Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCICCT - 2020 Conference Proceedings

Efficient Privacy and Data Confidentiality using
A Trusted Outsourced Database

M. Kannan
Assistant Professor
Department of Computer Science and Engineering
Kongunadu College of Engineering Technology

Abstract:- Any software-based cryptographic constructs then
deployed, for server-side query process on the encrypted
information, inherently limit query quality. Traditionally, as
shortly as confidentiality became a priority, need arises to
encrypt data before outsourcing to a service supplier Here,
Trusted data base has been introduced, an outsourced
database prototype that allows client to execute SQL queries
with privacy and beneath restrictive compliance constraints
by leverage server-hosted, tamper-proof trusted hardware in
important question process stages, thereby removing any
limitations on the sort of supported queries. Despite the value
overhead and performance limitations of trusted hardware, it
has been shown that the prices per question are orders of
magnitude less than any potential future software-only
mechanisms.

Keywords - Database architectures, security, privacy, special-
purpose hardware

1. INTRODUCTION

The overview of outsourcing and clouds are well
known, significant challenges yet lie in the path of large-
scale adoption since such services often require their
customers to inherently trust the provider with full access
to the outsourced data sets. Numerous instances of illicit
insider behavior or data leaks have left clients reluctant to
place sensitive data under the control of a remote, third-
party provider, without practical assurances of privacy and
confidentiality, especially in business, healthcare, and
government frameworks. Moreover, today’s privacy
guarantees for such services are at best declarative and
subject customers to unreasonable fine-print clauses. It
allows the server operator to use customer behavior and
content for commercial profiling or governmental
surveillance purposes. Tamper resistant designs, however,
are significantly constrained in both computational ability
and memory capacity which makes implementing fully
featured database solutions using Secure Coprocessors
(SCPUs) very
challenging. Despite the cost overhead and performance
limitations of trusted hardware, we show that the costs per
query are orders of magnitude
lower than any (existing or) potential future software-only
mechanisms. In most of these efforts, data is encrypted
before outsourcing. Once encrypted however, inherent
limitations in the types of primitive operations that can be
performed on encrypted data lead to fundamental
expressiveness and practicality constraints.

The introduction of new cost models and

insights that explain and quantify the advantages of

D. Vikneshkumar
Assistant Professor
Department of Computer Science and Engineering
Sri Guru Institute of Technology, Coimbatore

deploying trusted hardware for data processing; the design,
development, and evaluation of Trusted, a trusted hardware
based relational database with full data confidentiality; and
detailed query optimization techniques in a trusted
hardware-based query execution model. The cost-
performance trade off seem to suggest that things stand
somewhat differently. Specifically, at scale, in outsourced
contexts, computation inside secure processors is orders of
magnitude cheaper than any equivalent cryptographic
operation performed on the provider’s unsecured server
hardware, despite the overall greater acquisition cost of
secure hardware. This is so because the overheads for
cryptography that allows some processing by the server on
encrypted data are extremely high even for simple
operations. This fact is rooted not in cipher implementation
inefficiencies but rather in fundamental cryptographic
hardness assumptions and constructs, such as trapdoor
functions.

New mathematical hardness problems will need to
be discovered to allow hope of more efficient
cryptography. As a result, it has been posit that a full-
fledged privacy enabling secure database leveraging server-
side trusted hardware can be built and run at a fraction of
the cost of any (existing or future) cryptography-enabled
private data processing on common server hardware.

Query processing engines run on both the server
and in the SCPU. Attributes in the database are classified
as being either public or private. Private attributes are
encrypted and can only be decrypted by the client or by the
SCPU. Since the entire database resides outside the SCPU,
its size is not bound by SCPU memory limitations. Pages
that need to be accessed by the SCPU-side query
processing are pulled in on demand by the Paging Module.
A client defines a database schema and partially populates
it. Sensitive attributes are marked using the SENSITIVE
keyword which the client layer transparently processes by
encrypting the corresponding attributes. A client sends a
query request to the host server through a standard SQL
interface. The query is transparently encrypted at the client
site using the public key of the SCPU. The host server thus
cannot decrypt the query. The host server forwards the
encrypted query to the Request Handler inside the SCPU.
The Request Handler decrypts the query and forwards it to
the Query Parser. The query is parsed generating a set of
plans. Each plan is constructed by rewriting the original
client query into a set of sub queries, and, according to
their target data set classification, each sub query in the
plan is identified as being either public or private. The

