

 Efficiency of GPU over CPU in Geometric Processing of 3D Objects

NV.Veenaadeeve, Chithra.R, Manju.M, K. P. Soman

Dept. Of Computational Engineering and Networking

Amrita Vishwa Vidyapeetham

Affliated to Amrita University

Abstract

 The parallel computation is one of the most

important and flourishing research field nowadays.

The GPUs are supporting the parallel processing on

various applications in many ways which in turn has

made it more popular especially in the fields where the

computation of large number of data in short time is

required. The parallel nature of the GPU is making if

more special and effective than general purpose CPUs.

Thus the invasion of the GPUs in the general purpose

applications has given rise to the introduction of new

area of research called as the GPGPU or General

Purpose GPU. Mesh process if one of the most

important 3D modelling technique which is helping in

the geometric processing of the complex 3D models. In

this paper, our work mainly concentrate on the study of

efficiency of implementing mesh processing in GPU

and the efficiency is measured according to the time

constraints.

.

1. Introduction
Graphics Processing Unit(GPU) is a processor with

ample computational resources and is widely used

nowadays due to its advantages over Central

Processing Unit(CPU). The high memory capability,

efficiency in managing different jobs and

programmability made the GPU a demanding platform

for wide variety of applications. Demand for reducing

the computational time has been increased as the

complexity of the data being processed increased

currently. Handling those large amounts of data is a

tedious process while performing the processing steps

on CPU. Since different tasks can be performed in

parallel, GPU reduces the computational time to a great

extent. It has its application in Computer graphics,

Heavy industries, scientific research and so on.

We know the Darwin‟s theory of survival of

the fittest. It is applicable even to the advancing

technology. Since we always choose the most efficient

and comfortable technique for any application and are

always in search for that today‟s technology is growing

with a racing speed. This is similar in the case of

computer programming. Thus for making the

application faster and efficient we should shift our

concentration of processing from CPU to Graphical

processing unit. This is the field that will survive in this

ever-growing field of computer science. Processing in

GPU is almost similar to human brain processing. A

normal person can drive a vehicle, listen to music and

perceive things around him all at the same time. Here

different parts of our brain are divided automatically so

as to handle all these activities parallel. Similarly with

the help of GPU computers, it is possible to process

tasks in parallel so that it can complete the tasks within

a short time.

 Computer graphics is one of the emerging fields

in Computer Science in which 3D modelling 3D

modelling is gaining much attention recently because

of its wide variety of applications in gaming

technology, film industries etc. Mesh processing is a

3D modelling technique in which the surfaces are

modelled as using polygons. Polygon meshing is one of

the popular methods used for mesh generation. The

mesh is a data structure with a collection of information

that is required for displaying 3D objects. The mesh

size will be large and therefore it requires a large

memory space to store these data. The operations are

performed on meshes after loading the meshes to the

CPU. For each vertex the operations are to be

performed iteratively and therefore it takes more

computational time. Also it requires more memory

space. Here the GPU came into functionality. Because

1884

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70750

of its parallel processing ability, each of the threads

runs the program simultaneously and the result is given

back to the CPU. Further operations will be performed

in CPU.

The GPU combined with CPU will be able to

reduce the computational time significantly. Several

APIs are used along with GPU such as OpenCL,

OpenGL, GLSL, HLSL and DirectX APLIs. GLSL and

HLSL is shader languages used along with GPU.

OpenGL API is helpful in creating as well as loading

3D objects. In this work OpenGL is used in loading

meshes and then performing operations on meshes. The

operations that can be performed on meshes are

triangulation, smoothing, segmentation, fairing,

deformation, remeshing, and so on. In this work study

on meshing is performed.

2. Mesh
 The mesh data structure is one such kind of structure

in which the 3D models are defined on the basis of the

vertices and edges. The vertices are the points which

are actually forming the skeleton of the mesh. The

edges are those data structures that are created by

joining adjacent vertices using popular algorithms. The

meshes can be defined like a truss which will be having

the points and lines joining those points giving a

perfect interpretation of meshes [1]. The mesh

generation can be done only through the construction of

the polygons on the surface of the model and the most

popular among the process of polygon construction is

the triangulation [1]. The triangulation is the process in

which the vertices and the edges are given lots of

importance because of which the triangulation could be

done using some of the popular algorithms like

Delaunay triangulation.

 There are many application areas in which the mesh

processing can be done and hence the importance of the

mesh processing is getting increased. The simulations

done using the mesh generation on the surface of the

human skeleton can be used for forensic researches.

