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Abstract - In the present problem the effects of vertical 

magnetic field along with internal heat generation  on the 

onset of Rayleigh-Bénard convection in a conducting layer of 

nanofluid, which is heated from below is investigated. The 

model that is employed for the study incorporates the effects 

of Brownian motion and thermophoresis as the important slip 

mechanism in the absence of turbulent eddies. Linear theory 

based on normal mode technique has been used. The eigen 

value of the problem is solved for different velocity boundary 

conditions and for isothermal temperature condition using 

Galerkin technique. The results obtained during the analysis 

have been presented graphically. It is found that magnetic 

field stabilizes and internal heat generation destabilizes the 

system. 
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1.  INTRODUCTION 
 

The heating and cooling techniques are required in 

most of the industries like transportation, power 

manufacturing, electronics, metallurgy, energy supply, 

production etc. Many technical challenges experienced by 

these modern industries are higher cooling performance. 

Therefore in order to achieve the higher heat flux densities, 

the development of advance fluids with improved thermal 

and flow characteristics are of great importance. The 

magnitude of thermal conductivity of solids is higher than 

that of fluids and therefore it has been expected that 

thermal conductivity of fluids will improve by the 

dispersions of solid particles. Several investigations are 

carried out using mili or micro-sized particles inside the 

base fluid. These particles increase the thermal 

conductivity of the base fluid but created other problems 

like settling, clogging channels, pressure drop and 

premature wear on components and channels. It has been 

observed that nanoparticles have an advantage over micro 

or mili-sized particles as they approach the size of the 

molecules in the fluid and due to this settling, clogging and 

wearing of channels is avoided.  Choi [1] was the first 

person who named the fluids with dispersed solid particles 

as nanofluids. The size of nanoparticles that are suspended 

in base fluids (common fluids) are in the range of 1 to 100 

nanometre and the thermal conductivity of base fluids on 

adding small amount of these nanoparticles increases by 

10-40%. Base fluids used included ethylene glycol, water 

while the nanoparticle used include carbon nanotubes, Cu, 

Al2O3, TiO2, Cuo with diameter of 1-100 nm.  

The various characteristics of heat transfer behaviour and 

flow of nanofluid is studied by many researchers. Masuda 

et al. [2], Anoop et.al. [3], Das et al. [4] and Eastman et al. 

[5] observed the enhanced thermal conductivity of 

conventional fluid due to presence of nanosized particles. 

Unusual enhancement in thermal conductivity of nanofluid 

has many applications in science and engineering, for e.g. 

in advanced nuclear systems and nanodrug delivery as 

suggested by Buongiorno and Hu [6] and Kleinstreuer et al. 

[7]. Eastman et al. [8] gave a comprehensive review on 

thermal transport in nanofluids. He concluded that there is 

no satisfactory explanation of abnormal increase in 

viscosity and thermal conductivity of nanofluids. 

Buongiorno [9] studied convective heat transport in 

nanofluids. He developed a two component realistic model 

for convective transport of nanofluids. He explained the 

mechanism by which slip velocity is developed by 

nanoparticles with respect to base fluid and studied the 

effect of seven slip mechanism, Brownian diffusion, 

inertia, magnus effect, diffisiophoresis, fluid drainage and 

gravity settling. He derived the governing equations based 

on thermophoresis and Brownian diffusion which 

dominates the other slip mechanisms in the absence of 

turbulent eddies. Tzou [10] conducted the study based on  

Buongiorno [9] findings and found that critical Rayleigh 

number of  nanofluid is lower by the order of one or two of 

magnitude, in comparison with that of regular fluid and 

concluded that regular fluids are more stable than 

nanofluids. Vadasz [11] studied the heat conduction in 

nanofluid suspensions. With the help of Buongiorno [9] 

equations several studies were conducted by Kim et al. 

[12]. Dhananjay et al. [13] studied the Rayleigh-Bénard 

convection in nanofluids using Galerkin method and 

explained the overstability of the nanofluids.  

Due to enhanced thermal conductivity of nanofluids they 

are used as a great coolants. Many studies have been 

conducted in nanofluids with or without porous medium. 

