Efficient Architecture of Medium Throughput AES Encryption

Harish B E Electronics and communications Dept VDRIT College of engineering and Technology Haliyal, India

Abstract— This paper presents an efficient architecture design of Advanced Encryption Standard (AES) algorithm for medium throughput applications. The proposed AES architecture for encryption has been implemented in Sparten-3E device on Xilinx FPGA board. With low hardware utilization, it achieves a medium throughput of 1.2Gbps and also it has low power dissipation.

Keywords— AES Encryption, Low Cost Architecture, FPGA Implementation

INTRODUCTION

With the increasing proliferation of images, videos and other multimedia data over the unsecured network, such as Internet, there is a serious need to encrypt those, so as to provide the security and privacy [1, 2]. Advanced Encryption Standard (AES) algorithm adopted by National Institute of Standards and Technology (NIST) is a private key encryption algorithm which is widely used for the encryption and decryption [3]. Although, AES can be implemented in software, its hardware implementation provides high speed with added physical security [4]. Hardware implementation can have different approaches like very high, medium and low throughput architectures trading-off area for speed, etc. There are very high throughput (range 5-30 Gbps) architectures in the literatures [5-8]. But, they cost more hardware for their implementation. Some devices such as in the field of wireless sensor network use single chip for multitasking operations [9]. So, low area implementation with medium throughput becomes an important issue here. Also, in the field of video and image encryption, simultaneous encryption and compression is done [10]. Because, the compression is of medium throughput (in Mbps) range, very high throughput will not serve any extra advantage and therefore, medium throughput implementation is unavoidable.

AES is a private key encryption algorithm consisting of following transformations-SubBytes, ShiftRows, MixColumns and AddRoundKeys [11]. AES encrypts data in blocks of 128-bits. It can accept three key sizes, 128-bit, I92bit and 256-bit, but generates 128-bit round key for XORing with 128-bit data in the AddRoundKeys step. The number of rounds for 128-bit keys, 192-bit keys and 256-bit keys are 10, 12 and 14 respectively. Figure I shows the encryption steps Asst. Prof. Prasanna D Kulkarni Electronics and Communications Dept VDRIT college of engineering and Technology Haliyal, India

and number of rounds involved for 128-bit key size. In this paper, we have proposed efficient. The proposed architecture has a medium throughput of 1.2Gbps and also, it has 10w power consumption as compared to existing medium throughput AES architecture.

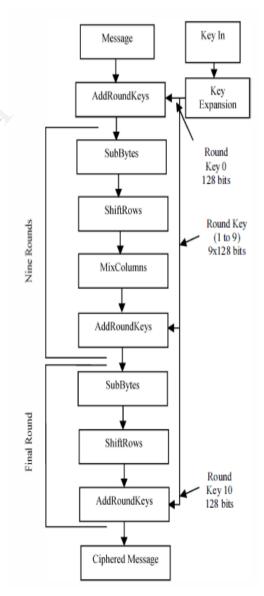
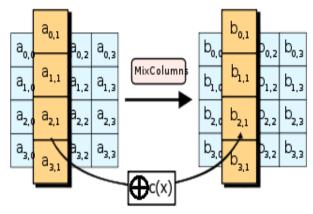



Figure 1. AES Encryption steps for 128-bit key size

I. PROPOSED AES ARCHITECTURE

Figer 2 Mixcolumns operation

In the MixColumns step, the four bytes of each column of the state are combined using an XOR with fixed Matrix. The MixColumns function takes four bytes as input and outputs four bytes, where each input byte affects all four output bytes. During this operation, each column of the state is XOR by a fixed matrix:

[2	3	3 1	
1	2	3	1
1	1	2	3
3	1	1	$\begin{array}{c}1\\1\\3\\2\end{array}$

Key expansion procedure generates 11 round keys (each of 128 bits) including the initial input key. It can be stored in registers. In the VLSI design, a single bit register takes higher area as compared to single bit ROM. So, the proposed architecture employs ROM to store the 10x128-bit Round keys. Figure 2 shows the round key storage module in ROM. There are 40 ROM sub-modules used for generation of 10 round keys. Each ROM consists of 8-bit in 4 locations.

