
Efficient Fragmentation and Allocation in Distributed Databases

A. Suganya

II M.E, Computer Science and Engineering,

Sri Shakthi Institute of Engineering and

Technology, Coimbatore, India.

 R. Kalaiselvi

Assistant Professor, Department of Computer

Science and Engineering, Sri Shakthi Institute of

Engineering and Technology, Coimbatore, India.

Abstract

An efficient functionality of any distributed database

system is highly dependent on its proper design in terms

of adopted fragmentation and allocation methods.

Fragmentations of large, global databases are

performed by dividing the database horizontally,

vertically or combination of both. In order to enable the

distributed database systems to work efficiently, the

fragments have to be allocated across the available

sites in such a way that reduces communication cost of

data. A method of clustering sites is proposed where the

sites which are nearer such that they have low cost

among them for communication are grouped as one

cluster and the fragments are allocated to the cluster.

Also the static allocation of fragments provides only the

limited response to the changes in workload. Hence

dynamic methods are adopted for fragmentation of both

structured and unstructured databases. This reduces

the movement of data and also improves the overall

system performance.

Keywords—Distributed database, fragmentation,

allocation of fragments, cluster of sites.

1. Introduction

Distributed database systems comprise a single

logical database that is partioned and distributed across

various sites in a communication network. Database

technology has become prevalent in most business

organizations. Distributed Database System (DDS) are

becoming more affordable and useful. A DDS typically

consist of a number of distinct yet interrelated

databases (fragments) located at different geographic

sites which can communicate through a network.

Typically, such a system is managed by a distributed

database management system (DDBMS). Each site of

the DDS has its own hardware and is capable of

autonomous operation. A site participates in the

execution of global transactions involving databases at

two or more remote sites.

Designing distributed database systems is fairly

complex task because it involves several interacting

design decisions.

The primary decisions are as follows.

 Fragmentation: A single database needs to be

divided into two or more pieces such that the

combination of the pieces yields the original

database without any loss of information. Each

resulting piece is known as a database fragment.

 Allocation: Each fragment must be allocated to a

location in the distributed environment such that

the system functions effectively and efficiently.

 Replication: Copies of a fragment must be

allocated to other locations in the distributed

environment to enhance system performance. Too

many copies of a fragment tend to slow down

updates while enhancing the performance of read-

only queries. Too few copies of a fragment will

decrease the availability of data and the

performance of read-only queries.

 Concurrency control: Appropriate techniques are

required to synchronize the various copies of a

fragment. These techniques must take into account

of the requirements on the concurrency of data

held in the copies and the existence of multiple

users.

 Query processing: Since a query may access

multiple fragments, and since each fragment may

have multiple copies, query optimization becomes

an important issue.

In addition, there are other design decisions such as

the configuration of the network connecting the

database sites, allocation of storage capacity and

security. Many of the decisions outlined above are not

independent of each other. For example, fragmentation

and allocation are very closely related, with each

decision affecting the other. Fragmentation and

allocation typically use similar input parameters (e.g., a

description of user queries, updates, data access

frequencies, communication cost, and relationships

among data objects). In distributed databases, the

communication costs can be reduced by partitioning

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

database tables horizontally into fragments, and

allocating these fragments to the sites where they are

most frequently accessed. The aim is to make most data

accesses local, and avoid remote reads and writes. The

read cost can be further reduced by the replication of

fragments when beneficial. Obviously, important

challenges in fragmentation and replication are how to

fragment, when to replicate fragments, and how to

allocate the (replicated) fragments.

 Previous works on data allocation has focused on

static fragmentation based on analyzing queries. These

techniques are only useful in contexts where read

queries dominate. However, in many application areas,

workloads are very dynamic with frequent changes in

access patterns at different sites. One common reason

for this is that their data usage often consists of two

separate phases: a first phase where writing of data

dominates (for instance during simulation when results

are written), and a subsequent second phase when a

subset of the data, for example results, is mostly read.

The dynamism of the overall access pattern is further

increased by the different instances of the applications

executing in different phases at different sites. Because

of dynamic workloads, static/manual fragmentation and

replication may not always be optimal. Instead, the

fragment and replication management should be

dynamic and automatic i.e., change in access patterns

should result in refragmentation and reallocation of

fragments when beneficial, as well as in the creation or

removal of fragment replicas.