Nield and Kuznetsov [14] studied the thermal instability in 

porous medium layer using Brinkman model. They 

concluded that value of thermal Rayleigh number depends 

on the nanoparticle distribution. they also observed that 

oscillatory convection can takes place on bottom heavy 
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distribution of nanoparticles.  Kuznetsov and Nield [15] 

studied double diffusive nanofluid convection in porous 

medium and investigated both oscillatory and non-

oscillatory cases. Recently, Aggarwal and Bhadauria [16] 

studied the convective heat transport by longitudinal waves 

and derived an analogy between binary fluid convection 

and nanofluid convection with soret effect using linear and 

nonlinear analysis. Bhadauria and Shilpi [17, 18,19] 

studied the onset of convection in nanofluids in porous 

media.  

The study of effect of magnetic field on the onset of 

convection was started several decades ago. The study of 

effect of magnetic field on the onset of Rayleigh-Bénard 

convection has wide range of applications in physics and 

engineering. In some of the practical applications such as 

magnetic field sensors, magneto-hydrodynamics 

generators, the cooling systems of electronic devices, 

geothermal reservoir’s, thermal insulators, magnetic 

storage media which is electrically conducting through a 

vertical plate occurs in the presence of transverse magnetic 

field. Nanofluids due to its higher thermal conductivity can 

be used in such devices in order to improve their heat 

transfer performance. Heris et al. [20] studied the 

performance of two-phase closed thermosylon in nanofluid 

due to magnetic field effect and explained that thermal 

efficiency will be increase due to vertical magnetic field. 

Dhananjay [21] studied the thermal instability in nanofluids 

with magnetic field. He used alumina-water nanofluid for 

his analysis.  Gupta et al. [22] also studied the thermal 

instability in nanofluids with magnetic field but with 

bottom heavy distribution of nanoparticles and explained 

the effect of various parameters on thermal Rayleigh 

number. A research on internal heat generation is much 

less extensive as compared to external heat generation. 

Bhattacharya and Jena [23]; Takashima [24]; Tasaka and 

Takeda [25]; Bhadauria et al [26] have studied the effect of 

internal heating on the onset of Rayleigh – Bénard 

convection under different situation.  

The above literature survey indicates that no study is done 

on the effects of magnetic field and internal heat generation 

on the onset of Rayleigh-Bénard convection in a  nanofluid 

layer with bottom heavy distribution of nanoparticles. In 

the present problem combine effect of vertical magnetic 

field along with internal heat generation at the boundaries  

on the onset of Rayleigh-Bénard convection in a 

conducting layer of nanofluid which is heated from below 

is investigated using linear stability analysis.  

 

2. MATHEMATICAL FORMULATION 

Consider an infinite horizontal layer of nanofluid 

confined between two parallel plates separated by a 

distance d, heated from below and cooled from above. A 

uniform vertical magnetic field acts on the system as 

shown in the fig. (1). The viscosity, thermal conductivity, 

density, magnetic permeability, electrical resistivity, 

electrical conductivity and specific heat of nanofluids may 

depend on the volume fraction of the nanoparticles, for the 

purpose of characterization and estimates of various 

 

 

 
 

Fig. 1: Physical Configuration. 

 

effects on the order of magnitude, all thermophysical 

properties of nanofluid are assumed to be constant in the 

analytical formulation. The temperatures at lower and 

upper walls are taken as oT and 1T , the former being 

greater. The nanofluid is assumed to be incompressible.  

 

The governing equations of the problem under Boussinesq 

approximation are: 

 

Conservation of mass: 
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Conservation of linear momentum: 
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Conservation of energy: 

 

     

 1

2

1

2

TTQ

T
T

D
T.Dc

TkT.q
t

T
c

T
Bpp

Tff






























,   (4) 

 

Magnetic induction equations: 
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,H. 0


           
(6) 

 

where, p is pressure, g is gravitational acceleration, f is 

fluid density, p is nanoparticle mass density,   is 

viscosity of the fluid, μm is magnetic permeability,
BD is 

Brownian diffusion coefficient, 
TD is thermophoretic 

diffusion coefficient, Tk is effective thermal conductivity,

 is nanoparticle volume fraction, t is time,T is 

temperature, H is the magnetic field,and  η is the resistivity 

of the fluid. 

 

The equations (1) – (6) are solved subject to the following 

boundary conditions. The temperature and volumetric 

fraction of nanoparticles is assumed to be constant at the 

boundaries.  

