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Abstract:- Radiative stability of neutrino parameters for
inverted hierarchy is studied using renormalisation group
analysis for different seesaw scales and varying susy breasking
scale. We adopt the top-down approach starting from the
grand unified scale which leads to the electroweak scale
values of the neutrino parameters. We proposed the possibility
of a Self-Complementary relation among three mixing angles,
023 = 0 13 + 012, and also its radiative evolution under the
same framework.
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1. INTRODUCTION
Neutrino is evident when considering the fact that

neutrino masses require physics beyond the standard theory
. Till date we do not have a clear picture of such new
physics and its energy scale. Hence we need more studies
regarding these. The phenomenology of SUSY [1] is to a
large extent determined by the SUSY breaking mechanism
and the SUSY breaking scale ( m s ) which determined the
SUSY particle masses , the field contents of physical
particles , the mass hierarchy and their particle contents.

Supersymmetry (SUSY) is a transformation relating
fermions to bosons and vice-versa. It ensures the stability
of hierarchy between the weak and Planck scales. It can
provide a natural mechanism for understanding
electroweak symmetry breaking (EWSB)[2] and Higgs
Physics . SUSY at TeV scale is not a necessary
consequence but is motivated by the possible cancellation
of quadratic divergences [3] in radiative correction to the
Higgs boson mass. Minimal Supersymmetric Standard
Model (MSSM)[4] is a straight-forward symmetrization
of the SM with minimal number of new parameters . Due
to lack of evidence for superpartners in Large Hadron
Collider [1, 5] simplest SUSY scenarios is forced towards
region of parameter space unnatured for the Higgs sector.
Supersymmetric particles are ruled out upto 2.4TeV
(Gluinos)[3]. The discovery of Higgs boson with a mass
around 125 GeV imposes constraints on SUSY models[6].
LHC has reached almost its
maximum energy of about 14TeV.

The tightest 95 % confidence level upper bound [7] for
sum of neutrino masses , X m is ¥ my < 0.146 eV (NH) ,
¥m,<0.172 eV (IH) and X m, <

0.121 eV (degenerate) . Running of RGE [9, 10, 11] can be
divided into two regions governed by different RG eqns as:

(a)from A cu T down to the seesaw scale
(b)from seesaw scale down to A gw .

From Model building point of view , we can observe
that neutrino oscillation experiments hint not only for
neutrino masses but the study of individual parameters and
how they evolve carry physical insight.

In his paper, section 2 includes inputs of top-down
approach . Section 3 includes tables and graphs. Section 4
includes results and analysis.

2. INPUTS FOR TOP DOWN APPROACH

In this paper, we try to confine SUSY and m;
scales . We used values of yukawa and guage couplings as
initial inputs by studying the radiative evolution of the
three gauge, yukawa and Higgs couplings using bottom-up
approach with the change of ms scale which is not
mentioned here Using all necessary mathematical
frameworks, we analyzed the radiative nature of neutrino
parameters using top-down approach. We proposed a
phenomenological motivated relation  known as Self
Complementarity relation (SC) , 023=q( 13 + 012 ) , q=1.1. It is
like QLC relation which connects the quark and lepton
sectors. It bears signature of certain hidden symmetry. In
order to check the stability of SC relation against radiative
evolution we have to vary SS and ms scales.

3. Tables and graphs

Input GUT scale Seesaw Scale (tan 40)
parameters 10 GeV 10 GeV 10 GeV  10%GeV

mi1(eV)  0.0512 0.0517 0.0508 0.0502
mz (eV)  0.0513 0.0518 0.0509 0.0503

ms (eV) 0 0 0 0
012 ° 3377 3355 3320 33.95
013/ 8.32 8.40 844 8.22
v 180 180 180 180
S 240 240 240 240
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Table 1 : Input set for IH case (m3=0) at tan40. 6,5 is used from SC

relation

m scale Am?3 Am?,4 013 012 023 1)
(TeV) (10%eV?) (10%eVv?) () (1 () (&)

4 2501 6.452

2 2526 5.875 8.40 33.59 46.21 240.00
8.40 33.60 46.23 240.00
8.40 33.60 46.24 240.00
8.40 33.61 46.25 240.00
8.40 33.61 46.25 240.00
8.40 33.61 46.26 240.00

8.40 33.61 46.26 240.00

6 2482 6914
8 2473 7111
10 2464 7.300
12 2454 7,555
14 2451 7.634

Table 2 : Variation of neutrino parameters on changing ms for IH case
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Figl. Variation of 6, with increasing m scale at tan40.
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Fig2. Variation of 6,3 with increasing m; scale at tan40.
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Fig3. Variation of 6,3 with increasing m; scale at tan40.
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Fig4. Variation of Am? 3, with increasing m; scale at tan40.
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Fig5. Variation of Am?»; with increasing m; scale at tan40.
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Fig6. Variation of & with increasing ms scale at tan40.

4. RESULT AND ANALYSIS

In this work, stability of neutrino parameters for
inverted hierarchy case(ms = 0) is studied on changing ms
scale for different SS scale at tan 40
using top-down approach. With increasing msscale , Am?
31 decreases while other neutrino parameters increases
except 013 which is stable throughout . We observed from
the output data that neutrino parameters were affected on
changing ms scale from 2TeV to 14TeV with SS scale of
values between 10 GeV to 10'° GeV. Higher m s scales
(12 TeV and 14 TeV) are preferred . SS scale of 10 GeV
is preferred among other SS scales . Outputs of neutrino

parameters are within 2c range. SC relation is invariant

against radiative evolution.

The evolutions of the leptonic mixing angles are
insignificant because of small Yukawa couplings of
charged leptons in the SM.
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