The primary concern of this paper describes the

approach to perform fragmentation of structured data

and the secondary concern is to fragment an

unstructured data. Furthermore allocation of fragments

to the cluster of sites is carried out in order to reduce

the communication cost.

The rest of the paper is organized as follows: Section 2

describes the fragmentation concept on structured data.

Section 3 describes the fragmentation concept on

unstructured data. Section 4 describes the allocation of

fragments to cluster of sites rather than allocating to

individual sites. Section 5 describes some concluding

remarks of the paper.

2. Fragmentation on structured data

A. Architecture

The Distributed Database System(DDBS) must be

capable to support more complex and more

sophisticated functionality. Networks have several

types of topologies that define how nodes are

physically and logically connected. One of the popular

topology used in DDBS, the client-server architecture

is described as follows: the principle idea of this

architecture is to define specialized servers with

specific functionalities. The servers are connected to a

network of clients that can access the services of the

servers. Stations (servers or clients) can have different

design complexities starting from diskless client to

combined server-client machine. The DBMS functions

are divided between servers and clients using different

approaches. The client refers to a data distribution

dictionary to know how to decompose the global query

into multiple local queries.

 Fig.2.1 Client Server Architecture

The interactions are as follows:

1. Client parses the user’s query and decomposes it into

independent site queries.

2. Client forwards each independent query to the

corresponding server by consulting with the data

distribution dictionary.

3. Each server processes the local query and sends back

the resulting relation to the client.

4. Client combines (manually by the user, or

automatically by client abstract) the received

subqueries, and do more processing if needed to

get to the final target result.

B. Fragmentation

The Primary concern of distributed database system

design is to perform fragmentation of the relations in

case of relational database or classes in case of object

oriented databases and allocation of the fragments into

different sites of the distributed system. Fragmentation

is a design technique to divide a single relation or class

of a database into two or more partitions such that on

combining the partitions provides the original database

without any loss of information. This reduces the

amount of irrelevant data accesses by the applications,

thus reducing the number of disk accesses.

Fragmentation is classified into horizontal, vertical and

mixed/hybrid.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

i. Horizontal Fragmentation
Horizontal fragmentation (HF) allows a relation or

class to be partitioned into disjoint tuples or instances.

Intuition behind horizontal fragmentation is that every

site should hold all information that is used to query at

the site and the information at the site should be

fragmented so the queries of the site run faster.

Horizontal fragmentation is defined as selection

operation of the relational algebra, σ (R).

Computing horizontal fragmentation

a. Compute the frequency of the individual

queries Q1, . .Qq of the site.

b. Rewrite the queries of the site in the

conjunctive normal form (disjunction of

conjunctions); the conjunctions are called

minterms.

c. Compute the selectivity of the minterms.

d. Find the minimal and complete set of

minterms (predicates).

e. The set of predicates is complete if and only if

any two tuples in the same fragment are

referenced with the same probability by any

application.

f. The set of predicates is minimal if and only if

there is at least one query that accesses the

fragment.

ii. Vertical Fragmentation
Vertical fragmentation (VF) allows a relation or

class to be partitioned into disjoint sets of columns or

attributes except the primary key. Each partition must

include the primary key attribute(s) of the table. This

arrangement can make sense when different sites are

responsible for processing different functions involving

an entity.

Objective of vertical fragmentation is to partition a

relation into a set of smaller relations so that many of

the applications will run on only one fragment.

a. Vertical fragmentation of a relation R, produces the

fragments R1, R2 etc. Each of which contains a subset

of R’s attributes.

b. Vertical fragmentation is defined using the

projection operation of the relational algebra: П (R)

iii. Hybrid Fragmentation
Combination of horizontal and vertical

fragmentations is mixed or hybrid fragmentations

(MF). In this type of fragmentation scheme, the relation

is divided into arbitrary blocks based on the

transactions. Each fragment can be allocated on to a

specific site. This type of fragmentation is the most

complex one, which needs more management. In most

cases simple horizontal or vertical fragmentation of a

DB schema will not be sufficient to satisfy the

requirements of the applications.