 

Free -Free Isothermal: 

 

























.zat,TT,
z

w
w

,zat,TT,
z

w
w

10

00

112

2

002

2

  (7a) 

 

 

Rigid- Rigid Isothermal: 
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Rigid-Free Isothermal: 
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2.1. Non- Dimentionalisation 

 

Equations (1) to (6) are non-dimensionalized using the 

following definition: 
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Substituting equation (8) into equations (1)-(6), we get the 

following non -dimensionalized equation after dropping 

asterisks: 
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The non-dimensional parameters in the equations (9) - (14) 

are: 
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In dimensionless form boundary condition equation (7a)-(7c) 

can be written as: 

 

Free-Free Isothermal: 
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Rigid-Free Isothermal:
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2.2. Basic state 

 

The basic state of the nanofluid is being quiescent and is 

given by
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Substituting equation (16) in equations (10)-(14) we get:  
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Using an order of magnitude analysis the second and the 

third terms in the  equation(18) are small and can be 

neglected (Tzou [10]), thus we have: 
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from equation(19) on using (20) we get: 
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integrating equation (20) and (21) and using boundary 

condition (7) we get: 
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2.3. Stability Analysis 

 

We now superimpose infinitesimal perturbations on the 

basic state as given below: 
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where, the primes indicate that the quantities are 

infinitesimal perturbations and subscript b indicates basic 

state value. 

 

Substituting equation (24) into equations (10)-(14) and 

using the basic state solutions, we get linearized equations 

governing the infinitesimal perturbations in the form: 
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Operating curl twice on equation (25) to eliminate pressure, 

on using equation (28) and writing only the z component, 

we get: 
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where
2

1 is the two dimensional laplacian operator. 

Using normal mode analysis we seek the solution of the 

unknown fields 
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where l and m are horizontal wave number in x and y 

direction. 

 

using equation (31) in equations (26), (27) and (30) we get: 
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where, 

222 mlaand
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d
D  is the dimensionless wave 

number. 

 

The set of differential equations (32)-(34) are solved using 

Galerkin technique. Multiplying equation (32) by W, 

equation (33) by  and equation (34) by , integrating 

the resulting equations by parts with respect to z from 0 to 

1 and taking 1AwW   , 1BTT  and 1 C  where A,B 

and C are constants and 111 andT,w   are trial functions 

which satisfies the boundary  

conditions (15a)-(15c). This procedure yields the following 

equation for the Rayleigh number Ra: 
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                          (35) 

 

where, 
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. 

 

The value of critical Rayleigh number depends on the 

boundaries. The following boundary combinations are 

considered to evaluate equation (35). 

 

(i) When both boundaries are free,   isothermal and iso-

nano   concentration: 

 

The boundary conditions are: 

 






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0002

z,zat

,T,wDw
      (36) 
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Trial functions satisfying the boundary conditions (36) are: 
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.               (37)    

(ii)When both boundaries are rigid,   isothermal and iso-

nano concentration: 

 

The boundary conditions are: 

 


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Trial functions satisfying the boundary conditions (38) are 
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(iii) When upper boundary is free,  isothermal and iso-nano 

concentration and lower is  rigid,   isothermal and iso-

nano  concentration: 

 

The Boundary conditions are : 
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Trial functions satisfying the boundary conditions (40) are 
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Substituting trial functions (37), (39) and (41) in equation 

(35) .we obtain the critical Rayleigh number 
caR which 

attains the minimum when caa  for different boundary 

combinations. 

 

3. RESULTS AND DISCUSSIONS 

 

The effect of magnetic field and internal heat generation on 

the onset of Rayleigh- Bénard convection in a nanofluid 

using linear stability analysisis studied in this paper. The 

eigenvalue of the problem is obtained  using Galerkin 

method as a function of density Rayleigh number Rn, 

Lewis number Le, modified diffusivity ratio 𝑁𝐴  ,  

Chandrashekhar number Q and internal Rayleigh number 

Ri for free-free, rigid – rigid, rigid-free velocity isothermal 

and iso-nano concentration boundaries are considered, so 

that temperature and nano concentration vanishes at the 

boundaries. The linear stability theory expresses the criteria 

of stability in terms of critical Rayleigh number 
caR  

below which the system is stable and if 
caa RR  system is 

unstable. The results obtained in this paper are depicted in 

the figures (2)-(4). 

