

Effective Distributed Dynamic Load Balancing For The Clouds

 Y. Ranjith Kumar
1
, M. Madhu Priya

2
 , K. Shahu Chatrapati

3

1
 Department of CSE, DMSSVH College of Engineering, Machilipatnam, INDIA

2
 Department of CSE, DMSSVH College of Engineering, Machilipatnam, INDIA

3
Department of CSE, JNTUH.C.E., Hyderabad, INDIA

Abstract
”Cloud computing” is a term, which involves

virtualization, distributed computing, networking, software

and web services. A cloud consists of several elements

such as clients, datacenter and distributed servers. It

includes fault tolerance, high availability, scalability,

flexibility, reduced overhead for users, reduced cost of

ownership, on demand services etc. Central to these issues

lies the establishment of an effective load balancing

algorithm. The load can be CPU load, memory capacity,

delay or network load. Load balancing is the process of

distributing the load among various nodes of a distributed

system to improve both resource utilization and job

response time while also avoiding a situation where some

of the nodes are heavily loaded while other nodes are idle

or doing very little work. Load balancing ensures that all

the processor in the system or every node in the network

does approximately the equal amount of work at any

instant of time. This technique can be sender initiated,

receiver initiated, symmetric (combination of sender

initiated, receiver initiated types) static, dynamic

centralized or distributed type. Various studies show that

up to 80% of the workstations are idle depending on time

of day [12], therefore these are advantageous to use. The

idle time and computing power of processors can be used

to make the processing cost-effective.

Our objective is to explain the concept of load balancing,

types of load balancing algorithms, general idea about

dynamic load balancing algorithms and the different

policies that can be used in it and gives an overall

description of various distributed load balancing

algorithms that can be used in case of clouds.

1. Introduction
In Cloud computing, services can be used from diverse and

widespread resources, rather than remote servers or local

machines. There is no standard definition of Cloud

computing. Generally it consists of a bunch of distributed

servers known as masters, providing demanded

services and resources to different clients known as

clients in a network with scalability and reliability of

datacenter. The distributed computers provide on-

demand services. Services may be of software

resources (e.g. Software as a Service, SaaS) or

physical resources (e.g. Platform as a Service, PaaS)

or hardware/ infrastructure (e.g. Hardware as a

Service, HaaS or Infrastructure as a Service, IaaS).

Amazon EC2 (Amazon Elastic Compute Cloud) is an

example of cloud computing services.[2]

 Figure 1.Cloud Systems

1.1 Cloud Components

A Cloud system consists of 3 major components such

as clients, datacenter, and distributed servers. Each

element has a definite purpose and plays a specific

role.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Figure 2.Cloud Components

Figure 3.Cloud Load Balancer

2. Load Balancing
It is a process of reassigning the total load to the individual

nodes of the collective system to make resource utilization

effective and to improve the response time of the job,

simultaneously removing a condition in which some of the

nodes are over loaded while some others are under loaded.

 A load balancing algorithm which is dynamic in nature

does not consider the previous state or behavior of the

system, that is, it depends on the present behavior of the

system. The important things to consider while developing

such algorithm are: estimation of load, comparison of load,

stability of different system, performance of system,

interaction between the nodes, nature of work to be

transferred, selecting of nodes and many other ones [13] .

This load considered can be in terms of CPU load, amount

of memory used, delay or Network load. When a given

workload is applied on any cluster’s node, this given load

can be efficiently executed if the available resources are

efficiently used. So that, there must be a mechanism for

choosing the nodes that have these resources. Scheduling

is a component or a mechanism, which is responsible for

the selection of a cluster node, to which a particular

process will be placed. This mechanism will investigate

the load balancing state [9,10]. Hence, scheduling needs

algorithms to solve such problems. In real world, load

balancing affected by 3 factors mainly [11]:

• The environment in which one wishes to balance

the load.

• The nature of the load itself.

• The load balancing tools available.

2.1 Goals of Load balancing

As given in [4], the goals of load balancing are :

 To improve the performance substantially
 To have a backup plan in case the system fails

even partially

 To maintain the system stability

 To accommodate future modification in the

system

2.2 Types of Load balancing algorithms

Depending on who initiated the process, load

balancing algorithms can be of three categories as

given in [4]:

Sender Initiated: If the load balancing algorithm is

initialized by the sender.

Receiver Initiated: If the load balancing algorithm is

initiated by the receiver.

Symmetric: It is the combination of both sender

initiated and receiver initiated.

