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 Abstract ̶ A steady mixed convection flow over a porous plate 

has been considered to investigate the combined effects of 

suction parameter, radiation parameter, Schmidt number, 

Prandtl number. The governing boundary layer equations are 

transformed into a non-dimensional form by group 

transformation and finally solved by using Runga-Kutta 

method with shooting technique. The numerical results have 

been depicted graphically to illustrate the influence of the 

mixed convection parameter and other various parameters 

along with Prandtl number on velocity, temperature and 

concentration profiles. The results for the skin-friction 

coefficient, Nusselt number and Sherwood number have also 

been analyzed. Good agreement is found between the 

numerical results of the present paper with published result 

for special case. 
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I. INTRODUCTION 

The problem of laminar hydrodynamic and thermal 
boundary layers over the flat plate in a uniform stream of 
fluid is a thoroughly researched problem in fluid 
mechanics. Hamad et al. [1], studied magnetic field effects 
of a nano-fluid past a vertical semi-infinite flat plate using 
group transformation. Reviews for the applications of 
group theory to differential equations can be found in the 
various researches done by [2-7]. The radiative flow of an 
electrically conducting fluid and heat and mass transfer 
situation arises in many practical applications, such as, in 
electrical power generation, solar power technology, space 
vehicle re-entry, nuclear reactors. It also occurs in many 
geophysical and engineering applications such as nuclear 
reactors, migration of moisture through air contained in 
fibrous insulations, nuclear waste disposal, dispersion of 
chemical pollutants through water-saturated soil and others 
as studied by Arasu et al. [7] and Chamakha et al. [9]. 
Radiation effect on boundary layer flow with and without 
applying a magnetic field has been investigated researchers 
[10-13]. Similarity representation of MHD flow with heat 
transfer taking into consideration variable viscosity and 
thermal conductivity by Seddeek et al. [14]. Mahanti et al. 
[15] investigated the effects of variable viscosity and 
thermal conductivity, which vary linearly on steady free 
convective flow of a viscous incompressible fluid along an 
isothermal vertical plate in the presence of heat sink. 
Recently, thermal convective surface boundary conditions 
were used by Aziz [16] and Makinde et al. [17]. They 
studied to solve different types of boundary layer 

equations. Recently, Hamad et al. [18] studied a steady 
laminar 2-D MHD viscous incompressible flow over a 
permeable flat plate with thermal convective boundary 
condition and radiation effects. The viscosity and thermal 
conductivity of fluid are assumed to vary linearly with 
temperature. 

The objective of present investigation is to study mixed 
convection flow over a permeable porous plate. To find the 
solution, authors are using similarity and group method of 
transformation. The attempt has also been made to study 
the effects of radiation, suction and thermal convective 
parameters on the fluid flow and the rate of heat and mass 
transfer. 

II. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

Consider the steady mixed convective flow of a viscous 

incompressible electrically conducting fluid past an infinite 

vertical porous plate in a porous medium of time 

independent permeability in presence of a transverse 

magnetic field B0 as shown in the figure of physical model. 

Let x̄-axis be along the plate in the direction of flow and ȳ-

axis is normal to it. The velocity components along x̄ and ȳ 

axes are ū and v̄, T and C be the fluid temperature and 

concentration. Further μ, ρ, σ, k, R and M are the 

coefficient of viscosity, density, electric conductivity, 

thermal conductivity, radiation parameter and magnetic 

parameter of the fluid. 

Alam et al. [19] considered and it has been assumed 

that the magnetic Reynolds number is much less than unity 

so that the induced magnetic field is neglected in 

comparison to the applied magnetic field B0. The suction or 

injection are imposed on the permeable plate. The 

temperature of the plate surface is held uniform at Tw 

which is higher than the ambient temperature T∞. The 

physical model has been given below:  
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Fig. 1.  Physical model 

The species concentration at the plate surface is 

maintained uniform at Cw while the ambient fluid 

concentration is assumed to be C∞. Further, all the fluid 

properties are assumed to be constant except that of the 

dynamic viscosity and thermal conductivity. The bottom 

surface of the plate is heated by convection from a hot fluid 

of temperature Tf it generates a heat transfer coefficient hf 

as taken by Aziz [16]. 