The complex structure of the chemical molecules can

also be studied clearly with the help of mesh processing

on it. The mesh processing is making the processing in

3D models into a much simpler one because the

complex 3D models are broken into simpler vertices in

which the geometric processing can be done in a much

simpler manner.

The 3D models are available in different

formats like 3DS file, OBJ, Max, DSF etc. All these

include information about the vertices, edges and some

other attributes arranged in some particular way. For

performing mesh processing first the mesh should be

constructed on the information that is provided in the

3D models of the chosen format.

3. Mesh Processing in CPU
The mesh processing is one of the most flourishing

areas for various applications especially for performing

study on the geometry of the complex multi

dimensional objects. [3] The representation of the

meshes will be done based on the polygons that are

built over the surface of the 3D objects thus defining

the structure of the 3D object to its best. The most

common way of performing mesh processing in CPU is

done on mathematical software like Matlab making it

easier for programming.

 Though the Matlab is performing all the mesh

processing steps using various algorithms it is taking

more time for loading a particular mesh because of the

high number of vertices. Hence the users are using

MEX files which are generally said as Matlab

executable file giving a parallelising efficiency while

loading the meshes. The Matlab will not support .3ds

format of the 3D object representation. Most of the 3D

modelling software as Autodesk, Maya are producing

its output 3D models as output in 3ds format only.

Hence those complex models are expected to be

converted from 3ds format to .obj format by the user

before using it as an input to the Matlab processing

steps. Even after using MEX files and .obj format the

time take for loading the complex 3D object is very

high. It is because of the use of the single processing

thread for loading all the vertices of the 3D model at

the same time.

 This drawback especially the time inconsistency of

the mesh processing works on the CPU has given rise

to the use of GPU programming as a solution to tackle

the problem. Most of the individuals are suggesting

many number of GPU programming API in

conjunction with the CPU also as an alternative method

to get the results of mesh processing in a much efficient

manner.

 Our work concentrates mainly on loading a mesh

using GPU which utilizes parallel processing

techniques efficiently in meshing process. We then

perform a comparative study on mesh loading between

CPU and GPU based on time constraints. Here

triangulation is done on the vertices by using certain

triangulation methods and algorithms giving better

results especially within the time constraints making

the process to more time efficient.

4. Graphic Processing Unit

1885

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70750

 GPU is evolved to have large number of parallel

threads and multiple cores. The main driving force for

this evolution is the real time graphics performance

needed to render complex and high resolution 3D

scenes for games. A graphics programmer usually write

a single threaded program that draw a single pixel and

the GPU runs multiple instances of these threads in

parallel so as to draw multiple pixels in parallel.

Nvdia‟s CUDA platform was one of the widely adopted

programming models in present days. OpenCL an open

standard defined by khronos group is another widely

supported platform which allows for the development

of code for both GPUs and CPUs based on probability.

OpenCL solutions are usually supported by AMD,

Intel, Nvidia and ARM. It is actually the GPGPU

development platform used widely in many areas in the

world for research. But to directly support graphics

applications OpenCL is not handy. It is better to go

with OpenGL so as to get better result within improved

time and less difficulty.

 All the logics which will boost the single instruction

stream performance are removed in such a way that

each and every chip can carry more ability to program

and features in a chip. Thus in the architecture of GPU

around 16 processing cores are there which turn is

helping in the process of enabling parallel processing.

Thus the instructions can be executed at a particular

time and their parallelized version can share the

memory and hence can execute the various instructions

in all the logical units of the processor. In modern

GPUs the pixels and the vertices where the actual

processing is done will be considered and are then

parallelized to make the image processing or the 3D

processing to be completed in a much faster manner

using limited memory space within certain time.

5. Meshing in GPU
 The meshes by itself are defined as the data

structure in which the various features of a 3D model or

object‟s surface could be represented using the vertices

of it. The edges are built on the surface joining the

vertices to study the geometry of the 3D object which

was considered to be the most difficult task in 3D

processing. The polygons built by joining the vertices

of the 3D object using the application of certain

algorithm on the edges is considered to be the face of

the meshes over the surface of the 3D object.

 Thus the data width of the mesh processing is

wide and vast which expects more amount of processor

memory to be free while performing the processing

steps. In CPU there will be a single processor for

loading and also for performing the further processing

operations over the surface of the 3D object in the mesh

because of which the time taken for meshing in CPU is

high.