Figure 4.Cloud Hosting Environment and Load Balancer

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Depending on the current state of the system, load

balancing algorithms can be divided into 2 categories as

given in [4]:

Static: It doesn’t depend on the current state of the system.

Prior knowledge of the system is needed

Dynamic: Decisions on load balancing are based on

current state of the system. No prior knowledge is needed.

So it is better than static approach. Here we will discuss on

various dynamic load balancing algorithms for the clouds

of different sizes.

3. Dynamic Load balancing algorithm

In a distributed system, dynamic load balancing can be

done in two different ways: distributed and non-

distributed.

Figure 5.Centralized Vs Distributed Strategies

 In the distributed one, the dynamic load balancing

algorithm is executed by all nodes present in the system

and the task of load balancing is shared among them. The

interaction among nodes to achieve load balancing can

take two forms: cooperative and non-cooperative [4].

In the first one, the nodes work side-by-side to achieve a

common objective, for example, to improve the overall

response time, etc.

In the second form, each node works independently toward

a goal local to it, for example, to improve the response

time of a local task.

Dynamic load balancing algorithms of distributed nature,

usually generate more messages than the non-distributed

ones because, each of the nodes in the system needs to

interact with every other node.

A benefit, of this is that even if one or more nodes in the

system fail, it will not cause the total load balancing

process to halt; it instead would affect the system

performance to some extent.

Distributed dynamic load balancing can introduce

immense stress on a system in which each node needs to

interchange status information with every other node in the

system. It is more advantageous when most of the

nodes act individually with very few interactions with

others.

In non-distributed type, either one node or a group of

nodes do the task of load balancing.

Non-distributed dynamic load balancing algorithms

can take two forms: centralized and semi-distributed.

In the first form, the load balancing algorithm is

executed only by a single node in the whole system:

the central node. This node is solely responsible for

load balancing of the whole system. The other nodes

interact only with the central node.

In semi-distributed form, nodes of the system are

partitioned into clusters, where the load balancing in

each cluster is of centralized form. A central node is

elected in each cluster by appropriate election

technique which takes care of load balancing within

that cluster. Hence, the load balancing of the whole

system is done via the central nodes of each cluster

[4].

Centralized dynamic load balancing takes fewer

messages to reach a decision, as the number of overall

interactions in the system decreases drastically as

compared to the semi distributed case. However,

centralized algorithms can cause a bottleneck in the

system at the central node and also the load balancing

process is rendered useless once the central node

crashes. Therefore, this algorithm is most suited for

networks with small size.

4. Policies or Strategies in Dynamic load

balancing
There are 4 policies [4]:

Transfer Policy: The part of the dynamic load

balancing algorithm which selects a job for

transferring from a local node to a remote node is

referred to as Transfer policy or Transfer strategy.

Selection Policy: It specifies the processors involved

in the load exchange (processor matching)

Location Policy: The part of the load balancing

algorithm which selects a destination node for a

transferred task is referred to as location policy or

Location strategy.

Information Policy: The part of the dynamic load

balancing algorithm responsible for collecting

information about the nodes in the system is referred

to as Information

policy or Information strategy.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 6: Interaction among components of a dynamic load

balancing algorithm (adopted from [4])

5. Metrics for Load Balancing in Clouds
The existing load balancing techniques in clouds, consider

various parameters like performance, response time,

scalability, throughput, resource utilization, fault tolerance,

migration time and associated overhead. But, for an

energy-efficient load balancing, metrics like energy

consumption and carbon emission should also be

considered.

Overhead Associated - determines the amount of overhead

involved while implementing a load-balancing algorithm.

It is composed of overhead due to movement of tasks,

inter-processor and inter-process communication. This

should be minimized so that a load balancing technique

can work efficiently.

Throughput - is used to calculate the no. of tasks whose

execution has been completed. It should be high to

improve the performance of the system.

Performance – is used to check the efficiency of the

system. It has to be improved at a reasonable cost e.g.

reduce response time while keeping acceptable delays.

Resource Utilization - is used to check the utilization of

resources. It should be optimized for an efficient load

balancing.

Scalability - is the ability of an algorithm to perform load

balancing for a system with any finite number of nodes.

This metric should be improved.

Response Time - is the amount of time taken to respond by

a particular load balancing algorithm in a distributed

system. This parameter should be minimized.

Fault Tolerance - is the ability of an algorithm to perform

uniform load balancing in spite of arbitrary node or link

failure. The load balancing should be a good fault-tolerant

technique.

