
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract:- Cloud computing is a model for enabling well-

situated, on- demand network access to a collective pool of 

configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly 

provisioned out with minimal management effort or service 

provider interaction. Maintaining integrity of outsourced 

data is a trivial task in cloud storage mechanism. This paper 

proposes a public auditing scheme for validating the 

outsourced data. A Proxy is introduced to reduce the online 

burden of the data owners. The Regenerating code 

mechanism used in this paper provides fault tolerance by 

striping data across multiple servers, while using less repair 

traffic than traditional erasure codes during failure 

recovery. Thus the end user  can download data stored in 

cloud without worry about the correctness of data. 

 

General Terms:- Random Key Generation, Advanced 

Encryption Standard Algorithm, Code Regeneration 

Mechanism, Storage Efficient Retrieval 

 

Keywords:- Cloud Storage, Third Party Audit, Code 

regeneration, Proxy, Data Retrieval 

 

1. INTRODUCTION 

 

Cloud computing is defined as a type of computing that 

relies on-sharing computing resources rather than having 

local servers or personal devices to handle applications. 

Cloud computing is comparable to grid computing, a type 

of computing where unused processing cycles of all 

computers  in a network are harnesses to solve problems 

too intensive for any stand-alone machine. The goal of 

cloud computing is to apply traditional supercomputing, 

or high-performance computing power, normally used by 

military and research facilities, to perform tens of trillions 

of computations per second, in consumer-oriented 

applications such as financial portfolios, to deliver 

personalized information, to provide data storage or to 

power large, immersive online computer games. To  do 

this, cloud  computing uses networks of large groups   of 

servers typically running low-cost  consumer  PC 

technology with specialized connections to spread data- 

processing chores across them. This shared IT 

infrastructure contains large pools of systems that are 

linked  together.  Often, virtualization techniques are used 

to maximize the power  of  cloud  computing.  Cloud  

storage  is  now  gaining popularity because it offers a 

flexible on-demand data outsourcing service with 

appealing benefits: relief of the burden for storage 

management, universal data access with location 

independence, and avoidance of capital expenditure on 

hardware, software, and personal maintenance etc., 

Nevertheless, this new paradigm of data hosting service 

also brings new security threats toward user data, thus 

making individuals or enterprisers still feel hesitant. It is 

noted that data owners lose ultimate control over the fate 

of their outsourced data; thus, the correctness, availability 

and integrity of the data are being put at risk. On the one 

hand, the cloud service is usually faced with a broad range 

of internal/external adversaries, who would maliciously 

delete or corrupt users’ data; on the other hand, the cloud 

service providers may act dishonestly, attempting to hide 

data loss or corruption and claiming that the files are still 

correctly stored in the cloud for reputation or monetary 

reasons. Thus it makes great sense for users to implement 

an efficient protocol to perform periodical verifications of 

their outsourced data to ensure that the cloud indeed 

maintains their data correctly. Many mechanisms dealing 

with the integrity of outsourced data without a local copy 

have been proposed under different system and security 

models up to now. The most significant work among these 

studies are the PDP (provable data possession) model and 

POR (proof of retrievability) model, which were 

originally proposed for the single-server scenario by 

Ateniese et al. [1] and Juels and kaliski [2] respectively. 

Considering that files are usually striped and redundantly 

stored across multi-servers or multi-clouds, [3]-[9] 

explore integrity verification schemes suitable for such 

multi-servers or multi clouds setting with different 

redundancy schemes, such as replication, erasure codes, 

and, more recently, regenerating codes. In this paper, we 

focus on the integrity verification problem in 

regenerating-code-based cloud  storage, especially with 

the functional repair strategy [10].Similar studies have 

been performed by Bo Chen et al. [6] and H. Chen el al. 