Mixed fragmentation (hybrid fragmentation) is carried

out either by horizontal fragmentation followed by

vertical fragmentation, or vertical fragmentation

followed by horizontal fragmentation. Mixed

Fragmentation is defined using the selection and

projection operations of relational algebra:

П_p(_A1,. .., An(R))

П _A1,. .., An(_p(R))

A fragment of a relation is also a relation. Fragments

can be further fragmented.

Overview of dynamic fragmentation

This section describes the proposed approach to

fragment tables dynamically, and replicate those

fragments on different sites in order to improve locality

of table accesses and thus reduce communication costs.

The proposed approach has two main components: 1)

detecting replica access patterns, and 2) Decision on

refragmentation and reallocation. Each site can take

decisions to carry out fragmentation, replication and

migration independently of other sites. This makes it

possible to use our approach without communication

overhead, changing the network protocol. In order to

make informed decisions about fragmentation and

replica changes, future accesses have to be predicted.

As with most algorithms, predicting the future is based

on knowledge of the past. In our approach, this means

the detecting replica access patterns, i.e., which

fragments are accessed by which sites. This is

performed by recording replica accesses. Because of

recording the access patterns continuously, old data

may be discarded periodically such that statistics only

include recent accesses. In this way, the system can

adapt to the changes in access patterns. Statistics are

stored using histograms design.

3. Fragmentation on unstructured data

The world-wide web (WWW) is often considered to

be the world's largest database and the eXtensible

Markup Language (XML) is then considered to provide

its data model. There raises the question, how to obtain

a suitable distribution design for XML documents.

Here horizontal and vertical fragmentation techniques

are generalised from the relational data model to XML.

Furthermore, splitting is introduced as a third kind of

fragmentation. Then it is shown how relational

techniques for defining reasonable fragments can be

applied to the case of XML.

In this section, XML is described as a data model.

Extended DTDs(Document Type Definitions) are used

to define schemata. Equivalently, XML-Schema is

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

used, but extensions would be needed. Then it is

considered to be the standard for XML documents as

databases over such schemata. The queries are used

with an extension of XML-QL. Equivalently, XQuery

could be used, but again extensions would be needed in

both cases.

A. Schemata and Document Type Definitions

A document type definition (DTD) may be

considered as some kind of schema. Within such a

DTD the regular expressions can be considered as some

form of typing. We will make this view explicit and

introduce a typed version of XML. The Types are to be

considered are used as abstract syntax.

t = b |t
0
|t

*
|t

+
|t1........tn| t1........  tn

Here, b represents as usual a collection of base types.

Among these base types it is assumed to have a type

ID, i.e., a type representing a not further specified set of

identifiers. There may be other base types such as INT ,

STRING , URL for integer, character strings and URL-

addresses respectively.  is a type representing just an

empty sequence or tuple. t* and t
+
 represent arbitrary

or non-empty sequences, respectively, with values of

type t. t
0

represents the values of type t or the empty

sequence. t1........tn represents sequences or tuples.

Finally, t1........tn represents a disjoint union.

B. Fragmentation

i. Split fragmentation

The splitting operation originates from work on object

oriented databases. It simply takes a complex

expression inside a class definition and replaces it by a

reference to a new class. In the context of XML it is

convenient to assume that the root-element has a

defining expression of the form n1 ........  nk, so that

we could refer to each ni as a class. Splitting would thus

result in a new class nk+1, and in some element we

would now reference to this new class. It is also

possible to place nk+1 into a completely new document

with a newly created URL-address, in which the

external references would be obtained.

The construction of a new XML document can be

obtained by a query, though the following example.

Example query for split fragmentation:

<db>

CONSTRUCT

<wine w-id=$I producer=$P price=$Q>

<name_ref ref_to_name newID($N)/>

<rest>$R</>

</wine>

<name n-id=$N>$M</>

FROM

<db><wine w-id=$I producer=$P price=$Q>

<name>$M</>

<rest>$R</>

</></>IN”XYZ”

.

.