Migration time - is the time to migrate the jobs or

resources from one node to other. It should be minimized

in order to enhance the performance of the system.

Carbon Emission (CE) - calculates the carbon emission of

all the resources in the system. As energy consumption and

carbon emission go hand in hand, the more the energy

consumed, higher is the carbon footprint. So, for an

energy-efficient load balancing solution, it should be

reduced

5.1 Types of Load Balancing

Load Balancing can be achieved through two different

methodologies, they are

1) Software load balancing

2) Hardware load balancing

Software Load Balancing:

The software load balancing fits in the application

layer of the stack. In case of software load balancing

software program works as an arbiter to decide on

distributing the job to particular engine for

computation. Ex: In case of a web application a

simple proxy like HA Proxy can be setup in the web

server such a way to route few requests to application

server-x and other requests to application server-y

such a way load balancing could be achieved on the

software level.

Hardware Load Balancing:

The hardware load balancing is the method of

using multiple computation nodes and delegating

work to multiple units in order to increase efficiency

which in turn improves the performance of the

application. A load balancer software works as a

facade and redirects the incoming request to the

appropriate machine for effectual manipulation.

Currently in this cloud age, cost of hardware is less

than the need for the performance. So the hardware

load balancing would be highly recommended for

applications demanding eminent scalability.

6. Distributed Load Balancing for the Clouds
In complex and large systems, there is a tremendous

need for load balancing. For simplifying load

balancing globally (e.g. in a cloud), one thing which

can be done is, employing techniques would act at the

components of the clouds in such a way that the load

of the whole cloud is balanced. For this purpose, we

are discussing three types of solutions which can be

applied to a distributed system [7]: honeybee foraging

algorithm, a biased random sampling on a random

walk procedure and Active Clustering.

6.1 Honeybee Foraging Algorithm

This algorithm is derived from the behavior of honey

bees for finding and reaping food. There is a class of

bees called the forager bees which forage for food

sources, upon finding one, they come back to the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

beehive to advertise this using a dance called waggle

dance. The display of this dance, gives the idea of the

quality or quantity of food and also its distance from the

beehive. Scout bees then follow the foragers to the location

of food and then began to reap it. They then return to the

beehive and do a waggle dance, which gives an idea of

how much food is left and hence results in more

exploitation or abandonment of the food source.

In case of load balancing, as the web servers demand

increases or decreases, the services are assigned

dynamically to regulate the changing demands of the user.

The servers are grouped under virtual servers (VS), each

VS having its own virtual service queues. Each server

processing a request from its queue calculates a profit or

reward, which is analogous to the quality that the bees

show in their waggle dance. One measure of this reward

can be the amount of time that the CPU spends on the

processing of a request. The dance floor in case of honey

bees is analogous to an advert board here. This board is

also used to advertise the profit of the entire colony.

Each of the servers takes the role of either a forager or a

scout. The server after processing a request can post their

profit on the advert boards.

Server can choose a queue of a VS by a probability of px

showing forage/explore behavior, or it can check for

advertisements and serve it, thus showing scout behavior.

A server serving a request, calculates its profit and

compare it with the colony profit and then sets its px. If

this profit was high, then the server stays at the current

virtual server; posting an advertisement for it by

probability pr. If it was low, then the server returns to the

forage or scout behavior.

 1. Initialise population with random solutions.

 2. Evaluate fitness of the population.

 3. While (stopping criterion not met) //Forming new

 population.

 4. Select sites for neighbourhood search.

 5. Recruit bees for selected sites (more bees for best e sites)

 and evaluate fitnesses.

 6. Select the fittest bee from each patch.

 7. Assign remaining bees to search randomly and evaluate

 their fitnesses.

 8. End While.

Figure 7: Algorithm used in Honey bee technique (adopted from [7])

Figure 8: Server Allocations by Foraging in Honey

bee technique (adopted from [14])

6.2 Biased Random Sampling

Here a virtual graph is constructed, with the

connectivity of each node (a server is treated as a

node) representing the load on the server. Each server

is symbolized as a node in the graph, with each in

degree directed to the free resources of the server.

Regarding job execution and completion, whenever a

node does or executes a job, it deletes an incoming

edge, which indicates reduction in the availability of

free resource. After completion of a job, the node

creates an incoming edge, which indicates an increase

in the availability of free resource. The addition and

deletion of processes is done by the process of

random sampling.