 [2] The GPU is having 16 processors which in

turn can perform the process of loading large data

parallel on the threads of each processor. Thus because

of the parallel structure and also because of the

availability of more number of processor threads the

meshes are getting processed in a much faster manner.

The vertices and fragments which are generally said as

the polygons of the meshes are loaded in parallel in the

GPU so that the time taken for loading a particular

mesh in the GPU memory is comparatively low.

6. Mesh Implementation in GPU
GPU processing requires the PC or workstation to be

equipped with graphics drivers. These drivers have to

be installed properly before moving to GPU

programming. GPU supports different APIs such as

OpenGL, OpenCL, DirectX and so on. Here we have

chosen OpenGL for implementation because of its

various advantages. OpenGL helps in rendering 2D and

3D graphics applications and is also very easy for the

users to handle. Its OS independent feature makes it

portable. OpenGL has to be installed into the PC by

properly adding its corresponding headers and library

files to the directories. Any compilers can be used for

compiling the OpenGL program, e.g.: Visual Studio for

windows.

 We all know pixel value is the finest data that can be

taken from a 2D image. These pixels when arranged in

a specified order will render an image. If we remove

some of the pixel the image will look almost the same

but removal of large number of pixels will reduce the

clarity and in turn will damage the image. Thus we can

say that significant amount of pixels are necessary for

the perfect rendering of an image. Similarly vertices are

the finest data with respect to 3D models. Since loading

a mesh is the first step of mesh processing applications,

we are mainly concentrating on loading meshes into the

computer. Loading a mesh itself is a time consuming

process since it consists of many information such as

vertices, faces and edges. Also the mesh size will be

considerably larger than that of images. The loading of

a 3D model is based on accessing the vertices of the

model. Once it is accessed it is easy to create and load

the original 3D model. Every file format for a 3d model

has information about its vertices. This can be used for

processing and rendering of a 3D model. Here we have

used a 3DS files for processing based on our

convenience. Also we are performing a comparison

between CPU and GPU efficiency based on this

loading process. The algorithm for the loading of 3D

meshes in GPU and displaying it is given below:

1886

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70750

Algorithm:

Step 1: Read input file of 3D models with any format

(3DS, OBJ, MAX)

Step 2: Compute the length of the file.

Step 3: Starting from the first vertex read three

consecutive vertices.

Step 4: Perform triangulation using the command

GL_TRIANGLES.

Step 5: Repeat the above step until the end of the file.

Step 6: Display the model using the OpenGL command

„glutDisplayFunc‟.

 3D mesh is a data structure that is available in

many formats. The information present in each type of

file may differ and will be available in different sizes.

This file is loaded into the GPU processor and length of

the file is determined. The OpenGL consists of many

inbuilt commands which are very helpful in performing

operations on the vertices of the mesh. Using these

commands, for displaying the mesh firstly a window

pane is created. The color for the screen as well as the

position and the size of the window can also be set.

Operations such as scaling, translate and rotate can be

performed on the loaded mesh by simply passing

parameters to those functions.

 Once the vertices are read, we can perform

triangulation using the command GL_TRIANGLES

[4]. This will perform triangulation without any

intersection. This triangulation process is done in

parallel using the GPU processor. In the case of multi-

core CPU, this process is performed in a sequential

manner. As a result of this, the model loading will also

takes more time. The use of GPU processor will in turn

results in sufficient reduction of time.

 The mesh is loaded and operations are

performed on the vertices and the final output is to be

displayed on the window generated. Display window

can be created and set prior to the display. We can set

the position of the window with respect to the top left

portion of the display screen. It is also possible to vary

the size of the screen as well as change the background

color. OpenGL consists of several built-in functions to

perform these operations. For example, to set the

colorglClearColor can be used. Similarly

glDisplayFunc command helps with display the loaded

mesh.

7. Results and Discussion
 The goal of this work is to compare the time taken

for loading and displaying three dimensional models of

varying sizes between CPU and GPU. The large size of

3D input files affects the processing time inversely.

The sequential approach of problem solving in CPU

makes it more complex. Along with this complexity if

the size of input file is comparatively large, this may

result in increased execution time. Using GPU

processor all these problems can be solved efficiently.

Loading a 3D model in CPU can be performed using

different languages. Matlab is a mathematical tool

which consists of several built-in functions for handing

many applications in the field of image processing,

signal processing, 3D processing and so on. This has an

advantage over other languages such that users with

little programming knowledge but with very good

background of maths can use this for solving problems.