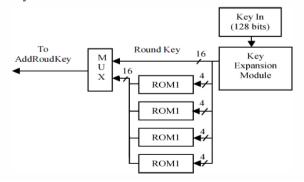


Figure 2. Round Key storage in ROM

Byte (0)	Byte (4)	Byte (8)	Byte (12)
Byte (1)	Byte (5)	Byte (9)	Byte (13)
Byte (2)	Byte (6)	Byte (10)	Byte (14)
Byte (3)	Byte (7)	Byte (11)	Byte (15)

Note: Byte values represent the state

II. FPGA IMPLEMENTATION AND COMPARISON

The AES architecture is implemented in pipelining mode. The architecture in [9] has been taken for comparison as it has medium throughput. It can be observed that the proposed architecture has high hardware efficiency in terms of throughput per slice. The power consumption results have been obtained from the XPower analyzer tool integrated in Xilinx ISE 13.1. The RTL code of the proposed architecture is written in VHDL. Simulation is done in Xilinx ISE 13.1 environment. Figure 3 shows the plaintext, key and the encrypted output and Figer 4 shows the plaintext, key and the decrypted output. The design is implemented in Spartan-3E board for prototyping and testing silicon validation.

Name	Value	 1,999,996 ps	1,999,997 ps	1,999,998 ps	1,999,999 ps	2,000,000 ps
🕨 📑 plaintext[127:	5145ac8e4a	5145ac8	e4a45bde3a45e6a6c	7d876543		
keygive[127:0	65787aecd4	65787ae	cd43ae34e45a55ccd	aed67898		
tiphertext[12]	36727d80fc	36727d	0fc06296f05c4f6ea8	261578b		
▶ 👹 r1[127:0]	343dd6629e	343dd66	29e7f5eade1fb36a1	d3511ddb		
🕨 🐝 r2[127:0]	7fab7e56dc	7fab7e5	6dc3746e5bc77a859	c9f023a8		
▶ 🔩 r3[127:0]	b5e3b92d51	b5e3b92	d51cdc4fe212aad15	72b52151		
🕨 🐝 r4[127:0]	b2c4ee3e06	b2c4ee3	e06dd1f97b9730877	efc667c3		
🕨 🐝 r5[127:0]	50b84bc1b8	50b84bc	1b8b767fd12127644	70cbbb6f		
🕨 👹 r6[127:0]	34d04347bb	34d0434	7bbf108378db9ed98	febbfe81		
🕨 👹 r7[127:0]	7fd82ee33d	7fd82ee	33d6e59ef194c4456	14a74bdc		
🕨 🐝 r8[127:0]	b5e66069f0	b5e6606	9f011515e90fa6f13	55b6b02b		
🕨 😽 r9[127:0]	b2fbd31e5b	b2fbd31	e5b1505b624e88e94	5359aae7		
🕨 🍓 r10[127:0]	5020627bee	5020627	peea34e3d726d3882	42d810b8		
🕨 🏹 r11[127:0]	53b7aa2128	53b7aa2	1280a2f27403c0713	2c61ca6c		
▶ 📑 r12[127:0]	530a076c28	530a076	c283cca214061aa27	2cb72f13		

Figure 3 RTL simulation result showing 16 bytes plaintext, key and encrypted output

						2,000,000 ps
Name	Value	 1,999,996 ps	1,999,997 ps	1,999,998 ps	1,999,999 ps	2,000,000 ps
🕨 📑 plaintext[127:	5145ac8e4a	5145ac8	e4a45bde3a45e6a6i	7d876543		
🕨 <table-of-contents> keygive[127:0</table-of-contents>	65787aecd4	65787aa	cd43ae34e45a55ccc	aed67898		
▶ 📲 ciphertext[12]	36727d80fc	36727d	80fc06296f05c4f6ea	8261578b		
🕨 👹 r1[127:0]	343dd6629e	343dd66	29e7f5eade1fb36a1	d3511ddb		
▶ 🔩 r2[127:0]	7fab7e56dc	7fab7e	6dc3746e5bc77a85	c9f023a8		
🕨 🐝 r3[127:0]	b5e3b92d51	b5e3b93	d51cdc4fe212aad15	72b52151		
🕨 🐝 r4[127:0]	b2c4ee3e06	b2c4ee	e06dd1f97b973087	/efc667c3		
🕨 🐝 r5[127:0]	50b84bc1b8	50b84b	1b8b767fd1212764	70cbbb6f		
🕨 🐝 r6[127:0]	34d04347bb	34d043	7bbf108378db9ed9	8febbfe81		
🕨 👹 r7[127:0]	7fd82ee33d	7fd82ee	33d6e59ef194c4456	14a74bdc		
🕨 🐝 r8[127:0]	b5e66069f0	b5e660	9f011515e90fa6f13	55b6b02b		
🕨 🐝 r9[127:0]	b2fbd31e5b	b2fbd31	e5b1505b624e88e94	5359aae7		
🕨 👹 r10[127:0]	5020627bee	5020627	beea34e3d726d388	42d810b8		
🕨 👹 r11[127:0]	53b7aa2128	53b7aa	1280a2f27403c071	2c61ca6c		
▶ 🔩 r12[127:0]	530a076c28	530a07	c283cca214061aa2	2cb72f13		