Under the above assumptions, the governing equations 

for the problem can be written as Kays et al. [20]. 
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The boundary conditions are given by 
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In the free stream flow, ū = ue(x̄) and hence momentum 

equation (2) becomes 
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Using equations (2) and (6), equation of momentum 

becomes 
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Assumed the viscosity and thermal conductivity as 

linearly temperature dependent [19]: 

T)](Tb[1μμ(t) f0   ,

)]Tc(T[1kk(t)    

Where, 
μ and 

k are the constant undisturbed 

viscosity and thermal conductivity, b0 > 0, c are constants 

depend on fluid. 

Using Rosseland’s approximation for radiation from 

[21], we obtained 
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 Where 
1σ  is the Stefan–Boltzman constant and k1 is 

the absorption coefficient. It is assumed that the 

temperature variation within the flow is such that T4 may 

be expanded in a Taylor series about T and neglecting 

higher order terms, we get 

434 3T4TTT       (9) 

Equations (8) and (9) give 
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Using equations (8) and (10), the energy equation (3) 

becomes 
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Here )Tc(TS f   is thermal conductivity parameter. 

Now, the following dimensionless variables have been 

introduced as considered by Hamad et al. [18]: 























CC

CC
φ,

TT

TT
θ

,
u

u
u,

u

Rev
v,

u

u
u,

l

Rey
y,

l

x
x

wf

e
e

 

x

ψ
v,

y

ψ
u









     (12) 

Where Re = u∞ l/ν is the Reynolds number, ψ is the 

stream function, l being the characteristic length and u∞ is 

reference velocity. 
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Hence, equations (7), (11) and (3) reduce in the 

following form: 
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Subject to boundary conditions, 
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The application of group transformations has been 

considered to find similarity reduction of equations (13), 

(14) and (15).  Consider the following group 

transformations 

φφθ,θ,ψΩψ,yΩy,xΩx ##α#α#α# 321   (18) 

Where α1, α2, α3 are constants and Ω is the parameter of 

point transformation. Now finding the relation among α’s 

such that 
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Δ1, Δ2 and Δ3 are conformally invariant under the group 

transformation (18), [2]. 

By equation (13), we have 
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By using above group transformation in equation (19), 

we get the following relation 

323232321 ααα2αα4α2α3αα   (20) 

On solving the equation, we get 0α,αα 231   

Similarly equations (14), (15) and (16) are also giving

0α,αα 231  , so these equations show invariant 

under the group transformation (18). 

Now the characteristic equations are 
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Which give the following similarity transformations: 
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Using these transformations, the momentum, energy 

and mass equations become 
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The physical quantities of interest are the Skin friction 

coefficient Cf, Nusselt number Nu and Sherwood number 

Sh, which are defined as
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III. METHOD OF SOLUTION 

The system of ordinary differential equations (23), (24) 

and (25) subject to the boundary conditions (26) have been 

solved numerically using Runga-Kutta method with 

shooting technique. The computations were carried out 

using step size of Δη = 0.01 selected to be satisfactory for a 

convergence criterion of 10-6 in all cases.  
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 The physical quantities skin friction coefficient Cf, 

Nusselt number Nu and Sherwood number Sh indicate the 

wall shear stress, rate of heat transfer and rate of mass 

transfer respectively and these are proportional to the 

numerical values of fˈˈ(0), ‒θˈ(0) and ‒φˈ(0) respectively. 

IV. RESULTS AND DISCUSSION 

 The numerical results have been computed and 

represented in the form of the dimensionless velocity, 

temperature, concentration, wall heat transfer, the rate of 

heat and mass transfer. Prandtl number Pr = 0.7 for air at 1 

atmospheric pressure, Schmidt number Sc = 0.22 for 

Hydrogen, Sc = 0.67 for water vapour, Sc = 0.78 for 

Ammonia were taken. The values for the skin friction 

coefficient, Nusselt number and Sherwood number have 

been tabulated below: 