</db>

In the above example, splitting is carried out to separate

names of wines from wine themselves where XYZ is

an URL.

ii. Horizontal fragmentation

The two versions of generalising horizontal

fragmentation from RDM to the object oriented case is

considered. The first version which addresses

horizontal fragmentation on the level of classes,

whereas the second one addresses the problem on the

level of bulk types inside the structure definition of the

classes. However, at the end it turns out that the second

version only leads to fragmentation, if it is followed by

a splitting fragmentation. In this case, the same results

can b

e obtained by applying the splitting fragmentation. The

horizontal fragmentation can be achieved by the

following selection query.

Example selection query for horizontal fragmentation:

<db>

CONSTRUCT

<cheap_wine w-id=$I producer=$p price=$Q>$W</>

FROM

<db><wine w-id=$I producer=$P

price=$Q>$W</></>IN “XYZ”

$Q<10

CONSTRUCT

<expensive_wine w-id=$I producer=$P

price=$Q>$W</>

FROM

<db><wine w-id=$I producer=$P

price=$Q>$W</></>IN “XYZ”

$Q>=10

.

.

</db>

In the above example, the dots indicate the parts

dealing with carrying over vineyard and region-

elements to the new document. Wines are fragmented

into cheap wines with price less than 10 dollars and

expensive wines with price greater than 10 dollars.

iii. Vertical Fragmentation

The Vertical fragmentation in the RDM corresponds to

projecting to subsets of attributes. For an XML-element

it is possible to define a vertical fragmentation, when

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

the defining expression is a sequence. The vertical

fragmentation can be realized by projection queries.

The queries are used on XML for fragmenting

elements. The splitting cannot be expressed as a special

form of vertical fragmentation.

Example projection query for vertical fragmentation:

<db>

CONSTRUCT

<wine w-id=$I price=$Q>

<name>$N</>

<year>$Y</></>

<wine-info for_wine=$I producer=$P>

<grapes>$G</></>

FROM

<db><wine w-id=$I producer=$P price=$Q>

<name>$N</>

<year>$Y</>

<grapes>$G</></></>IN”XYZ”

.

.

</db>

In the above example, element wine is fragmented into

new elements wine and wine-info.

4. Fragment allocation
 The fragment allocation design is an essential issue

that improves the performance of the applications

processing in the Distributed Database systems. The

database queries that access the applications on the

distributed database sites should be performed

effectively. Therefore the fragments that are accessed

by queries are needed to be allocated to the distributed

database sites so as to reduce the communication cost

during the applications execution and handling their

operational processing. A method for grouping the sites

is proposed to optimize the cost of the fragment

allocation functions and to reduce the queries

processing time by allocating the fragments to the

cluster of sites instead of allocating the fragments site

by site.

Clustering sites

Clustering is the process of grouping sites according

to a Communication Cost Range(CCR) to increase the

system I/O performance and reduce storage overheads.

Clustering helps in reducing the communication costs

between the sites during the process of data allocation.

Two sites (Si, Sj) are grouped in one cluster if the

communication cost between them is less than or equal

to a CCR; the number of communication units which is

allowed for the maximum difference of the

communication cost between the sites to be grouped in

the same cluster, this number is determined by the

network of the DDBs.

Fig. 4.1- shows the distribution of the fragments over

the clusters.

Estimating the cost:

i. Cost of Allocating a Fragment to a Cluster
The cost for allocating the fragment Fi to the cluster Cj

is computed as the sum of the following:

 The average cost of retrievals locally at cluster Cj

times(CLRsum) the average number of frequency

of retrieval(FREQLR) issued by the transaction Tk

to the fragment Fi at cluster Cj.

 CLRsum(Tk, Fi, Cj) = CLR(Tk, Fi, Cj) *

 FREQLR(Tk, Fi, Cj)

 The average cost of local updates at cluster Cj times

the average number of frequency of

update(FREQLU) issued by the transaction Tk to

the fragment Fi at the cluster Cj.

 CLUsum(Tk, Fi, Cj) = CLU(Tk, Fi, Cj)*

 FREQLU(Tk, Fi, Cj)

 The cost of space(CSP) occupied by the fragment Fi

in the cluster Cj times the size of the fragment Cj

times the size of the fragment Fi (in bytes).

CSPsum(Tk, Fi, Cj)= CSP(Tk, Fi, Cj)* Fsize(Tk,Fi)

 Remote updates(CRU) sent from other clusters Cx;

the average cost of local updates at cluster Cj times

the average number of frequency of

update(FREQRU) issued by the transaction Tk to

the fragment Fi for each cluster other than the

current one.

