
Efficient Implementation of Multiplier for Digital

FIR Filters

Smitha N Mallya

Dept. of EXTC

FCRIT, Vashi

Mumbai, India

Asst Prof. Sneha Revankar

Dept. of EXTC

FCRIT, Vashi

Mumbai, India

Abstract— This paper presents the method for implementing

the multiplier for digital Finite Impulse Response (FIR) filter

that requires optimized area and low power consumption.

Multiplication plays a vital role in most of the high performance

systems. The methods include Modified Booth Encoding

Algorithm along with carry save adder, shift/add multipliers.

These techniques are applied to FIR filters to minimize the area

and power consumption. The proposed designs for FIR filters

will be designed using Verilog HDL and synthesized,

implemented using Xilinx ISE.

Key Terms—FIR, Booth’s Algorithm, Modified Booth’s

Algorithm, Xilinx ISE, FPGA.

I. INTRODUCTION

Finite impulse response (FIR) filters are widely used in

various DSP applications. In some applications, the FIR filter

circuit must be able to operate at high sample rates, while in

other applications, the FIR filter circuit must act as a low-

power circuit that operates at moderate sample rates. The

structure of the multiplier circuit also affects the resultant

power consumption and speed. Choosing multipliers with

more hardware breadth rather than depth would not only

reduce the delay, but also the total power consumption. A lot

of design methods of low power digital FIR filter have been

proposed. They use a modified common sub expression

elimination algorithm to reduce the number of adders used in

the multiplication operation.

Multiplication is a most commonly used operation in

many computing systems. In fact multiplication is nothing

but addition since, multiplicand adds to itself multiplier

number of times gives the multiplication value between

multiplier and multiplicand. But one should consider the fact

that this kind of implementation really takes many hardware

resources and the circuit operates at utterly low speed. In

order to address this issue so many ideas have been presented

so far for the last three decades [8]. Each one is aimed at a

particular improvement according to the requirement. One

may be aimed at high clock speeds and another may be aimed

for low power consumption or less area occupation [3], [6].

Either way ultimate job is to come up with an efficient

architecture which can address three constraints of VLSI

speed, area, and power. Among these three, speed is the one

which requires special attention. If we observe closely

multiplication operation involves two steps one is producing

partial products and other is adding these partial products.

Thus, the speed of a multiplier hardly depends on how fast

the partial products are generated and how fast we can add

them together. If the numbers of partial products to be

generated are less then it is indirectly means that we have

achieved the speed in generating partial products. Booth‟s

algorithms are meant for this only. To speed up the addition

operation among the partial products we need fast adder

architectures. Since the multipliers have a significant impact

on the performance of the entire system, many high

performance algorithms and architectures have been proposed

by Renuka Narasimha, Rajasekhar and Sujana Rani [1].

The next sections give a brief summary of fir filter theory

and present the multiplication architecture adopted in our

implementation.

II. DIGITAL FILTER THEORY

Digital filters are typically used to modify or alter the

attributes of a signal in the time or frequency domain. The

most common digital filter is the linear time-invariant (LTI)

filter. An LTI interacts with its input signal through a process

called linear convolution, denoted by y = f * x where f is the

filter‟s impulse response, x is the input signal, and y is the

convolved output. The linear convolution process is formally

defined by:

Y[n] = x[n] * f[n] =

 = Σk=0 f[k]x [n-k]

(1)

LTI digital filters are generally classified as being finite

impulse response (i.e., FIR), or infinite impulse response (i.e.,

IIR). An FIR filter is a filter whose impulse response settles

to zero in finite time. An IIR filters may have an internal

feedback and continue to respond indefinitely. As the name

implies, an FIR filter consists of a finite number of sample

values, reducing the above convolution sum to a finite sum

per output sample instant. An FIR with constant coefficients

is an LTI digital filter. The output of an FIR of order or

length L, to an input time-series x[n], is given by a finite

version of the convolution sum given in Eq (1), namely:

 (2)

where f[0] 0 through f[L-1] 0 are the filter‟s L

coefficients. They also correspond to the FIR‟s impulse

response. For LTI systems it is sometimes more convenient to

express in the z-domain with

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS051158

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

1661

Y(z) = F(z) X(z) (3)

where F (z) is the FIR‟s transfer function defined in the z-

domain by

 (4)
The L

th
-order LTI FIR filter is graphically interpreted in

Figure.1. It consists of a collection of a “tapped delay line,”

adders, and multipliers. One of the operands presented to

each multiplier is an FIR filter coefficient, often referred to as

a “tap weight”.

The FIR filter with transposed structure Figure.1 has

registers between the adders and can achieve high throughput

without adding any extra pineline registers.

Figure 1: FIR filter in the transposed structure

.

III. FIR IMPLEMENTATION

The multiplier is one of the essential elements of the

digital signal processing such as filtering, convolution, and

inner products. Most digital signal processing methods use

nonlinear functions such as discrete cosine transform (DCT)

or discrete wavelet transform (DWT). Because they involve

repetitive application of multiplication and addition, the speed

of the multiplication and addition determines the execution

speed and performance of the entire calculation. Because the

multiplier requires the longest delay among the basic

operational blocks in digital system, the critical path is

determined by the multiplier, in general.

