International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 2, February- 2013

Effective Distributed Dynamic Load Balancing For The Clouds

Y. Ranjith Kumar®, M. Madhu Priya? , K. Shahu Chatrapati®
! Department of CSE, DMSSVH College of Engineering, Machilipatnam, INDIA
2 Department of CSE, DMSSVH College of Engineering, Machilipatnam, INDIA

*Department of CSE, INTUH.C.E., Hyderabad, INDIA

Abstract
”Cloud computing” is a term, which involves
virtualization, distributed computing, networking, software
and web services. A cloud consists of several elements
such as clients, datacenter and distributed servers. It
includes fault tolerance, high availability, scalability,
flexibility, reduced overhead for users, reduced cost of
ownership, on demand services etc. Central to these issues
lies the establishment of an effective load balancing
algorithm. The load can be CPU load, memory capacity,
delay or network load. Load balancing is the process of
distributing the load among various nodes of a distributed
system to improve both resource utilization and job
response time while also avoiding a situation where some
of the nodes are heavily loaded while other nodes are idle
or doing very little work. Load balancing ensures that all
the processor in the system or every node in the network
does approximately the equal amount of work at any
instant of time. This technique can be sender initiated,
receiver initiated, symmetric (combination of sender
initiated, receiver initiated types) static, dynamic
centralized or distributed type. Various studies show that
up to 80% of the workstations are idle depending on time
of day [12], therefore these are advantageous to use. The
idle time and computing power of processors can be used
to make the processing cost-effective.
Our objective is to explain the concept of load balancing,
types of load balancing algorithms, general idea about
dynamic load balancing algorithms and the different
policies that can be used in it and gives an overall
description of wvarious distributed load balancing
algorithms that can be used in case of clouds.

1. Introduction

In Cloud computing, services can be used from diverse and
widespread resources, rather than remote servers or local
machines. There is no standard definition of Cloud
computing. Generally it consists of a bunch of distributed

servers known as masters, providing demanded
services and resources to different clients known as
clients in a network with scalability and reliability of
datacenter. The distributed computers provide on-
demand services. Services may be of software
resources (e.g. Software as a Service, SaaS) or
physical resources (e.g. Platform as a Service, PaaS)
or hardware/ infrastructure (e.g. Hardware as a
Service, HaaS or Infrastructure as a Service, laaS).
Amazon EC2 (Amazon Elastic Compute Cloud) is an
example of cloud computing services.[2]

Elasticity TYPES Private

Reliability Public

Virtualisation

FEATURES MODES Hybrid

Local

Cloud LOCALITY Remote
Systems Distributed

Cost Reduction

Ease of use BENEFITS

COMPARESTO STAKEHOLDERS

Service-oriented Uses
Architecture

Internet of
Services - Resellers
Grid Providers

Figure 1.Cloud Systems

1.1 Cloud Components

A Cloud system consists of 3 major components such
as clients, datacenter, and distributed servers. Each
element has a definite purpose and plays a specific
role.

www.ijert.org 1

Datacenter

Distributed servers

Figure 2.Cloud Components

P Users ﬂ
‘ Real Time Traffic
Management Policies
Content
Owner

Cloud Load Balancer

CDN 1 Amazon AWS

Others

CDN 2
Datacenter

Figure 3.Cloud Load Balancer

2. Load Balancing
It is a process of reassigning the total load to the individual
nodes of the collective system to make resource utilization
effective and to improve the response time of the job,
simultaneously removing a condition in which some of the
nodes are over loaded while some others are under loaded.
A load balancing algorithm which is dynamic in nature
does not consider the previous state or behavior of the
system, that is, it depends on the present behavior of the
system. The important things to consider while developing
such algorithm are: estimation of load, comparison of load,
stability of different system, performance of system,
interaction between the nodes, nature of work to be
transferred, selecting of nodes and many other ones [13] .
This load considered can be in terms of CPU load, amount
of memory used, delay or Network load. When a given
workload is applied on any cluster’s node, this given load
can be efficiently executed if the available resources are
efficiently used. So that, there must be a mechanism for
choosing the nodes that have these resources. Scheduling
is a component or a mechanism, which is responsible for
the selection of a cluster node, to which a particular
process will be placed. This mechanism will investigate
the load balancing state [9,10]. Hence, scheduling needs
algorithms to solve such problems. In real world, load
balancing affected by 3 factors mainly [11]:
» The environment in which one wishes to balance
the load.