 CRUsum(Tk, Fi, Cj)= CLU(Tk, Fi, Cj)*

 FREQRU(Tk, Fi, Cj)

 Remote communications(CRC) from other clusters

Cx; the update ratio(Uratio) (Unit Update/Unit

Communication) times the average number of

frequency of update issued by the transaction Tk to

the fragment Fi at the cluster Cj times the average

cost of communication between clusters other

than the current one.

CRCsum(Tk, Fi, Cj) = Uratio * FREQLU(Tk, Fi, Cj)

*CRC(Tk, Fi, Cj)

 According to the previous formulas the Cost of

Allocation CA(T k, Fi, Cj) is defined as the sum of

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

the following costs: local retrievals, local updates,

space, remote update, and remote communication.

CA(Tk, Fi, Cj) = CLRsum(Tk, Fi, Cj) + CLUsum(Tk,

Fi, Cj) + CSPsum(Tk, Fi, Cj) + CRUsum(Tk, Fi, Cj)

+CRCsum(Tk, Fi, Cj)

ii. Cost of Not Allocating a Fragment to a Cluster
The cost for not allocating the fragment Fi to the cluster

Cj is computed as the sum of the following:

 The average cost of local retrievals at cluster Cj

times the average number of frequency of retrieval

issued by the transaction Tk to the fragment Fi at the

cluster Cj. It is the same as defined in previous

section.

 Retrievals from other clusters Cx of remote sites;

the retrieval ratio(CRR) (Unit Retrieval/Unit

Communication) times the average number of

frequency of retrieval issued by the transaction Tk to

the fragment Fi at the cluster Cj for each cluster

other than the current one times the average cost of

communication between clusters(CCC).

 CRRsum(Tk, Fi, Cj) = Ratio *

 FREQRR(Tk,Fi,Cj) * CCC

 According to the formulas specified previously, the

Cost of Not Allocation CN (Tk, Fi, Cj) is defined as

the sum of cost of local retrievals and sum of cost of

remote retrievals.

 CN(Tk, Fi, Cj) = CLRsum(Tk, Fi, Cj)

 +CRRsum(Tk, Fi, Cj)

iii. The Decision Value for Allocating a Fragment to

a Cluster
 The decision values for allocating the

fragment Fi to the cluster Cj is a logical value and

computed as follows.

D(Tk, Fi, Cj)= CN(Tk, Fi, Cj)>= CA(Tk, Fi, Cj)

 The following is an illustration for fragment

allocation method, in which the fragments and their

number of frequencies of retrieval and update requested

from each cluster and its respective sites(Table

1), the costs of space, retrieval, and update is calculated

based on the following number of bytes which required

for the computation of the update and retrieval ratios

according to their use in the DDBs: 2 bytes in each unit

of retrieval, 3 bytes in each unit of update, and 5 bytes

in each unit of communication(Table 2).

Table 1- Fragments and their frequencies of retrievals

and updates in the clusters and their respective sites

Fragm

ent

Clust

er

Site Retrieval

frequency

Update

frequenc

y

F1 C1

C2

C3

S1

S2

S3

S4

S5

S6

80

60

60

0

35

25

10

26

16

0

5

5

F2 C1

C2

S3

S4

S5

S6

20

20

5

105

4

6

30

20

F3 C2

C3

S3

S4

S5

S6

30

0

40

30

0

0

30

10

Table 2- Cost of space, retrieval and update

Cluster Site Cost Of

Space

Cost Of

Retrieval

Cost Of

Update

C1 S1

S2

0.004

0.006

0.15

0.25

0.25

0.35

C2 S3

S4

0.005

0.007

0.15

0.17

0.25

0.27

C3 S5

S6

0.003

0.005

0.13

0.15

0.23

0.25

On applying the formulas described in section IV-

i,ii,iii with the given data, the fragments that are

allocated to the cluster and the fragments that are

cancelled when the communication cost is more or less

same for allocating to the sites individually are

determined in the Table 3.