 Fast multipliers are an important part of digital signal

processing systems. The speed of multiply operation is of

great importance in digital signal processing as well as in the

general purpose processors today. In the past, multiplication

was generally implemented via a sequence of addition,

subtraction, and shift operations. Multiplication can be

considered as a series of repeated additions. The number to be

added is the multiplicand, the number of times that it is added

is the multiplier, and the result is the product. Each step of

addition generates a partial product. In most computers, the

operand usually contains the same number of bits. When the

operands are interpreted as integers, the product is generally

twice the length of operands in order to preserve the

information content. This repeated addition method that is

suggested by the arithmetic definition is slow. It is almost

always replaced by an algorithm that makes use of positional

representation. It is possible to decompose multipliers into two

parts. The first part is dedicated to the generation of partial

products, and the second one collects and adds them. The

basic multiplication principle is twofold i.e., evaluation of

partial products and accumulation of the shifted partial

products. It is performed by the successive additions of the

columns of the shifted partial product matrix. The multiplier is

successfully shifted and gates the appropriate bit of the

multiplicand. The delayed, gated instance of the multiplicand

must all be in the same column of the shifted partial product

matrix. They are then added to form the final product. For

high-speed multiplication, there are some of the methods

discussed in this paper.

A. Shift and Add Multiplier

In this section we present a simple Shift and Add structure

for multiplier used in FIR filters [2]. It performs

multiplication by generating partial products. It shifts the

multiplicand left by one bit after every partial product

calculation. The partial product of the current stage is set to

the sum of the previous partial product and the shifted

multiplicand of the current stage or 0, depending on whether

the multiplier bit in the current stage is 1 or 0.

Reference Model: Shift-and-Add for 3-bit operands

Stage 1.

Rule a: product = product + mcand if(y [0])

Rule b: product = product + 0 if (! y [0])

Stage 2.

Rule a: product = product + mcand<<1 if(y [1])

Rule b: product = product + 0 if (! y [1])

Stage 3.

Rule a: product = product + mcand<<2 if(y [2])

Rule b: product = product + 0 if (! y [2]).

 The same procedure is followed for n-bit multiplication.

In this paper we have proposed a 16X16 bit shift and Add

multiplier.

B. Modified Booth Multiplier

In order to achieve high-speed multiplication, modified

Booth algorithm has been presented in this section. Booth

multiplication is a technique that allows for smaller, faster

multiplication circuits, by recoding the numbers that are to be

multiplied [7]. It is possible to reduce the number of partial

products by half, by using the technique of radix-4 Booth

recoding. The basic idea is that, instead of shifting and adding

for every column of the multiplier term and multiplying by 1

or 0, we only take every second column, and multiply by ±1,

±2, or 0, to obtain the same results. The advantage of this

method is the halving of the number of partial products.

Booth's multiplication algorithm is a multiplication

algorithm that multiplies two signed binary numbers in two's

complement notation.

1) Radix-2 Multiplication

The simple multiplication generator can be used to reduce

the number of partial products by grouping the bits of the

multiplier into pairs, and selecting the partial products from

the set 0, +-M, where M is the multiplicand. Here the

multiplier is grouped into two bits. Each encoded digit

performs some operation on the multiplicand generating the

partial product with the help of the selection Table 1. Each

partial product is shifted one bit position to the left with

respect to its neighbors. These partial products are then added

to obtain the final product.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS051158

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

1662

Table 1: Partial product selection table for radix 2

Multiplier bits Selection

00 0

01 +Multiplicand

10 -Multiplicand

11 0

2) Radix -4 Multiplication

The Radix-4 Modified Booth‟s Algorithm reduces the

number of partial products by about a factor of two. This

selects the partial products from the set of 0, +-M, +-2M,

where M is the multiplicand. The multiplier is appended by a

„0‟ on LSB; we will call this bit as Z. The multiplier is

partitioned into overlapping groups of 3 bits, and each group

is decoded to select a single partial product as per the selection

Table 2. Each partial product is shifted 2 bit positions with

respect to its neighbors. The number of partial products will

be reduced from 16 to 9 for a 16X16 multiplication. In general

the there will be (n+2)/2 partial products, where n is the

operand length.
Table 2: Partial product selection table for radix 4

Multiplier bits Selection

000 0

001 +Multiplicand

010 +Multiplicand

011 +2Multiplicand

100 -2Multiplicand

101 -Multiplicand

110 -Multiplicand

111 0

Figure 2: Recoding of multiplier

Each block is decoded to generate the correct partial

product. The encoding of the multiplier Y, using the modified

booth algorithm, generates the following five signed digits, -2,

-1, 0, +1, +2. Each encoded digit in the multiplier performs a

certain operation on the multiplicand as illustrated in the Table

2.

The modified Booth‟s algorithm (radix-4 recoding) starts

by appending a zero to the right of x0 (multiplier LSB).

Triplets are taken beginning at position x –1 and continuing to

the MSB with one bit overlapping between adjacent triplets. If

the number of bits in the multiplier (excluding x –1) is odd, the

sign (MSB) is extended one position to ensure that the last

triplet contains 3 bits. In every step we will get a signed digit

that will multiply the multiplicand to generate a partial

product entering the Carry save adder.

