
Efficient Implementation of Modular Multiplication using

Carry Look Ahead Adder

1
Muhammad Aqeel Aslam,

2
Ahmad Bilal

Electrical (Electronics) Department of Swedish College of Engineering & Technology

Rahim Yar Khan

Abstract— Data security is an important aspect of

information transmission and storage in an electronic

form. Cryptographic systems are used to encrypt such

information to guarantee its security. To retrieve such

information, the encrypted form must be first decrypted.

One of the most popular cryptographic systems is the

RSA public key crypto system. The larger the RSA

public modulus size, the stronger will be the RSA

cryptosystem. Unfortunately, the RSA is extremely

vulnerable to timing attacks which can deduce the

private RSA exponent due to regularity of operations in

the straight forward implementation of exponentiation

using the square and multiply method or its variants.

Timing attacks constitute a major threat to the all

systems using RSA and hence, implementations must be

protected. The work reported here proposes Secure

Implementation of RSA algorithm against timing attacks.

This implementation is done using Verilog HDL and

targeting Xilinx FPGA devices.

Keywords— RSA, FPGA, Modular Multiplication,

Ripple Carry Adder, Carry Look Ahead Adder

I. INTRODUCTION

Encryption is a well recognized technique for

the protection of data and information. It is used

effectively to protect sensitive data. The transfer

of data from one form to another form, which is

unreadable without the secret key, is called

encryption. Several techniques have been used

for many years. Cryptographic systems are

classified into two main categories secret key

cryptosystem and public key cryptosystem.

Only one key is involved in Secret key

cryptosystem. This key is used for both

encryption and decryption. However, public key

cryptosystem uses two different keys one for

encryption and other one for the decryption.

Day by day the significance of FPGA (Field

Programmable Gate Array) is increasing.

FPGAs are playing very important role in

commercial area and research area as well. The

technology of FPGA is more affordable as

compared to ASICs. FPGAs are reconfigurable

platforms. The choice of reconfigurable

platforms for cryptographic algorithm appears

to be practical and it provides high speed in

applications.

In 1978 RSA algorithm was first developed by

Rivest, Shamir and Aldeman. RSA is an

example of public key algorithm. If the modulus

size is large, the algorithm is secure. This

algorithm is computationally intensive and it

operates on very large integers. RSA algorithm

can be used for encryption / decryption and

digital signatures. RSA is the most popular

method for the public key cryptosystems. The

key size determines the security of RSA

algorithm. The larger is the key size, more is the

security.

II. MODULAR MULTIPLICATION

Multiplication was done by suing Shift and Add

method. In Modular Multiplication this requires an

additional module of division. Division is the most

complex part of the hardware. We switch on to

Booth multiplier and 16 bit multiplication results

are shown in the following figure. Booth

multiplication also has some limitations. Since we

are working on the security of the system, so we

have already loss some of the speed. There are two

methods which are quite useful in Modular

Arithmetic. They are Wallace Tree Reduction and

Dadda Tree Reduction. Therefore, we proffered

Wallace Tree Reduction Method in order to gain

some speed in the RSA Algorithm.

Figure 1.Modular Multiplication

1414

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120658

The following diagram shows the complete

architecture of the multiplication. In the

following figure the multiplicand and the

multiplier are of 4 bits each. Partial product

array we generated using simply the AND

operation of two bits. After generating the

partial products array we implemented partial

product array reduction by using Wallace tree

reduction scheme, instead of dada reduction

scheme. After producing partial product array

reduction we finally add the result using adder.

This addition was done by Carry Look Ahead

adder (CLA), as the Carry Look Ahead Adder is

the fastest adder. The detail of the

implementation of Carry Look Ahead Adder has

been shown in the following section.

Figure 2.Multiplication using reduction scheme

The following diagram shows the simulation results

of Shift and Add Multiplication algorithm.

Figure 3.Simulation Result of Shift and Add

Multiplication

Figure 4 shows the simulation results of he

Montgomery multiplication using Wallace tree

reduction scheme.