Volume 8, | ssue 08

Published by, www.ijert.org 1

www.ijert.org
www.ijert.org

Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCICCT - 2020 Conference Proceedings

Query Optimizer then estimates the execution costs of each
of the plans and selects the best plan (one with least cost)
for execution forwarding it to the dispatcher. The Query
Dispatcher forwards the public queries to the host server
and the private queries to the SCPU database engine while
handling dependencies. The net result is that the maximum
possible work is run on the host server’s cheap cycles.

The final query result is assembled, encrypted,
digitally signed by the SCPU Query Dispatcher, and sent to
the client query parsing and execution. Sensitive attributes
can occur anywhere within a query, e.g., in SELECT,
WHERE, or GROUP-BY clauses, in aggregation operators,
or within sub queries. The Query Parser’s job is then: To
ensure that any processing involving private attributes is
done within the SCPU. All private attributes are encrypted
using a shared data encryption keys between the client and
the SCPU hence, the host server cannot decipher these
attributes to optimize the rewrite of the client query such
that most of the work is performed on the host server. To
exemplify how public and private queries are generated
from the original client query, use an example from the
TPC-H benchmark. TPC-H does not specify any
classification of attributes based on security. Therefore, it
has been defined an attribute set classification into private
(encrypted) and public (no encrypted). In brief, all
attributes that convey identifying information about
customers, suppliers, and parts are considered private. The
resulting query plans, including rewrites into main CPU
and SCPU components for TPC-H queries Q3 and Q6 are
illustrated for queries that have WHERE clause conditions
on public attributes, the server can first SELECT all the
tuples that meet the criteria. The private attributes’ queries
are then performed inside the SCPU on these intermediate
results, to yield the final result. The host server first
executes a public query that filters all tuples which fall
within the desired ship date and quantity range, both of
these being public attributes.

The result from this public query is then used
by the SCPU to perform the aggregation on the private
attributes extended price and discount. While performing
the aggregation the private attributes are decrypted inside
the SCPU. Since the aggregation operation results in a new
attribute composing of private attributes it is re encrypted
within the SCPU before sending to the client. That the
execution of private queries depends on the results from the
execution of public queries and vice a-versa even though
they execute in separate database engines. This is made
possible by the Trusted DB Query Dispatcher in
conjunction with the Paging Module.

2. RELATED WORK

Researchers have recently discovered several
interesting, self-organized regularities from the World
Wide Web, ranging from the structure and growth of the
Web to the access patterns in Web surfing. What remains
to be a great challenge in Web log mining is how to explain
user behavior underlying observed Web usage regularities.
In this paper, we will address the issue of how to
characterize the strong regularities in Web surfing in terms
of user navigation strategies, and present an information for

aging agent based approach for describing user behavior.

By experimenting with the agent-based decision
models of Web surfing, we aim to explain how some Web
design factors as well as user cognitive factors may affect
the overall behavioral patterns in Web usage. In order to
further characterize user navigation regularities as well as
to understand the effects of user interests, motivation, and
content organization on the user behavior. An information
for aging agent based model that takes into account the
interest profiles, motivation aggregation, and content
selection strategies of users and, thereafter, predicts the
emerged regularities in user navigation behavior. In
summary, our work offers a means for explaining strong
Web regularities with respect to user Interest Profiles, Web
Content Distribution and coupling, and user navigation
strategies.

It enables us to predict the effects on emergent
usage regularities if certain aspects of Web servers or user
foraging behaviors are changed. While presenting an
interesting and promising research direction, it has been
point out that one of the useful extensions for future work
would be to show how the quantitative representations or
constructs as used in modeling Web contents and user
interest profiles. The planning Techniques help to bridge
the gap between the searching necessities and the Content
Adaptation. To Monitor and Adapt the learning object of
each learning route against unexpected contingencies.