Figure 4 RTL simulation result showing 16 bytes ciphertext, key and decrypted output

In Encryption we give input as plaintext, key result shows encrypted output. Similarly, In Decryption we give input as cipertext and key result shows original output.

III. CONCLUSION

The efficient AES architecture for medium throughput has been designed and implemented in Xilinx FPGA. Mixcolumns transformation has been done by a special efficient module. The proposed architecture is efficient in terms of throughput per slice (area) and also consumes less power on comparison with existing architecture of medium throughput. The area reduction is done by storing the round keys in ROM instead of registers. Mixcolumns transformation has been done by a special efficient module.

REFERENCES

- Shujun Li, Guanrong Chen, Albert Cheung, Bharat Bhargava, KwokTung Lo, "On the Design of Perceptual MPEG-Video Encryption Algorithms," IEEE Transactions on Circuits and Systems for Video Technology, vol.17 (2), pp.214-223, Feb. 2007.
- [2] Amit Pande and Joseph Zambreno, 'Advances in Multimedia Encryption' Springer London, 2012, pp. I 1-22.
- [3] B. Bahrak and M.R. Aref, "Impossible differential attack on sevenround AES-128," IET Information Security, vol.2 (2),pp.28-32, 2008.
- [4] Ming-Haw .ling, Zih-Heng Chen, .lian-Hong Chen and Yan-Haw Chen, "Reconfigurable system for high-speed and diversified AES

using FPGA," Microprocessors and Microsystems, vol.31 (2), pp. 94-102 Mar. 2007. 978

- [5] Chih-Pin Su, Tsung-Fu Lin, Chih-Tsun Huang, and Cheng-Wen Wu, "A High-Throughput Low-Cost AES Processor," IEEE Communications Magazine, vol.41 (12), pp.86-91,Dec. 2003.
- [6] Chih-Peng Fan and .lun-Kui Hwang, "Implementations of high throughput sequential and fi.Jlly pipelined AES processors on FPGA," International Symposium on Intelligent Signal Processing and Communication Systems, 2007. ISPACS 2007, pp.353-356, Nov. 28 2007-Dec. 1 2007.
- [7] Xinmiao Zhang and K.K Parhi, "High-speed VLSI architectures for the AES algorithm," IEEE Transactions on Very Large Seale Integration (VLSI) Systems, vol.12 (9), pp.957-967, Sept. 2004.
- [8] A. Gupta, A. Ahmad, M.S.Sharif and A. Amira, "Rapid prototyping of AES encryption for wireless communication system on FPGA," 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), pp.571-575, 14-17. june 2011.
- [9] .Iason Van Dyken, .lose G. and Delgado-Frias, "FPGA schemes for minimizing the power-throughput trade-ofI in executing the Advanced Encryption Standard algorithm," Journal of Systems Architecture, vol.56 (2-3), pp. 116-123, Feb.-Mar. 2010.
- [10] M. Jridi and A. AlFalou, "A VLSI implementation of a new simultaneous images compression and encryption method," 2010 IEEE International Conference on Imaging Systems and Techniques (IST), pp.75-79, 1-2 July 2010.
- Federal Information Processing Standards Publication 197 (FIPS 197), available online, http://csrc.nist.gov/publications/fips/fips 197 /fips-197.pdf