» The nature of the load itself.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 2, February- 2013

* The load balancing tools available.

2.1 Goals of Load balancing
As given in [4], the goals of load balancing are :
e Toimprove the performance substantially
e To have a backup plan in case the system fails
even partially
e To maintain the system stability
e To accommodate future modification in the
system

2.2 Types of Load balancing algorithms

Depending on who initiated the process, load
balancing algorithms can be of three categories as
given in [4]:

Sender Initiated: If the load balancing algorithm is
initialized by the sender.

Receiver Initiated: If the load balancing algorithm is
initiated by the receiver.

Symmetric: It is the combination of both sender
initiated and receiver initiated.

WORLD 'WIDE WEB
#{N ?f}\
A mME O uses)
EEBE
\, BE B ¢
oA M

.T.I .'_.III

\ ."-'”I"IH‘F--': /

REQUESTS .\"r o ¥

/-er'_'“a’ B
[DRECTED %
& TRAFFIC

[T 1)
L A, LA
s s o, o v
cloup CLOUD cloup cLoud |
\ SERVER GSERVER GSERVER SERVER /

A A 7

CLOUD HOSTING ENVIRONMENT

Figure 4.Cloud Hosting Environment and Load Balancer

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

. 2278-0181

. . |
Depending on the current state of the system, load system. It is more advantageous wher,Jnogt,0f #h8 ary- 2013

balancing algorithms can be divided into 2 categories as
given in [4]:

Static: It doesn’t depend on the current state of the system.
Prior knowledge of the system is needed

Dynamic: Decisions on load balancing are based on
current state of the system. No prior knowledge is needed.
So it is better than static approach. Here we will discuss on
various dynamic load balancing algorithms for the clouds
of different sizes.

3. Dynamic Load balancing algorithm

In a distributed system, dynamic load balancing can be
done in two different ways: distributed and non-
distributed.

Global Centralized Strategy (GCDLE) Clobal Distributed Strategy (CDDLB)

d profile

LN

Figure 5.Centralized Vs Distributed Strategies

In the distributed one, the dynamic load balancing
algorithm is executed by all nodes present in the system
and the task of load balancing is shared among them. The
interaction among nodes to achieve load balancing can
take two forms: cooperative and non-cooperative [4].

In the first one, the nodes work side-by-side to achieve a
common objective, for example, to improve the overall
response time, etc.

In the second form, each node works independently toward
a goal local to it, for example, to improve the response
time of a local task.

Dynamic load balancing algorithms of distributed nature,
usually generate more messages than the non-distributed
ones because, each of the nodes in the system needs to
interact with every other node.

A benefit, of this is that even if one or more nodes in the
system fail, it will not cause the total load balancing
process to halt; it instead would affect the system
performance to some extent.

Distributed dynamic load balancing can introduce
immense stress on a system in which each node needs to
interchange status information with every other node in the

nodes act individually with very few interactions with
others.

In non-distributed type, either one node or a group of
nodes do the task of load balancing.

Non-distributed dynamic load balancing algorithms
can take two forms: centralized and semi-distributed.
In the first form, the load balancing algorithm is
executed only by a single node in the whole system:
the central node. This node is solely responsible for
load balancing of the whole system. The other nodes
interact only with the central node.

In semi-distributed form, nodes of the system are
partitioned into clusters, where the load balancing in
each cluster is of centralized form. A central node is
elected in each cluster by appropriate election
technique which takes care of load balancing within
that cluster. Hence, the load balancing of the whole
system is done via the central nodes of each cluster

[4].