Existing research addresses several such security
aspects, including access privacy and searches on
encrypted data. In most of these efforts data is encrypted
before outsourcing. Once encrypted however, inherent
limitations in the types of primitive operations that can be
performed on encrypted data lead to fundamental
expressiveness and practicality constraints. Recent
theoretical cryptography results provide hope by proving
the existence of universal homeomorphisms, i.e.,
encryption mechanisms that allow computation of arbitrary
functions without decrypting the inputs. Unfortunately
actual instances of such mechanisms seem to be decades
away from being practical.

3. PROPOSED TRUSTED DATABASE
ARCHITECTURE

A full-fledged, privacy enabling secure database
leveraging server-side trusted hardware can be built and
run at a fraction of the cost of any (existing or future)
cryptography-enabled private data processing on common
server hardware. The Proposed trusted database
architecture is shown in Fig 1. It has been validated by
designing and building Trusted DB, a SQL database
processing engine that makes use of tamperproof
cryptographic coprocessors such as the IBM 4764 in close
proximity to the outsourced data. Tamper resistant designs
however are significantly constrained in both
computational ability and memory capacity which makes
implementing fully featured database solutions using
secure coprocessors (SCPUs) very challenging. Trusted
achieves this by utilizing common unsecured server
resources to the maximum extent possible. E.g., Trusted
enables the SCPU to transparently access external storage

Volume 8, | ssue 08

Published by, www.ijert.org 2

www.ijert.org
www.ijert.org

Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCICCT - 2020 Conference Proceedings

while preserving data confidentiality with on-the-fly
encryption. This eliminates the limitations on the size of
databases that can be supported. Moreover, client queries
are pre-processed to identify sensitive components to be
run inside the SCPU. Non-sensitive operations are off-
loaded to the untrusted host server. This greatly improves
performance and reduces the cost of transactions.

The outsourced data are stored at the host
provider’s site. Query processing engines run on both the
server and in the SCPU. Attributes in the database are
classified as being either public or private. Private
attributes are encrypted and can only be decrypted by the
client or by the SCPU. Since the entire database resides
outside the SCPU, its size is not bound by SCPU memory
limitations. Query execution entails a set of stages, in the
first stage, a client defines a database schema and partially
populates it. Sensitive attributes are marked using the
SENSITIVE keyword which the client layer transparently
processes by encrypting the corresponding attributes. Later,
a client sends a query request to the host server through a
standard SQL interface. The query is transparently
encrypted at the client site using the public key of the
SCPU. The host server thus cannot decrypt the query. The
host server forwards the encrypted query to the Request
Handler inside the SCPU. The Request Handler decrypts
the query and forwards it to the Query Parser. The query is
parsed generating a set of plans. Each plan is constructed
by rewriting the original client query into a set of sub
queries, and, according to data set classification, each sub
query in the plan is identified as being either public or
private. The Query Optimizer then estimates the execution
costs of each of the plans and selects the best plan (one
with least cost) for execution forwarding it to the
dispatcher. The Query Dispatcher forwards the public
queries to the host server and the private queries to the
SCPU database engine while handling dependencies. The
final query result is assembled, encrypted, digitally signed
by the SCPU Query Dispatcher, and sent to the client.

3.1 QUERY PARSING AND EXECUTION

In the first stage a client defines a database schema
and partially populates it. Sensitive attributes are marked
using the SENSITIVE keyword which the client layer
transparently processes by encrypting the corresponding
attributes:
CREATE TABLE customer (ID integer primary
key, Name char (72) SENSITIVE, Address char
(120) SENSITIVE);
Later, a client sends a query request to the host server
through a standard SQL interface. The query is
transparently encrypted at the client site using the public
key of the SCPU. The host server thus cannot decrypt the
query. The host server forwards the encrypted query to the
Request Handler inside the SCPU. The Request Handler
decrypts the query and forwards it to the Query Parser. The
query is parsed generating a set of plans. Each plan is
constructed by rewriting the original client query into a set
of sub-queries, and, according to their target data set
classification, each sub-query in the plan is identified as
being either public or private. The Query Optimizer then

estimates the execution costs of each of the plans and
selects the best plan (one with least cost) for execution
forwarding it to the dispatcher. The Query Dispatcher
forwards the public queries to the host server and the
private queries to the SCPU database engine while
handling dependencies. The net result is that the maximum
possible work is run on the host server’s cheap cycles. The
final query result is assembled, encrypted, digitally signed
by the SCPU Query Dispatcher, and sent to the client.

