest Profiles, Web

Content Distribution and coupling, and user navigation

strategies.

It enables us to predict the effects on emergent

usage regularities if certain aspects of Web servers or user

foraging behaviors are changed. While presenting an

interesting and promising research direction, it has been

point out that one of the useful extensions for future work

would be to show how the quantitative representations or

constructs as used in modeling Web contents and user

interest profiles. The planning Techniques help to bridge

the gap between the searching necessities and the Content

Adaptation. To Monitor and Adapt the learning object of

each learning route against unexpected contingencies.

Existing research addresses several such security

aspects, including access privacy and searches on

encrypted data. In most of these efforts data is encrypted

before outsourcing. Once encrypted however, inherent

limitations in the types of primitive operations that can be

performed on encrypted data lead to fundamental

expressiveness and practicality constraints. Recent

theoretical cryptography results provide hope by proving

the existence of universal homeomorphisms, i.e.,

encryption mechanisms that allow computation of arbitrary

functions without decrypting the inputs. Unfortunately

actual instances of such mechanisms seem to be decades

away from being practical.

3. PROPOSED TRUSTED DATABASE

ARCHITECTURE

A full-fledged, privacy enabling secure database

leveraging server-side trusted hardware can be built and

run at a fraction of the cost of any (existing or future)

cryptography-enabled private data processing on common

server hardware. The Proposed trusted database

architecture is shown in Fig 1. It has been validated by

designing and building Trusted DB, a SQL database

processing engine that makes use of tamperproof

cryptographic coprocessors such as the IBM 4764 in close

proximity to the outsourced data. Tamper resistant designs

however are significantly constrained in both

computational ability and memory capacity which makes

implementing fully featured database solutions using

secure coprocessors (SCPUs) very challenging. Trusted

achieves this by utilizing common unsecured server

resources to the maximum extent possible. E.g., Trusted

enables the SCPU to transparently access external storage

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Volume 8, Issue 08

Special Issue - 2020

Published by, www.ijert.org

NCICCT - 2020 Conference Proceedings

2

www.ijert.org
www.ijert.org

while preserving data confidentiality with on-the-fly

encryption. This eliminates the limitations on the size of

databases that can be supported. Moreover, client queries

are pre-processed to identify sensitive components to be

run inside the SCPU. Non-sensitive operations are off-

loaded to the untrusted host server. This greatly improves

performance and reduces the cost of transactions.

The outsourced data are stored at the host

provider’s site. Query processing engines run on both the

server and in the SCPU. Attributes in the database are

classified as being either public or private. Private

attributes are encrypted and can only be decrypted by the

client or by the SCPU. Since the entire database resides

outside the SCPU, its size is not bound by SCPU memory

limitations. Query execution entails a set of stages, in the

first stage, a client defines a database schema and partially

populates it. Sensitive attributes are marked using the

SENSITIVE keyword which the client layer transparently

processes by encrypting the corresponding attributes. Later,

a client sends a query request to the host server through a

standard SQL interface. The query is transparently

encrypted at the client site using the public key of the

SCPU. The host server thus cannot decrypt the query. The

host server forwards the encrypted query to the Request

Handler inside the SCPU. The Request Handler decrypts

the query and forwards it to the Query Parser. The query is

parsed generating a set of plans. Each plan is constructed

by rewriting the original client query into a set of sub

queries, and, according to data set classification, each sub

query in the plan is identified as being either public or

private. The Query Optimizer then estimates the execution

costs of each of the plans and selects the best plan (one

with least cost) for execution forwarding it to the

dispatcher. The Query Dispatcher forwards the public

queries to the host server and the private queries to the

SCPU database engine while handling dependencies. The

final query result is assembled, encrypted, digitally signed

by the SCPU Query Dispatcher, and sent to the client.