Centralized dynamic load balancing takes fewer
messages to reach a decision, as the number of overall
interactions in the system decreases drastically as
compared to the semi distributed case. However,
centralized algorithms can cause a bottleneck in the
system at the central node and also the load balancing
process is rendered useless once the central node
crashes. Therefore, this algorithm is most suited for
networks with small size.

4. Policies or Strategies in Dynamic load
balancing

There are 4 policies [4]:

Transfer Policy: The part of the dynamic load
balancing algorithm which selects a job for
transferring from a local node to a remote node is
referred to as Transfer policy or Transfer strategy.
Selection Policy: It specifies the processors involved
in the load exchange (processor matching)

Location Policy: The part of the load balancing
algorithm which selects a destination node for a
transferred task is referred to as location policy or
Location strategy.

Information Policy: The part of the dynamic load
balancing algorithm responsible for collecting
information about the nodes in the system is referred
to as Information

policy or Information strategy.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

carbon emission go hand in hand, the mogge thgégsﬁsyﬂf%i

Transfer Strategy Location Strategy

Yes Yes
Is job eligible Is remote

Incoming job

Comnmmication

d for transfer? e node found?
No No
Network

LD Execute Locally 4—' ‘

Information Strategy

Figure 6: Interaction among components of a dynamic load
balancing algorithm (adopted from [4])

5. Metrics for Load Balancing in Clouds

The existing load balancing techniques in clouds, consider
various parameters like performance, response time,
scalability, throughput, resource utilization, fault tolerance,
migration time and associated overhead. But, for an
energy-efficient load balancing, metrics like energy
consumption and carbon emission should also be
considered.

Overhead Associated - determines the amount of overhead
involved while implementing a load-balancing algorithm.
It is composed of overhead due to movement of tasks,
inter-processor and inter-process communication. -This
should be minimized so that a load balancing technique
can work efficiently.

Throughput - is used to calculate the no. of tasks whose
execution has been completed. It should be high to
improve the performance of the system.

Performance — is used to check the efficiency of the
system. It has to be improved at a reasonable cost e.g.
reduce response time while keeping acceptable delays.
Resource Utilization - is used to check the utilization of
resources. It should be optimized for an efficient load
balancing.

Scalability - is the ability of an algorithm to perform load
balancing for a system with any finite number of nodes.
This metric should be improved.

Response Time - is the amount of time taken to respond by
a particular load balancing algorithm in a distributed
system. This parameter should be minimized.

Fault Tolerance - is the ability of an algorithm to perform
uniform load balancing in spite of arbitrary node or link
failure. The load balancing should be a good fault-tolerant
technique.

Migration time - is the time to migrate the jobs or
resources from one node to other. It should be minimized
in order to enhance the performance of the system.

Carbon Emission (CE) - calculates the carbon emission of
all the resources in the system. As energy consumption and

consumed, higher is the carbon footprint. So, for an
energy-efficient load balancing solution, it should be
reduced

5.1 Types of Load Balancing

Load Balancing can be achieved through two different
methodologies, they are

1) Software load balancing

2) Hardware load balancing

Software Load Balancing:

The software load balancing fits in the application
layer of the stack. In case of software load balancing
software program works as an arbiter to decide on
distributing the job to particular engine for
computation. Ex: In case of a web application a
simple proxy like HA Proxy can be setup in the web
server such a way to route few requests to application
server-x and other requests to application server-y
such a way load balancing could be achieved on the
software level.

Hardware Load Balancing:

The hardware load balancing is the method of
using multiple computation nodes and delegating
work to multiple units in order to increase efficiency
which in turn improves the performance of the
application. A load balancer software works as a
facade and redirects the incoming request to the
appropriate machine for effectual manipulation.
Currently in this cloud age, cost of hardware is less
than the need for the performance. So the hardware
load balancing would be highly recommended for
applications demanding eminent scalability.