3.2 QUERY OPTIMIZATION PROCESS

The Query Plan constructs to multiple plans for the client
query. The constructed plan the Query Cost Estimator
computes an estimate of the execution cost of that plan.
The selected and passed on to the Query Plan Interpreter
for execution. The Query Cost Estimator due to the logical
partitioning of data.

CLIENT
(USER)

REQUEST
(USER
QUERY)

CRYPTOGRAPHY

TRUSTED DB
QUERY
HANDLER —\
o ”,L\'TLT;TII,'&(,)L;k Ry .| DATABASE - PRIVATE USER QUERY
- ENGINE ATTRIBUTES

QUERY
OPTIMIZER

Fig 1.Trusted Database Architecture

At a high level query optimization in a database
system works as follows. The Query Plan Generator
constructs possibly multiple plans for the client query. For
each constructed plan the Query Cost Estimator computes
an estimate of the execution cost of that plan. The best plan
i.e., one with the least cost, is then selected and passed on
to the Query Plan Interpreter for execution. The query
optimization process in Trusted Database works similarly
with key differences in the Query Cost Estimator due to the
logical partitioning of data mentioned above.

3.3 SYSTEM CATALOG

Any query plan is composed of multiple
individual execution steps. To estimate the cost of the
entire plan it is essential to estimate the cost of individual
steps and aggregate them. In order to estimate these costs
the Query Cost Estimator needs access to some key
information. E.g., the availability of an index or the
knowledge of possible distinct values of an attribute. These
sets of information are collected and stored in the System
Catalog. Most available DBMS today have some form of
periodically updated System Catalog. The cost of a plan is
the aggregate of the cost of the steps that comprise it. The
execution times for a certain set of basic query plan steps
are estimated.

Volume 8, | ssue 08

Published by, www.ijert.org 3

www.ijert.org
www.ijert.org

Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCICCT - 2020 Conference Proceedings

4. CONCLUSION AND FUTURE ENHANCEMENTS

Queries on encrypted data, Propose division of
data into secret partitions and rewriting of range queries
over the original data in terms of the resulting partition
identifiers. This balances a trade-off between client and
server-side processing, as a function of the data segment
size, the propose using tuples-level encryption and indexes
on the encrypted tuples to support equality predicates. The
main contribution here is the analysis of attribute exposure
caused by query processing leading to two insights. The
attribute exposure increases with the number of attributes
used in an index, and the exposure decreases with the
increase in database size. Range queries are processed by
encrypting individual B+ Tree nodes and having the client,
in each query processing step, retrieve a desired encrypted
B+ Tree node from the server, decrypt and process it.
However, this leads to minimal utilization of server
resources thereby undermining the benefits of outsourcing.
Moreover, transfer of entire B+ Tree nodes to the client
results in significant network costs. In addition, a technique
referred to as splitting and scaling issued to differ the
frequency distribution of encrypted data from that of the
plaintext data. Here, each plaintext value is encrypted
using multiple distinct keys. Then, corresponding values
are replicated to ensure that all encrypted values occur with
the same frequency thereby thwarting any frequency-based
attacks. Use a salted version of IDA scheme to split
encrypted tuples data among multiple servers. In addition,
a secure B+ Tree is built on the key attribute. The client
utilizes the B+ Tree index to determine the IDA matrix
columns that need to be accessed for data retrieval. To
speed up client-side processing and reduce network
overheads, it is suggested to cache parts of the B+ Tree
index client-side.