[7] separately and independently. [6] extended the single-

server CPOR scheme(private version in [11]) to the 

regenerating code - scenario; [7] designed and 

implemented a data integrity protection (DIP) scheme for 

FMSR [12] -based cloud storage and the scheme is 

adapted to the thin-cloud setting. However, both of them 

are designed for private audit, only the data owner is 

allowed to verify the integrity and repair the faulty 

servers. Considering the large size of the outsourced data 

and the user’s constrained resource capability, the tasks of 

auditing and reparation in the cloud  can be formidable 

and expensive for the users. The   overhead of using 

cloud storage should be minimized as much as possible 

such that a user does not need to perform too many 

operations to their outsourced data (in additional to 

Efficient Data Retrieval in Cloud Storage

S. Jayanthi
Assistant Professor,

Dept of CSE, UniversityCollege ofEngineering 

Trichirappalli, India

K. Devika

M.E Student,

Dept of CSE, University College of Engineering

Trichirappalli, India

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

1



 

retrieving it). In particular, users may not want to go 

through the complexity in verifying and reparation. The 

auditing schemes imply the problem that users need to 

always stay online,  which may impede its adoption in 

practice, especially for long-term archival storage. To 

fully ensure the data integrity and save the users’ 

computation resources as well as online burden, we 

propose a public auditing scheme for the regenerating-

code-based cloud storage, in which the integrity checking 

and regeneration are implemented by a third party auditor 

and a semi-trusted proxy separately on behalf of the data 

owner. Instead of directly adapting the existing public 

auditing scheme to the multi-server setting, we design a 

novel authenticator, which is more appropriate for 

regenerating codes. Besides, we “encrypt” the coefficients 

to protect data privacy against the auditor, which is more 

lightweight than applying the proof blind technique in and 

data blind method in. Several challenges and threats 

spontaneously arise in our new system model with a 

proxy and security analysis shows that our scheme works 

well with these problems. Specifically, our contribution 

can be summarized by the following aspects: We design a 

novel homomorphic authenticator based on BLS signature 

which can be generated by a couple of secret keys and 

verified publicly. Utilizing the linear subspace of the 

regenerating codes, the authenticators can be computed 

efficiently. Besides, it can be adapted for data owners 

equipped with low end computation devices (e.g. Tablet 

PC etc.) in which they only need to sign the native blocks. 

To the best of our knowledge, our scheme is the first to 

allow privacy-preserving public auditing for regenerating 

code- based cloud storage. The coefficients are masked by 

a PRF (Pseudorandom Function) during the Setup phase 

to avoid leakage of the original data. This method is 

lightweight and does not introduce any computational 

overhead to the cloud servers or TPA. Our scheme 

completely releases data owners from online burden for 

the regeneration of blocks and authenticators at faulty 

servers and it provides the privilege to a proxy for the 

reparation. Optimization measures are taken to improve 

the flexibility and efficiency of our auditing scheme; thus, 

the storage overhead of servers, the computational 

overhead of the data owner and communication overhead 

during the audit phase can be effectively reduced. Our 

scheme is provable secure under random oracle model 

against adversaries. Moreover, we make a comparison 

with the state  of the art and experimentally evaluate the 

performance of our scheme. The easiest way to do this is 

simply to download the template, and replace the content 

with your own material. 

 

2. RELATED WORK 

 

The problem of remote data checking for integrity was 

first introduced in Ateniese et al. [1]and Juels and Kaliski 

[2] gave rise to the similar notions provable data 

possession (PDP) [1] and proof of retrievability (POR) 

[2], respectively. Ateniese et al. proposed a formal 

definition of the PDP model for  ensuring possession of 

files on untrusted storage, introduced the  concept of 

RSA-based  homomorphic  tags  and suggested randomly 

sampling a few blocks of the file. In  their subsequent 

work, they proposed a dynamic version of  the prior PDP 

scheme based on MAC, which allows very basic block 

operations with limited functionality but block insertions. 