3.1 QUERY PARSING AND EXECUTION

In the first stage a client defines a database schema

and partially populates it. Sensitive attributes are marked

using the SENSITIVE keyword which the client layer

transparently processes by encrypting the corresponding

attributes:

CREATE TABLE customer (ID integer primary

key, Name char (72) SENSITIVE, Address char

(120) SENSITIVE);

Later, a client sends a query request to the host server

through a standard SQL interface. The query is

transparently encrypted at the client site using the public

key of the SCPU. The host server thus cannot decrypt the

query. The host server forwards the encrypted query to the

Request Handler inside the SCPU. The Request Handler

decrypts the query and forwards it to the Query Parser. The

query is parsed generating a set of plans. Each plan is

constructed by rewriting the original client query into a set

of sub-queries, and, according to their target data set

classification, each sub-query in the plan is identified as

being either public or private. The Query Optimizer then

estimates the execution costs of each of the plans and

selects the best plan (one with least cost) for execution

forwarding it to the dispatcher. The Query Dispatcher

forwards the public queries to the host server and the

private queries to the SCPU database engine while

handling dependencies. The net result is that the maximum

possible work is run on the host server’s cheap cycles. The

final query result is assembled, encrypted, digitally signed

by the SCPU Query Dispatcher, and sent to the client.

3.2 QUERY OPTIMIZATION PROCESS

The Query Plan constructs to multiple plans for the client

query. The constructed plan the Query Cost Estimator

computes an estimate of the execution cost of that plan.

The selected and passed on to the Query Plan Interpreter

for execution. The Query Cost Estimator due to the logical

partitioning of data.

Fig 1.Trusted Database Architecture

At a high level query optimization in a database

system works as follows. The Query Plan Generator

constructs possibly multiple plans for the client query. For

each constructed plan the Query Cost Estimator computes

an estimate of the execution cost of that plan. The best plan

i.e., one with the least cost, is then selected and passed on

to the Query Plan Interpreter for execution. The query

optimization process in Trusted Database works similarly

with key differences in the Query Cost Estimator due to the

logical partitioning of data mentioned above.

3.3 SYSTEM CATALOG

Any query plan is composed of multiple

individual execution steps. To estimate the cost of the

entire plan it is essential to estimate the cost of individual

steps and aggregate them. In order to estimate these costs

the Query Cost Estimator needs access to some key

information. E.g., the availability of an index or the

knowledge of possible distinct values of an attribute. These

sets of information are collected and stored in the System

Catalog. Most available DBMS today have some form of

periodically updated System Catalog. The cost of a plan is

the aggregate of the cost of the steps that comprise it. The

execution times for a certain set of basic query plan steps

are estimated.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Volume 8, Issue 08

Special Issue - 2020

Published by, www.ijert.org

NCICCT - 2020 Conference Proceedings

3

www.ijert.org
www.ijert.org

4. CONCLUSION AND FUTURE ENHANCEMENTS

Queries on encrypted data, Propose division of

data into secret partitions and rewriting of range queries

over the original data in terms of the resulting partition

identifiers. This balances a trade-off between client and

server-side processing, as a function of the data segment

size, the propose using tuples-level encryption and indexes

on the encrypted tuples to support equality predicates. The

main contribution here is the analysis of attribute exposure

caused by query processing leading to two insights. The

attribute exposure increases with the number of attributes

used in an index, and the exposure decreases with the

increase in database size. Range queries are processed by

encrypting individual B+ Tree nodes and having the client,

in each query processing step, retrieve a desired encrypted

B+ Tree node from the server, decrypt and process it.

However, this leads to minimal utilization of server

resources thereby undermining the benefits of outsourcing.

Moreover, transfer of entire B+ Tree nodes to the client

results in significant network costs. In addition, a technique

referred to as splitting and scaling issued to differ the

frequency distribution of encrypted data from that of the

plaintext data. Here, each plaintext value is encrypted

using multiple distinct keys. Then, corresponding values

are replicated to ensure that all encrypted values occur with

the same frequency thereby thwarting any frequency-based

attacks. Use a salted version of IDA scheme to split

encrypted tuples data among multiple servers. In addition,

a secure B+ Tree is built on the key attribute. The client

utilizes the B+ Tree index to determine the IDA matrix

columns that need to be accessed for data retrieval. To

speed up client-side processing and reduce network

overheads, it is suggested to cache parts of the B+ Tree

index client-side.