6. Distributed Load Balancing for the Clouds
In complex and large systems, there is a tremendous
need for load balancing. For simplifying load
balancing globally (e.g. in a cloud), one thing which
can be done is, employing techniques would act at the
components of the clouds in such a way that the load
of the whole cloud is balanced. For this purpose, we
are discussing three types of solutions which can be
applied to a distributed system [7]: honeybee foraging
algorithm, a biased random sampling on a random
walk procedure and Active Clustering.

6.1 Honeybee Foraging Algorithm

This algorithm is derived from the behavior of honey
bees for finding and reaping food. There is a class of
bees called the forager bees which forage for food
sources, upon finding one, they come back to the

www.ijert.org

beehive to advertise this using a dance called waggle
dance. The display of this dance, gives the idea of the
quality or quantity of food and also its distance from the
beehive. Scout bees then follow the foragers to the location
of food and then began to reap it. They then return to the
beehive and do a waggle dance, which gives an idea of
how much food is left and hence results in more
exploitation or abandonment of the food source.

In case of load balancing, as the web servers demand
increases or decreases, the services are assigned
dynamically to regulate the changing demands of the user.
The servers are grouped under virtual servers (VS), each
VS having its own virtual service queues. Each server
processing a request from its queue calculates a profit or
reward, which is analogous to the quality that the bees
show in their waggle dance. One measure of this reward
can be the amount of time that the CPU spends on the
processing of a request. The dance floor in case of honey
bees is analogous to an advert board here. This board is
also used to advertise the profit of the entire colony.

Each of the servers takes the role of either a forager or a
scout. The server after processing a request can post their
profit on the advert boards.

Server can choose a queue of a VS by a probability of px
showing forage/explore behavior, or it can check for
advertisements and serve it, thus showing scout behavior.
A server serving a request, calculates its profit and
compare it with the colony profit and then sets its px. If
this profit was high, then the server stays at the current
virtual server; posting an advertisement for it. by
probability pr. If it was low, then the server returns to the
forage or scout behavior.

1. Initialise population with random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion not met) //Forming new
population.

4. Select sites for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites)
and evaluate fitnesses.

6. Select the fittest bee from each patch.

7. Assign remaining bees to search randomly and evaluate
their fitnesses.

8. End While.

Figure 7: Algorithm used in Honey bee technique (adopted from [7])

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 2, February- 2013

Serve Request

Scout Behavior -
choose random
virtual server fo

Join

5¢

past Advert ervers Colony

Virtual Server1

Serya Request
Virlual Server i

i

Write Advert Board

Virtual Server]

&

Wirfual Server m

Success

{

Fail Serve Request

Choose Random Advert

From Advert Board

Figure 8: Server Allocations by Foraging in Honey
bee technique (adopted from [14])

6.2 Biased Random Sampling

Here a virtual graph is constructed, with the
connectivity of each node (a server is treated as a
node) representing the load on the server. Each server
is symbolized as a node in the graph, with each in
degree directed to the free resources of the server.
Regarding job execution and completion, whenever a
node does or executes a job, it deletes an incoming
edge, which indicates reduction in the availability of
free resource. After completion of a job, the node
creates an incoming edge, which indicates an increase
in the availability of free resource. The addition and
deletion of processes is done by the process of
random sampling.

The walk starts at any one node and at every step a
neighbor is chosen randomly. The last node is
selected for allocation for load. Alternatively, another
method can be used for selection of a node for load
allocation, that being selecting a node based on
certain criteria like computing efficiency, etc. Yet
another method can be selecting that node for load
allocation which is under loaded i.e. having highest in
degree. If b is the walk length, then, as b increases,
the efficiency of load allocation increases. We define
a threshold value of b, which is generally equal to log
n experimentally.

A node upon receiving a job, will execute it only if its
current walk length is equal to or greater than the

www.ijert.org

threshold value. Else, the walk length of the job under
consideration

is incremented and another neighbor node is selected
randomly. When, a job is executed by a node then in the
graph, an incoming edge of that node is deleted. After
completion of the job, an edge is created from the node
initiating the load allocation process to the node which was
executing the job.