Simultaneously, Erway et al. [13] gave a formal 

framework for dynamic PDP and provided the first fully 

dynamic solution to support provable updates to stored 

data using rank-based authenticated skit lists and RSA 

trees. To improve the efficiency of dynamic PDP, Wang 

et al. [14] proposed a new method which uses merkle hash 

tree to support fully dynamic data. Many storage systems 

rely on replication to increase the availability and 

durability of data  on untrusted storage systems. At 

present, such storage systems provide no strong evidence 

that multiple copies of the data are actually stored. 

Storage servers can collude to make it look like they are 

storing many copies of the data, whereas  in reality they 

only store a single copy. We address this shortcoming 

through multiple-replica provable data  possession (MR-

PDP) [3]: A provably-secure scheme that allows a client 

that stores t replicas of a file in a storage system to  verify 

through  a  challenge-response protocol   that (1) each 

unique replica can be produced at the time of the 

challenge and that (2) the storage system uses t times the 

storage required to store a single replica. MR-PDP 

extends previous work on data possession proofs for a 

single copy of a file in a client/server storage system. 

Using MR-PDP to store t replicas is computationally 

much more efficient than using a single-replica PDP 

scheme to store t separate, unrelated files (e.g., by 

encrypting each file separately prior to storing it). Another 

advantage of MR-PDP is that it can generate further 

replicas on demand, at little expense, when some of the 

existing replicas fail. HAIL (High-Availability and 

Integrity Layer) [4], a distributed cryptographic system 

that permits a set of servers to prove to a client that a 

stored file is intact and retrievable. HAIL strengthens, 

formally unifies, and streamlines distinct approaches from 

the cryptographic and distributed-systems communities. 

Proofs in HAIL are efficiently computable by servers and 

highly compact— typically tens or hundreds of bytes, 

irrespective of file size. HAIL cryptographically verifies 

and reactively reallocates file shares. It is robust against 

an active, mobile adversary, i.e., one that may 

progressively corrupt the full set of servers. We propose a 

strong, formal adversarial model for HAIL, and rigorous 

analysis and parameter choices. We show how HAIL 

improves on the security and efficiency of existing tools, 

like Proofs of Retrievability (PORs) deployed on 

individual servers. We also report on a prototype 

implementation. Remote Data Checking (RDC) [5] is a 

technique by which clients can establish that data 

outsourced at untrusted servers remains intact over time. 

RDC is useful as a prevention tool, allowing clients to 

periodically check if data has been damaged, and as a 

repair tool whenever damage has been detected. Initially 

proposed in the context of a single server, RDC was later 

extended to verify data integrity in distributed storage 

systems that rely on replication and on erasure coding to 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

2



 

store data redundantly at multiple servers. Recently, a 

technique was proposed to add redundancy based on 

network coding,  which  offers   interesting  tradeoffs   

because  of    its remarkably low communication overhead 

to repair corrupt servers. Unlike previous work on RDC 

which focused on minimizing the costs of the prevention 

phase, we take a holistic look and initiate the investigation 

of RDC schemes for distributed systems that rely on 

network coding to minimize the combined costs of both 

the prevention and repair phases. We propose RDC-NC, a 

novel secure and efficient RDC scheme for network 

coding-based distributed storage systems. RDC-NC 

mitigates new attacks that stem from the underlying 

principle of network coding. The scheme is able to 

preserve in an adversarial setting the minimal 

communication overhead of the repair component 

achieved by network coding in a benign setting. We 

implement our scheme and experimentally show that it is 

computationally inexpensive for both clients and servers. 