The client query is split into multiple

queries wherein each sub query fetches the relevant data

from a server and the client combines results from multiple

servers, also use vertical partitioning in a similar manner

and for the same privacy goal, but differs in partitioning

and optimization algorithms. Trusted is equivalent to both,

when the size of the privacy subset is one and hence a

single server suffices. In this case, each attribute column

needs encryption to ensure privacy. Optimizer for querying

encrypted columns since otherwise they rely on client-side

decryption and processing, Introduce the concept of logical

fragments to achieve the same partitioning effect as on a

single server. A fragment here is simply areolation wherein

attributes not desired to be visible in that fragment are

encrypted. Trusted DB (and other solutions) are in effect

concrete mechanisms to efficiently query any individual

fragment from. The work on the other hand, can be used to

determine the set of attributes that should be encrypted in

propose an encryption scheme in a trusted-server model to

ensure privacy of data residing on disk. The FCE scheme

designed here is equivalently secure as a block cipher,

however, with increased efficiency only ensures privacy of

data residing on disk. In order to increase query

functionality, a layered encryption scheme is used and then

dynamically adjusted (by revealing key to the server)

according to client queries. Trusted DB, on the other hand,

operates in an un trusted server model, where sensitive data

are protected, both on disk and during processing. Data

that are encrypted on disk but processed in clear (in server

memory), compromise privacy during the processing

interval. The disclosures risks in such solutions are

analyzed also propose a new query optimizer that takes

into account both performance and disclosure risk for

sensitive data. Individual data pages are encrypted by

secret keys that are managed by a trusted hardware

module. The decryption of the data pages and subsequent

processing is done in server memory. Hence, the goal is to

minimize the lifetime of sensitive data and keys in server

memory after decryption.

REFERENCES
[1]. FIPS PUB 140-2, Security Requirements for Cryptographic

Modules,http://csrc.nist.gov/groups/STM/cmvp/standards.html#02,2
013.

[2]. TPC-H Benchmark, http://www.tpc.org/tpch/, 2013.

[3]. IBM 4764 PCI-X
CryptographicCoprocessor,http://www03.ibm.com/security/cryptoca

rds/pcixcc/overview.shtml, 2007.

[4]. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina,
K.Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and Y.

Xu,“Two Can Keep a Secret: A Distributed Architecture for

SecureDatabase Services,” Proc. Conf. Innovative Data Systems
Research(CIDR), pp. 186-199, 2005.

[5]. Iliev and S.W. Smith, “Protecting Client Privacy with

TrustedComputing at the Server,” IEEE Security and Privacy, vol.
3, no. 2,pp. 20-28, Mar./Apr. 2005.

[6]. M. Bellare, “New Proofs for NMAC and HMAC: Security

WithoutCollision-Resistance,” Proc. 26th Ann. Int’l Conf. Advances
in

Cryptology, pp. 602-619, 2006.

[7]. B. Bhattacharjee, N. Abe, K. Goldman, B. Zadrozny, C. Apte,
V.R.Chillakuru, and M. del Carpio, “Using Secure Coprocessors

forPrivacy Preserving Collaborative Data Mining and

Analysis,”Proc. Second Int’l Workshop Data Management on New
Hardware(DaMoN ’06), 2006.

[8]. M. Canim, M. Kantarcioglu, B. Hore, and S. Mehrotra,

“BuildingDisclosure Risk Aware Query Optimizers for Relational
Databases,”Proc. VLDB Endowment, vol. 3, nos. 1/2, pp. 13-24,

Sept.2010.

[9]. S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware Based
Database with Privacy and Data Confidentiality,” Proc. ACM

SIGMOD Int’l Conf. Management of Data (SIGMOD ’11), pp. 205-

216, 2011.
[10]. S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware Based

Outsourced Database Engine,” Proc. Int’l Conf. Very Large
DataBases (VLDB), 2011.

[11]. S. Wu, F. Li, S. Mehrotra, and B.C. Ooi, “Query Optimization for

Massively Parallel Data Processing,” Proc. Second ACM
Symp.Cloud Computing (CCS ’11), Article 12, 2011.

[12]. V. Ciriani, S.D.C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,

and P. Samarati, “Combining Fragmentation and Encryption to
Protect Privacy in Data Storage,” ACM Trans. Information and

System Security, vol. 13, no. 3, pp. 22:1-22:33, July 2010.

[13]. E. Damiani, C. Vimercati, S. Jajodia, S. Paraboschi, and P.Samarati,
“Balancing Confidentiality and Efficiency in Untrusted Relational

DBMSs,” Proc. 10th ACM Conf. Computer and Communications

Security (CCS ’12), 2003.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Volume 8, Issue 08

Special Issue - 2020

Published by, www.ijert.org

NCICCT - 2020 Conference Proceedings

4

www.ijert.org
www.ijert.org