C.Architecture for Booth Multiplication

Figure 3: Architecture for Booth Multiplication

The multiplier takes two n-bit inputs: the multiplier (MR)

and the multiplicand (MD), and produces the 2n-bit

multiplication result of the two as its output. The architecture

of the booth multiplier primarily consists of four major

modules as shown in Fig.3. They are: 2's Complement

Generator, Booth Encoder, Partial Product Generator and

Carry Save Adder. The multiplier has been constructed in its

simplest conceptual form. We will be using original Booth's

Algorithm (Radix 4 encoding) for the Booth Encoder [4]. The

2's Complement Generator is used to generate the two‟s

complement of the multiplicand. The 2's

Complement Generator takes the multiplicand MD as its

input and produces -MD as its output. 2's complement is

required when recoded multiplier bit signifies negative

multiplication. 2's complement is generated by inverting all

bits of the multiplicand and then adding 1 using a ripple carry

adder. The Partial Product Generator uses two control signals

x and z produced by the Booth Encoder and uses these

signals to choose from and extend signs of '0', MD,-

MD,2MD or -2MD for creating partial products. There will

be n/2 partial products if „n‟ is even, (n+1)/2 partial products,

if „n‟ is odd. The final intermediate results are added using a

Carry Save Adder. Carry Save Adder (CSA) adds two

numbers with very lower latency. The carry save adder will

avoid the unwanted addition and thus minimize the switching

power dissipation.

IV. SIMULATION RESULTS

The multiplier is designed using verilog HDL and

simulated using Xilinx ISE. The Fig.4 below shows the

simulation result for 16x16 Shift and Add Multiplier. Fig.5.

shows the simulation result of a radix2 booth multiplication

taking two 16 bit inputs.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS051158

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

1663

Figure 4: Simulation result of Shift and Add Method

 Figure 5: Simulation result for Radix2 Booth Multiplication

A. Comparison

The number of partial products in Radix 8 is less as

compared to Radix4. Hence Radix 8 architecture is faster than

Radix4.It is clear that Radix 8 requires less number of

transistor switching and reduces power consumption.

V. CONCLUSION

In this paper we are presenting a efficient way to

architecture for multiplier of FIR filter. For reducing power

consumption and area we are using Modified Booth Encoding

Algorithm. The above multiplication techniques presented in

this paper result in the reduction of the number of partial

products, as the number of partial products reduce the ime

taken by adder to calculate the final product will be greatly

reduced contributing in high speed multiplication. As the

number of transistor switching will be less, in the total power

consumption will also be reduced leading to efficient

implementation of multiplier. Hence it can be concluded that

Radix4 is faster compared to Radix2 and normal shift add

multiplier .and thus can be used in high speed multiplication.

As a future advancement in same a radix 8 encoded multiplier

algorithm can be designed which will further reduce the

partial products and simultaneously the power

consumption.The proposed FIR filters can be designed and

synthesized using Verilog in Xilinx ISE and Cadence. The

design is finally implemented using Xilinx ISE Spartan 3E

FPGA.

ACKNOWLEDGMENT

I would like to thank my guide Asst Prof .Sneha

Revankar, of the department of Electronics and

Telecommunication, FCRIT, Vashi for her constant guidance

and encouragement.

 REFERENCES

[1] A.Renuka Narasimha, K.Rajasekhar,A.Sujana Rani ,

“Implementation of low area and power efficient architectures

for digital FIR filters”, IJARCSSE ,Volume 2, Issue 8, August

2012.

[2] Shahnam Mirzaei, Anup Hosangadi, Ryan Kastner,”FPGA

implementation of high speed FIR filters using Add and Shift

method”, IEEE, 2006

[3] Yun-Nan Chang,Janardhan H Sathyanarayana,Keshab K.

Parhi,”Design and implementation of low power digital Serial

Multipliers,” University of Minnesota,Minneapolis

[4] B.N. Manjunatha Reddy, H. N. Sheshagiri, Dr. Shanthala

S.,”Area Optimization of 8-bit multiplier using gate diffusion

input logic,” International Journal of Advanced Trends in

Computer Science and Engineering,2013

[5] J.Umamaheshwari M.Veni Saranya,”Asic implementation of

low power High Radix Booth Encoded Multiplier using Spst”,

International Journal of Communications and Engineering

,March 2012

[6] H. S. Krishnaprasad Puttam, P. Sivadurga Rao & N. V. G.

Prasad,.”Implementation of Low Power and High Speed

Multiplier-Accumulator Using SPST Adder and Verilog “,

International Journal of Modern Engineering Research ,Sept-

Oct 2012

[7] Sarita Chouhan Kota, Yogesh Kumar, “Low Power Designing

of FIR Filters,” IJATER ,May 2012

[8] Rupali Madhukar Narsale, Dhanasri Gawali,”Design and

implementation of low power FIR filter:A review”

International Journal of VLSI and Embedded Systems-

IJVES,March-April 2013

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS051158

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

1664