 

3. SYSTEM MODEL 

 

We consider the auditing system model for Regenerating- 

Code-based cloud storage, which involves four entities: 

the data owner, who owns large amounts of data files to 

be stored in the cloud; the cloud, which are managed by 

the cloud service provider, provide storage service and 

have significant computational resources; the third party 

auditor (TPA), who has expertise and capabilities to 

conduct public audits on the coded data in the cloud, the 

TPA is trusted and its audit result is unbiased for both 

data owners and cloud servers; and a proxy agent, who is 

semi-trusted and acts on behalf of the data owner to 

regenerate authenticators and data blocks on the failed 

servers during the repair procedure. Notice that the data 

owner is restricted in computational and storage resources 

compared to other entities and may becomes off-line even  

after the data upload procedure. The proxy, who would  

always be online, is supposed to be much more powerful 

than the data owner but less than the cloud servers in 

terms of computation and memory capacity. To save 

resources as well as the online burden potentially brought 

by the periodic auditing and accidental repairing, the data 

owners resort to the TPA for integrity verification and 

delegate the reparation to the proxy. Compared with the 

traditional public auditing system model, our system 

model involves an additional proxy agent. In order to 

reveal the rationality of our design and make our 

following description to be more clear and concrete. 

 

3.1 Existing System 

To securely introduce an effective third party auditor 

(TPA), the following two fundamental requirements have 

to be    met: 

1) TPA should be able to efficiently audit the cloud data 

storage without demanding the local copy of data, and 

introduce no additional on-line burden to the cloud user; 

2) The third party auditing process should bring in no new 

vulnerabilities towards user data privacy. Network codes 

designed specifically for distributed storage systems have 

the potential to provide dramatically higher storage 

efficiency for the same availability. One main challenge 

in the design of  such codes is the exact repair problem: if 

a node storing encoded information fails, in order to 

maintain the same level of reliability we need to create 

encoded information at a new node. 

3.2 Architecture Design 

 
 

One of the main open problems in this emerging area 

has been the design of simple coding schemes that allow 

exact and low cost repair of failed nodes and have high 

data rates. The technique implemented for encrypting 

outsourcing data AES (acronym of Advanced 

Encryption Standard) is a symmetric encryption 

algorithm. The algorithm was developed by two Belgian 

cryptographer Joan Daemen and Vincent Rijmen. 

AES was designed to be efficient in both hardware and 

software, and supports a block length of 128 bits and 

key lengths of 128, 192, and 256 bits. AES is based on a 

design principle known as a substitution-permutation 

network, combination of both substitution and 

permutation, and is fast in both software and hardware. 

Unlike its predecessor DES, AES does not use a Feistel 

network. AES is a variant of Rijndael which has a fixed 

block size of 128 bits, and a key size of 128, 192, or 256 

bits. By contrast, the Rijndael specification per se is 

specified with block and key sizes that may be any 

multiple of 32 bits, both with a minimum of 128 and a 

maximum of 256 bits. AES operates on a 4×4 column- 

major order matrix of bytes, termed the state, although 

some versions of Rijndael have a larger block size and 

have additional columns in the state. Most AES 

calculations are done in a special finite field. The key 

size used for an AES cipher specifies the number of 

repetitions of transformation rounds that convert the 

input, called the plaintext, into the final output, called 

the ciphertext. 

 

4. PROPOSED SYTEM DESCRIPTION 

 

Among the first few ones to support privacy-preserving 

public auditing in cloud computing, with a focus on data 

storage. Besides, with the prevalence of cloud 

computing, a  foreseeable increase of auditing tasks from 

different  users may be delegated to TPA. As the 

individual auditing of these growing tasks can be tedious 

and cumbersome, a natural demand is then how to 

enable the TPA to efficiently perform multiple auditing 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

3



 

tasks in a batch manner, i.e., simultaneously. The public 

auditing system of data storage security in cloud 

computing using proxy and provide a privacy-preserving 

auditing protocol. 

5. PERFORMANCE ANALYSIS 

 

This authenticator can be efficiently generated by the data 

owner simultaneously with the encoding procedure. 

Extensive analysis shows that our scheme is provable 

secure, and the performance evaluation shows that our 

scheme is highly efficient and can be feasibly integrated 

into a regenerating- code-based cloud storage system. 