Table 3- Allocated and cancelled fragments to the

clusters

Frag-

ment

Clu

ster

CA CN D

V

Allocation

Status

F1 C1

C2

C3

59.45

74.83

85.5

177.24

74.76

74.16

1

0

0

Allocated

Cancelled

Cancelled

F2 C2

C3

74.26

30.01

49.84

135.96

0

1

Cancelled

Allocated

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

F3 C1

C2

C3

86.56

103.2

54.72

96.21

37.38

86.52

1

0

1

Allocated

Cancelled

Allocated

In the above table, CA indicates Cost of Allocation, CN

indicates Cost of Non allocation and DV indicates

Decision Value.

Comparison chart:

0

5

10

15

20

25

30

35

40

45

F1 F2 F3

Cost for
allocating
fragments to
an individual
site

Cost for
allocating
fragments to
a cluster

 The above graph describes the comparison between

the cost of allocating the fragments to an individual site

and cluster of sites.

5. Conclusion

The importance of the distributed database systems

has increased further with developments in networking

technologies. Effective distribution of the database

fragments plays a critical role in the functioning of the

database in terms of performance and cost. In this

paper, a new formulation for the problem of

fragmenting and allocating those fragments at

minimum cost is presented for both structured and

unstructured data. Results from the application of these

formulations can be utilized for a large number of data

sets.

References

[1]Syam Menon, “Allocation of fragments in distributed

system”,IEEE Transactions on parallel and distributed

system,vol 16, No.7,July 2005.

[2]Hassan I Ahdalla,”A New data reallocation model for

distributed database systems”, International journal of

database theory and application.vol.5, No.2,June 2012.

[3]Yin- Fu.Huang and Jyh- Herchen,”Fragment Allocation in

distributed database design”, Journal of information science

and engineering 17,491-506(2001).

[4]Leon Tambulea, Manuela,” Redistributing fragments into

distributed databases”, Int. J. of computers,communication &

control, ISSN 1841-9836 vol III(2008).

[5]Shahidul Islam Khan,Dr.A.S.M Latiful Hoque,”A new

technique for database fragmentation in distributed

systems”,International journal of computer applications

vol.5,No.9,August 2010.

[6]C.I Ezeife,Jlan Zheng, “Dynamic database object

horizontal fragmenatation”.

[7]Ismail.O.Habebeh,”A method for fragment allocation

design in the distributed database systems”,The sixth annual

UAE university research conference.

[8]Valentina ciriani,Sabrina De Capitani di vimercati,Sara

foresti,”Fragmentation Design for efficient query execution

over sensitive distributed databases”,IEEE transaction,2009.

[9]David Pinto,Guadalupe Torres,”On dynamic fragmentation

of distributed database using partial replication”.

[10]Azzam Sleit, Wesam Al Mobaideen,”A Dyanamic object

fragmentation and replication algorithm in distributed

database system”, American journal of applied science,2007.

[11]Arjun Singh and K.S. Kahlon,” Non replicated dynamic

data allocation

in distributed database systems”, IJCSNS International

journal of computer science and network security, vol.9

No.9,September 2009.

[12]Alessandro Mei, Luigi V.Mancini and Sushil Jajodia,”

Secure dynamic fragment and replica allocation in large-

scale distributed file systems”, IEEE transactions on parallel

and distributed systems, Vol.14,No.9,September 2003.

[13]Jon Olav Hauglid, Norvald H.Ryeng and Kjetil,

“Dynamic fragmentation and replica management in

distributed database systems”, Distributed and parallel

database manuscript.

[14]Ajit M.Tamhankar and Sudha Ram, “Database

fragmentation and allocation: An integrated methodology”,

IEEE Transaction on systems,Cybernetics, Vol.28,No.3,May

1998.

[15]Hui Ma, Klaus Dieter Schewe, “Fragmentation of XML

document”, Massey University, Information systems.

[16]Imran R. Mansuri, Sunita Sarawgi,” Integrating

unstructured data into relational databases”.

[17]Ayaz Ahmed Shariff K, Mohammed Ali Hussain,

Sambath kumar,” Leveraging unstructured data into

intelligent information- Analysis and evaluation”, 2011

International Conference on Information and Network

Technology, IPCSIT vol.4 (2011).

Cost in hundreds

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