 

Fig (2) is the plot of Rayleigh number Ra versus the wave 

number a in the case of free-free, isothermal and iso-nano 

concentration  boundaries for different values of (a) Rn, (b) 

Le, (c) Q (d) NA and (e) Ri.. From figure 2(a) it is observed 

that increase in the values of Rn, increases the Ra thereby 

stabilizing the system indicating the delay of onset of 

convection.  The positive value of Rn is taken which 

implies that the particle density decreases upwards. The 

stabilizing effect of Rn is due to increase in the 

concentration of nanoparticles and temperature difference 

between the plates there is a transfer of energy between the 

fluid and nanoparticles and hence delays the onset of 

convection.   In figure 2(b) the value of Le are taken large 

because it is inversely proportional to brownian diffusion 

coefficient DB which is small thus the decrease in the 

brownian diffusion coefficient increases Ra, thereby 

stabilizing the system. From figure 2(c), we observe that 

when Q increases, i.e. the strength of the applied magnetic 

field increases, it induces the viscosity into the fluid and 

hence magnetic field lines are distorted by convection. 

Then these magnetic lines hinder the growth of 

disturbance, lending to delay in the onset of convection. 

From the figure 2(d) when 𝑁𝐴  increases, Ra decreases since 

AN is directly proportional to thermophoresis diffusion 

coefficient TD
,
 the increase in 𝑁𝐴  increase TD , thereby 

decreases Ra thus the increase in thermophoresis diffusion 

coefficient, NA leads to destabilization of the system. In 

figure 2(e) we observe that the increase in the internal 

Rayleigh number Ri increases the heat transport in the 

system thereby advancing the onset of convection. Thus, 

increase in internal Rayleigh number Ri destabilizes the 

system.  

Figure (3) and (4) are the plot of critical Rayleigh number 

Ra versus wave number a for rigid-rigid and rigid –free 

isothermal and iso-nano concentration boundaries 

respectively. The results obtained in this case are 

qualitatively similar to the that obtained in the case of free 

– free, isothermal and iso-nano concentration case except 

that  

 

 

RR

ca
RF

ca
FF

ca RRR 
  

and      
RR
c

RF
c

FF
c aaa   

 

where, superscript represents different boundary 

combinations. 
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4 CONCLUSIONS 

In this article, the effects of magnetic field and internal heat 

generation on the onset of Rayleigh – Bénard convection in 

a horizontal layer of nanofluid heated from below is 

investigated using Galerkin technique.  The following 

conclusions are drawn from the study: 

(i) The presence of magnetic field is to reduce the 

intensity of Rayleigh – Bénard convection and hence 

leads to more stable system. 

(ii) The effect of internal heat generation has significant 

influence on the Rayleigh – Bénard convection and is 

clearly a destabilizing factor to make the system more 

unstable. 

(iii) For three cases considered, rigid-free, rigid- rigid and 

free-free surfaces, it is found that the critical values of 

the Rayleigh number in rigid-rigid surfaces are the 

highest. This show that the used of rigid-rigid surfaces 

can delay the onset of convection. 

(iv) It is also observed that, the effects of increasing Rn, 

and Le is to delay the onset of convection, while 

increase in NA and Ri is to advances the onset of 

convection. 

(v) The results obtained in this study will favour the 

research workers and industrialists to identify the 

convective modes in order to control the quality of 

production. 

(vi) The results of this study indicate that the onset of 

convection in nanfluids is always delayed when 

compared to fluid without nanoparticles. 
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Fig 2 a-e-Plot of Rayleighnumber Ra versus wave number a for free- free isothermal and iso-nano concentration boundaries for different values of (a) 

concentration Rayleigh number, Rn, (b) Lewis number, Le, (c) Chandrashekhar number, Q, (d) modified diffusivity ratio, 𝑁𝐴 and (e) internal Rayleigh number, 
Ri. 
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Fig 3 a-e Variation of Ra with respect to wave number a for rigid-free isothermal and iso-nano concentration boundaries for different values of (a) concentration 

Rayleigh number, Rn (b) Lewis number, Le, (c) Chandrashekhar number, Q (d)  modified diffusivity ratio, 𝑁𝐴, and (e) internal Rayleigh number, Ri. 
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(c)                                      (d) 

 
 

(e) 
Fig 4 a-e- Variation of Ra with respect to wave number a for rigid-rigid isothermal and iso-nano concentration boundaries for different values of (a) 

concentration Rayleigh number, Rn, (b) Lewis number, Le, (c) Chandrashekhar number, Q, (d)  modified diffusivity ratio, 𝑁𝐴 and (e) internal Rayleigh number, 
Ri. 
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