6. CONCLUSION AND FUTURE 

ENHANCEMENT 

 

A public auditing scheme for regenerating-code-based 

cloud storage system, where the data owners are 

privileged to delegate TPA for their data validity 

checking. To protect the original data privacy against the 

TPA, we randomize the coefficients in the beginning 

rather than applying the blind technique during the 

auditing process .Considering that the data owner cannot 

always stay online in practice, in order to keep the storage 

available and verifiable after a malicious corruption, we 

introduce a semi-trusted proxy into the system model and 

provide a privilege for the proxy to handle the reparation 

of the coded blocks and authenticators. To better 

appropriate for the regenerating-code-scenario, we design 

our authenticator based on the BLS signature. In Future, 

when uploading a file, the file will be divided into number 

of segments ( eg: A, B, C). And those segments are stored 

in more than one server.(eg :server 1, server 2, server 3). 

Server 1 containing A and B segments, server2 containing 

B and C segments, Server 3 containing C and A segments. 

If anyone server fails the file in that particular server also 

corrupted. Then the original file will be retrieved with the 

help of remaining servers. It reduces the complexity to 

identify the  file and easily recover the original file. 

 

 

 

 

 

7. ACKNOWLEDGMENTS 

 

We would like to thank all the authors of different 

research papers referred during writing this paper. It was 

very knowledge gaining and helpful for the further 

research to be done in future. Also I would like to thank 

my guide Prof. Jeyanthi for her valuable guidance. 
 

8. REFERENCES 
 

[1] G. Ateniese et al., “Provable data  possession  at  untrusted  

stores,” in Proc. 14th ACM Conf. Comput. Commun. Secur. 
(CCS), New York, NY,USA, 2007, pp. 598–609. 

[2] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of retrievability   for 

large files,” in Proc. 14th ACM Conf. Comput. Commun. Secur., 
2007, pp. 584–597. 

[3] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR- 

PDP:Multiple-replica provable data possession,” in Proc. 28th Int. 

Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2008, pp. 411– 420. 

[4] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high- availability 

and integrity layer for cloud storage,” in Proc. 16th ACM Conf. 
Comput. Commun. Secur., 2009, pp. 187–198. 

[5] J. He, Y. Zhang, G. Huang, Y. Shi, and J. Cao, “Distributed   data 

possession checking for securing multiple replicas in 
geographically dispersed clouds,” J. Comput. Syst. Sci., vol. 78, 

no. 5, pp. 1345–1358, 2012. 

[6] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data 
checking for network coding-based distributed storage systems,” in 

Proc. ACM Workshop Cloud Comput. Secur. Workshop, 2010, pp. 

31–42. 
[7] H. C. H. Chen and P. P. C. Lee, “Enabling data integrity protection 

in regenerating-coding-based cloud storage: Theory and 

implementation,”IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2, 
pp. 407–416, Feb. 2014. 

[8] K. Yang and X. Jia, “An efficient and secure dynamic auditing 

protocol for data storage in cloud computing,” IEEE Trans. 

Parallel Distrib. Syst., vol. 24, no. 9, pp. 1717–1726, Sep. 2013. 

[9] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, “Cooperative provable  data 
Possession for integrity verification in multicloud storage,” IEEE 

Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2231– 2244, Dec. 

2012. 
[10] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey 

on network codes for distributed storage,” Proc. IEEE, vol. 99, no. 

3, pp. 476–489, Mar. 2011. 
[11] H. Shacham and B. Waters, “Compact proofs of retrievability,” in 

Advances in Cryptology. Berlin, Germany: Springer-Verlag, 2008, 

pp. 90–107. 
[12] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang, “NCCloud: 

Applying network coding for the storage repair in a cloud-of- 

clouds,” in Proc. USENIX FAST, 2012, p. 21. 
[13] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, 

“Dynamic provable data possession,” in Proc. 16th ACM Conf. 

Comput.        Commun.        Secur.,        2009,        pp.          213 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

4