The walk starts at any one node and at every step a

neighbor is chosen randomly. The last node is

selected for allocation for load. Alternatively, another

method can be used for selection of a node for load

allocation, that being selecting a node based on

certain criteria like computing efficiency, etc. Yet

another method can be selecting that node for load

allocation which is under loaded i.e. having highest in

degree. If b is the walk length, then, as b increases,

the efficiency of load allocation increases. We define

a threshold value of b, which is generally equal to log

n experimentally.

A node upon receiving a job, will execute it only if its

current walk length is equal to or greater than the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

threshold value. Else, the walk length of the job under

consideration

is incremented and another neighbor node is selected

randomly. When, a job is executed by a node then in the

graph, an incoming edge of that node is deleted. After

completion of the job, an edge is created from the node

initiating the load allocation process to the node which was

executing the job.

Finally what we get is a directed graph. The load balancing

scheme used here is fully decentralized, thus making it apt

for large network systems like that in a cloud.

6.3 Active Clustering

Active Clustering works on the principle of grouping

similar nodes together and working on these groups.

The process involved is:

A node initiates the process and selects another node

called the matchmaker node from its neighbors satisfying

the criteria that it should be of a different type than the

former one. The so called matchmaker node then forms a

connection between neighbors of it which is of the same

type as the initial node.

The matchmaker node then detaches the connection

between itself and the initial node.

The above set of processes is followed iteratively.

7. Conclusion
This paper explains the concept of load balancing, types of

load balancing algorithms, general idea about dynamic

load balancing algorithms and the different policies that

can be used in it and gives an overall description of

various distributed load balancing algorithms that can be

used in case of clouds.

8. References
[1] Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Cloud

Computing A Practical Approach, TATA McGRAW-HILL

Edition 2010.

[2] Martin Randles, David Lamb, A. Taleb-Bendiab, A

Comparative Study into Distributed Load Balancing Algorithms

for Cloud Computing, 2010 IEEE 24th International Conference

on Advanced Information Networking and Applications

Workshops.

[3] Mladen A. Vouk, Cloud Computing Issues, Research and

Implementations, Proceedings of the ITI 2008 30th Int. Conf. on

Information Technology Interfaces, 2008, June 23-26.

[4] Ali M. Alakeel, A Guide to Dynamic Load Balancing in

Distributed Computer Systems,IJCSNS International Journal of

Computer Science and Network Security, VOL.10 No.6, June

2010.
[5]http://www-03.ibm.com/press/us/en/pressrelease /22613.wss

[6]http://www.amazon.com/gp/browse.html?node=201590011

[7] Martin Randles, Enas Odat, David Lamb, Osama Abu-

Rahmeh and A. Taleb-Bendiab, A Comparative Experiment in

Distributed Load Balancing, 2009 Second International

Conference on Developments in eSystems Engineering.

[8] Peter S. Pacheco, ”Parallel Programming with MPI”, Morgan

Kaufmann Publishers Edition 2008

[9] Rao, C.S., M. Naidu, K. Subbaiah and N.R. Reddy,

2007. Process migration in network of linux systems. Int. J.

Comput. Sci. Network Security, 7: 213-219. http://

paper.ijcsns.org/07_book/html/200705/200705032.html.

[10]. Du, C., X.-H. Sun and M. Wu, May 2007. Dynamic

scheduling with process migration. Proceedings of the 7th

IEEE International Symposium on Cluster Computing and

the Grid. May 14-17, IEEE Computer Society, Washington,

DC, USA., pp: 92-99. DOI: 10.1109/CCGRID.2007.46

[11]. Barak, S.G.A. and R. Wheeler, 1993. The MOSIX

Distributed Operating System: Load Balancing for UNIX.

1st Edn., Springer-Verlag, Inc., New York, pp: 221. ISBN-

10: 0387566635

[12] R. D. Blumofe and D. S. Park. Scheduling large-scale

parallel computations on network of workstations. 3rd

IEEE Intl. Symp. High-Performance Distributed

Computing, Aug. 1994.

[13]. Walker, B. and D. Steel, 1999. Implementing a full

single system image unixware cluster: Middle ware vs

under ware. International Conference on Parallel and

Distributed Processing Techniques and Applications

(PDPTA’99), June 1999, Monte Carlo Resort, Las Vegas,

Nevada, USA., pp: 1-7.
[14] Pham D.T., Ghanbarzadeh A., Koç E., Otri S., Rahim

S., and M.Zaidi "The Bees Algorithm – A Novel Tool for

Complex Optimisation Problems"", Proceedings of

IPROMS 2006 Conference, pp.454–461

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