The client query is split into multiple
queries wherein each sub query fetches the relevant data
from a server and the client combines results from multiple
servers, also use vertical partitioning in a similar manner
and for the same privacy goal, but differs in partitioning
and optimization algorithms. Trusted is equivalent to both,
when the size of the privacy subset is one and hence a
single server suffices. In this case, each attribute column
needs encryption to ensure privacy. Optimizer for querying
encrypted columns since otherwise they rely on client-side
decryption and processing, Introduce the concept of logical
fragments to achieve the same partitioning effect as on a
single server. A fragment here is simply areolation wherein
attributes not desired to be visible in that fragment are
encrypted. Trusted DB (and other solutions) are in effect
concrete mechanisms to efficiently query any individual
fragment from. The work on the other hand, can be used to
determine the set of attributes that should be encrypted in
propose an encryption scheme in a trusted-server model to
ensure privacy of data residing on disk. The FCE scheme
designed here is equivalently secure as a block cipher,
however, with increased efficiency only ensures privacy of
data residing on disk. In order to increase query
functionality, a layered encryption scheme is used and then
dynamically adjusted (by revealing key to the server)
according to client queries. Trusted DB, on the other hand,

operates in an un trusted server model, where sensitive data
are protected, both on disk and during processing. Data
that are encrypted on disk but processed in clear (in server
memory), compromise privacy during the processing
interval. The disclosures risks in such solutions are
analyzed also propose a new query optimizer that takes
into account both performance and disclosure risk for
sensitive data. Individual data pages are encrypted by
secret keys that are managed by a trusted hardware
module. The decryption of the data pages and subsequent
processing is done in server memory. Hence, the goal is to
minimize the lifetime of sensitive data and keys in server
memory after decryption.

REFERENCES
[1]. FIPS PUB 140-2, Security Requirements for Cryptographic
Modules,http://csrc.nist.gov/groups/STM/cmvp/standards.html#02,2

013.
[2]. TPC-H Benchmark, http://www.tpc.org/tpch/, 2013.
[3]. 1BM 4764 PCI-X

CryptographicCoprocessor,http://www03.ibm.com/security/cryptoca
rds/pcixcc/overview.shtml, 2007.

[4]. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina,
K.Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and Y.
Xu,“Two Can Keep a Secret: A Distributed Architecture for
SecureDatabase Services,” Proc. Conf. Innovative Data Systems
Research(CIDR), pp. 186-199, 2005.

[5]. Iliev and S.W. Smith, “Protecting Client Privacy with
TrustedComputing at the Server,” IEEE Security and Privacy, vol.
3, no. 2,pp. 20-28, Mar./Apr. 2005.

[6]. M. Bellare, “New Proofs for NMAC and HMAC: Security
WithoutCollision-Resistance,” Proc. 26th Ann. Int’l Conf. Advances
in
Cryptology, pp. 602-619, 2006.

[7]. B. Bhattacharjee, N. Abe, K. Goldman, B. Zadrozny, C. Apte,
V.R.Chillakuru, and M. del Carpio, “Using Secure Coprocessors
forPrivacy Preserving Collaborative ~Data Mining and
Analysis,”Proc. Second Int’l Workshop Data Management on New
Hardware(DaMoN ’06), 2006.

[8]. M. Canim, M. Kantarcioglu, B. Hore, and S. Mehrotra,
“BuildingDisclosure Risk Aware Query Optimizers for Relational
Databases,”Proc. VLDB Endowment, vol. 3, nos. 1/2, pp. 13-24,
Sept.2010.

[9]. S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware Based
Database with Privacy and Data Confidentiality,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD °’11), pp. 205-
216, 2011.

[10]. S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware Based
Outsourced Database Engine,” Proc. Int’l Conf. Very Large
DataBases (VLDB), 2011.

[11]. S. Wu, F. Li, S. Mehrotra, and B.C. Ooi, “Query Optimization for
Massively Parallel Data Processing,” Proc. Second ACM
Symp.Cloud Computing (CCS ’11), Article 12, 2011.

[12]. V. Ciriani, S.D.C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Combining Fragmentation and Encryption to
Protect Privacy in Data Storage,” ACM Trans. Information and
System Security, vol. 13, no. 3, pp. 22:1-22:33, July 2010.

[13]. E. Damiani, C. Vimercati, S. Jajodia, S. Paraboschi, and P.Samarati,
“Balancing Confidentiality and Efficiency in Untrusted Relational
DBMSs,” Proc. 10th ACM Conf. Computer and Communications
Security (CCS ’12), 2003.

Volume 8, | ssue 08

Published by, www.ijert.org 4

www.ijert.org
www.ijert.org