Finally what we get is a directed graph. The load balancing
scheme used here is fully decentralized, thus making it apt
for large network systems like that in a cloud.

6.3 Active Clustering

Active Clustering works on the principle of grouping
similar nodes together and working on these groups.

The process involved is:

A node initiates the process and selects another node
called the matchmaker node from its neighbors satisfying
the criteria that it should be of a different type than the
former one. The so called matchmaker node then forms a
connection between neighbors of it which is of the same
type as the initial node.

The matchmaker node then detaches the connection
between itself and the initial node.

The above set of processes is followed iteratively.

7. Conclusion

This paper explains the concept of load balancing, types of
load balancing algorithms, general idea about dynamic
load balancing algorithms and the different policies that
can be used in it and gives an overall description. of
various distributed load balancing algorithms that can be
used in case of clouds.

8. References

[1] Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Cloud
Computing A Practical Approach, TATA McGRAW-HILL
Edition 2010.

[2] Martin Randles, David Lamb, A. Taleb-Bendiab, A
Comparative Study into Distributed Load Balancing Algorithms
for Cloud Computing, 2010 IEEE 24th International Conference
on Advanced Information Networking and Applications
Workshops.

[3] Mladen A. Vouk, Cloud Computing Issues, Research and
Implementations, Proceedings of the IT1 2008 30th Int. Conf. on
Information Technology Interfaces, 2008, June 23-26.

[4] Ali M. Alakeel, A Guide to Dynamic Load Balancing in
Distributed Computer Systems,IJCSNS International Journal of
Computer Science and Network Security, VOL.10 No.6, June
2010.

[5]http://ivww-03.ibm.com/press/us/en/pressrelease /22613.wss
[6]http://ivww.amazon.com/gp/browse.html?node=201590011

[7] Martin Randles, Enas Odat, David Lamb, Osama Abu-
Rahmeh and A. Taleb-Bendiab, A Comparative Experiment in
Distributed Load Balancing, 2009 Second International
Conference on Developments in eSystems Engineering.

[8] Peter S. Pacheco, “Parallel Programming with MPI”, Morgan
Kaufmann Publishers Edition 2008

[9] Rao, C.S., M. Naidu, K. Subbaiah and N.R. Reddy,

International Journal of Engineering Research & Technology (IJERT)

T . ISSN;: 2278-0181
2007. Process migration in network of Imux&g@;@e@k&mw_ 2013

Comput. Sci. Network Security, 7: 213-219. http://
paper.ijcsns.org/07_book/html/200705/200705032.html.

[10]. Du, C., X.-H. Sun and M. Wu, May 2007. Dynamic
scheduling with process migration. Proceedings of the 7th
IEEE International Symposium on Cluster Computing and
the Grid. May 14-17, IEEE Computer Society, Washington,
DC, USA., pp: 92-99. DOI: 10.1109/CCGRID.2007.46
[11]. Barak, S.G.A. and R. Wheeler, 1993. The MOSIX
Distributed Operating System: Load Balancing for UNIX.
1st Edn., Springer-Verlag, Inc., New York, pp: 221. ISBN-
10: 0387566635

[12] R. D. Blumofe and D. S. Park. Scheduling large-scale
parallel computations on network of workstations. 3rd
IEEE Intl. Symp. High-Performance Distributed
Computing, Aug. 1994.

[13]. Walker, B. and D. Steel, 1999. Implementing a full
single system image unixware cluster: Middle ware vs
under ware. International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’99), June 1999, Monte Carlo Resort, Las Vegas,
Nevada, USA., pp: 1-7.

[14] Pham D.T., Ghanbarzadeh A., Kog E., Otri S., Rahim
S., and M.Zaidi "The Bees Algorithm — A Novel Tool for
Complex Optimisation Problems", Proceedings of
IPROMS 2006 Conference, pp.454-461

www.ijert.org 6