Figure 4.Simulation Result of Multiplication

using Wallace Tree Reduction Method

III. ADDITION

Addition is the basic part of the Arithmetic

Logic Unit (ALU), which is used in all other

operations. The overall performance depends

upon the speed of addition. We started our

implementation by using Ripple Carry Adder.

After some further literature review it came into

notice that Ripple Carry Adder has some

drawbacks in terms of delay. Therefore, we

switched on to Carry Look Ahead Adder, which

has less delay while propagating carry. As

already mentioned, that addition operation is the

most important and fundamental and it plays a

major role in all operations. The delay effect is

minimizing by CLA. First, we made a Carry

Look Ahead adder of 4 bits, we instantiate it to

make a 16 bit adder. We instantiate these 16 bit

adder to form the Carry Look Ahead Adder of

64 bits and then these 64 bit adders cascaded to

make the required adder of 512 bits.

Figure 5.Addition of n bits

The following figure shows the RTL schematic

of addition of 64 bits. The results of the Ripple

Carry Adder and Carry Look ahead Adder has

been shown in the following figure.

Figure 6.Simulation Result of 64 bit Carry Look

Ahead Adder

1415

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120658

Figure 7 Simulation Result of 64 bit Ripple

Carry Adder

A comparison between Ripple Carry Adder and

Carry Look Ahead Adder has shown in the

following section.

S. No Ripple Carry

Adder

Carry Look

Ahead Adder

1. It is a straight

forward way of

adding two or

more than two

bits.

Carry Look

Ahead Adder

calculates the

carry bits before

the sum.

2. Wait time is

much more

because carry

is calculated

alongside sum.

It reduces the

wait time.

3. In 16 bit Ripple

Carry Adder, we

find

CPU : 2.89 / 3.06

s | Elapsed : 3.00

/ 3.00 s

In 16 bit Carry

Look Ahead

Adder we get

CPU : 2.90 / 3.07

s | Elapsed : 3.00

/ 3.00 s

4. In Ripple Carry

Adder every carry

out has to be

carry in of the

next stage.

Carry Look

Ahead Adder uses

the logic of

generating and

propagating

carries.

Table 1 Comparison between Adders

IV. RESULTS

In this section we have shown the comparison of

different implementations of Modular

Multiplication. We have implemented modular

multiplication using Carry Look Ahead Adder.

The following table is clearly showing that this

implementation is far fast as compare to the

previous implementations.

V. CONCLUSION AND FUTURE WORK

We have implemented the modular

multiplication which was the fastest due to

Carry Look Ahead adder. We can enhance the

speed of the addition operation by implementing

the combination of adders. If we use

combination of two adders for the addition the

speed of the final result will be enhanced and

time will be reduced significantly.

VI. REFERENCES

[1]. Secure Implementation of RSA

Algorithm against Timing Attacks, MS Thesis

Project, Department of Electronic and Power

Engineering, College of Marine Engineering

(PNEC), National University of Sciences and

Technology, Islamabad

[2]. Implementation of Efficient Modular

Exponentiation on Reconfigurable Platforms,

August 2008, Kashif Latif, Department of

Electronic and Power Engineering, College of

Marine Engineering (PNEC), Karachi, National

University of Sciences and Technology,

Islamabad

[3]. Efficient Hardware Design and

Implementation of AES Cryptosystem, Pravin B.

Ghewari et al. International Journal of

Engineering Science and Technology, Vol. 2(3),

2010, 213-219

[4]. Carry-Save Montgomery Modular

Exponentiation on Reconfigurable Hardware, A.

Cilardo, A. Mazzeo, L. Romano, G. P. Saggese,

Universit`a degli Studi di Napoli Federico II,

Italy, Volume 3, IEEE Computer Society
Washington, DC, USA @ 2004
[5]. A Review of Modular Multiplication

Methods and Respective Hardware

Implementations, Nadia Nedjah, Department of

1416

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120658

Electronics Engineering and

Telecommunications, Engineering Faculty,

Informatica 30 (2006) 111–129 111

[6]. Montgomery Algorithm for Modular

Multiplication, Professor Dr. D. J. Guan, August

25, 2003

[7]. Modular Multiplication using

Montgomery method, Haoxin (Larry) Song,

ECE 543 Final Project Report

1417

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120658