The recent versions of Matlab include several packages

for3D processing. Here we are loading a 3D model in

CPU using Matlab. The mesh once loaded will be

displayed along with its execution time. It is found that

the size of the model is having an inverse effect over

execution time. So further mesh processing

applications will eventually takes more time. Also the

3DS files has to be converted to .obj format before

loading into Matlab. This made us think for processing

using GPU.

 GPU is well known for its parallel computing

capability. OpenGL API is used along with GPU

because of its suitability in graphics rendering. 3DS

files can be directly loaded into GPU with the help of

OpenGL command. Even if the size of model is

inversed to execution time, the delay in time while

comparing with CPU, will be less. This is mainly

because the processing is done by several threads in

each block concurrently.

 Loading a Mesh in CPU

1. Convert 3DS file to OBJ file (This has to be

done with some conversion software like

Maya)

2. Copy the converted file into the Matlab

directory.

3. Read the file using Matlab function.

4. Plot the loaded file.

5. Compute the time.

1887

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70750

The output obtained while processing using CPU is as

given below. Also we can see the execution time for the

corresponding process.

Figure 1: GORILLA 3D model(Matlab)

The Execution Time= 32.1387 Sec

Loading a 3D model in GPU

1. Read a 3DS file directly as input.

2. Perform triangulation as per the algorithm

described above.

3. Display the triangulated output in the window

screen.

4. Compute the time taken for loading and

displaying the mesh.

Figure 2: GORILLA 3D model(OpenGL)

Execution time taken= 0.40 Sec

According to the variation in size of input file we can

see the different execution time in CPU and GPU. The

table given below shows the comparison of execution

time for various meshes in CPU and GPU.

Name of
the 3D
models

Number
of

vertices

Execution
Time in

CPU(Sec)

Execution
Time in

GPU(Sec)

Chicken.3ds 5592 7.6440 0.33

Dog.3ds 7956 9.6877 0.4

Boar.3ds 13470 18.9697 0.35

Sheep.3ds 15576 29.3594 0.36

Gorilla.3ds 21652 32.1387 .40
Table 1:Comparison between CPU and GPU execution

time for 3D models

Figure 3: Graphical comparison between CPU and

GPU execution

 The graph shows the comparison of execution time

of 3D models in CPU and GPU. Here the X-axis

represents the model names we have loaded for

comparison and Y-axis represents the execution time in

seconds. The model names are arranged in ascending

order staring from the model having smallest number of

vertices. It can be clearly seen from the graph that the

CPU execution time increases with increase in number

of vertices whereas the GPU execution time remains

almost same with increase in size of 3D models. Also

we have found that loading 3D models of huge sizes

using CPU exhibits excessively large time delay while

it took only few seconds using GPU.

8. Conclusion
We have done the comparative study for loading and

displaying the 3D models between CPU and CPU and

successfully proved that the GPU processing is done

faster than the CPU. There is considerable difference

in the execution time taken for different 3D models.

Also using CPU for computation requires conversion of

1888

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70750

3DS files to some other executable formats. This needs

to install some conversion software which is an extra

work.

 Once the models are loaded using GPU, we can

perform various operations on these mesh models such

as segmentation, deformation, morphing and so on. The

execution time taken for such operations will be

significantly lesser than that of the time taken for CPU

because of the repetitive operations to be performed on

the vertices.

9. References
[1] P.-O. Persson, G. Strang, “A Simple Mesh Generator in

MATLAB”. SIAM Review, Volume 46 (2), pp. 329-345, June

2004

[2] John D. Owens, Mike Houston, David Luebke, Simon

Green, John E.Stone, and James C.Philips,“GPU Comuting”,

Proceedings of IEEE, May 2008, Vol 96, No.

[3] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez,

Bruno Levy,“Polygon Mesh Processing”, Published by A. K

Peters/CRC Press, pp. 250, 7th October 2010.

[4] Jackie Neider, Tom Davis,“OpenGL Programming

Guide”, Addison-Wsley Longman Pubication Co. USA, 1993.

[5] John D. Ownens, David Luebke, Govindaraju, Mark

Harris, Jens Krunger, Aaron E. Lefohn, Timothy J.

Purecell,“A Survey of General-Purpose Computation on

Graphics Hardware”, In Eurographics 2005, State of Art, pp.

21-51,August 2005.

1889

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70750