Table 1. Effect on Skin friction coefficient Cf, Nusselt 

number Nu and Sherwood number Sh for fw = 0.5, Pr = 0.7, M 

= 0.5, R = 1, Sc = 0.1, A = 0.1, S = 1, λ = 0.6, a = 1, b = 0.3 

and cˈ =0.2. 

parameter values fˈˈ(0) –θˈ(0) –φˈ(0) 

Pr 
6.8 0.715250 -1.153453 -0.199205 

10 0.720591 -1.595283 -0.199205 

S 

0.3 0.698607 -0.291478 -0.199205 

0.5 0.697801 -0.264784 -0.199204 

0.7 0.696513 -0.229748 -0.199204 

fw 

0.1 0.610156 -0.244192 -0.134265 

0.5 0.485973 -0.235062 -0.135410 

1 0.361994 -0.231405 -0.136201 

Sc 

0.22 0.692411 -0.219478 -0.299199 

0.67 0.687241 -0.219479 -0.436542 

0.78 0.683141 -0.219479 -0.636919 

R 
5 0.694815 -0.156904 -0.198921 

10 0.694117 -0.135690 -0.198921 

M 
0.1 0.306965 -0.196202 -0.175980 

0.9 0.962371 -0.230002 -0.212143 

λ 

0.7 0.687862 -0.224897 -0.199821 

1 0.696528 -0.220453 -0.192688 

1.2 0.698463 -0.219784 -0.188926 

Figure 2 exhibits the effect of physical parameters on 

velocity fˈ, temperature θ and concentration φ. It is seen 

that the suction has a significant effect on the boundary 

layer thicknesses. It can be observed that the velocity fˈ 

rises with suction parameter whereas temperature θ and 

concentration φ fall with rising fw. It is also noticed that the 

thickness of momentum, thermal and concentration 

boundary layer reduce with an increase in fw. The variation 

of velocity fˈ and temperature θ for different values of the 

radiation parameter R have been depicted in Figure 3. It 

reveals that the velocity fˈ and temperature θ increase with 

an increase in radiation parameter R. This is because rises 

in R have the tendency to increase the conduction effects 

and to increase temperature at each point away from the 

surface. Therefore, higher value of radiation parameter 

implies higher surface heat flux. It is also observed that 

momentum boundary layer thickness decreases while the 

thermal boundary layer thickness increases with the 

increasing values of R. 

 

Fig. 2. Effect of suction parameter fw on velocity fˈ, temperature θ, 

concentration φ, for Pr = 0.7, M = 0.1, R = 1 Sc = 0.1, A = 0.1, S = 0.5, λ 

= 0.6, a = 1, b = 0.1 and cˈ =0.2. 

 

Fig. 3. Effect of radiation parameter R on velocity fˈ, temperature θ, for fw 

= 0.5, Pr = 0.7, M = 0.1, Sc = 0.1, A = 1, S = 1, λ = 0.6, a = 1, b = 0.5, and 
cˈ =0.2. 

 

Fig. 4. Effect of Schmidt number Sc on concentration φ for fw = 0.5, Pr = 

0.7, M = 0.1, R = 1, A = 0.1, S = 1, λ = 0.7, a = 1, b = 0.3, and cˈ =0.2. 

The effect of Schmidt number on concentration is 

represented through figure 4. It has been observed that as 

Schmidt number increases, the mass transfer rate increases 

and concentration decreases. There is a little change in 
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temperature θ and concentration φ in case of moderate 

changes in Schmidt number Sc. 

 

Fig. 5. Effect of Prandtl number Pr on velocity fˈ, temperature θ, for fw = 

0.5, R = 1, M = 0.9, Sc = 0.78, A = 0.5 S = 1, λ = 0.6, a = 1, b = 0.2 and cˈ 
=0.3. 

Figure 5 shows the variation of velocity fˈ and 

temperature θ for the variation of Pr. It is observed that θ 

decreases with an increase in Pr. It is observed that at 

higher Pr, the fluid has a thinner thermal boundary layer 

and this increase the wall temperature gradient θˈ(0). It can 

also be observed that Pr reduces the velocity fˈ and thicken 

the corresponding boundary layer. 

 

Fig. 6. Effect of convective heat transfer parameter b on velocity fˈ, 

temperature θ, concentration φ, for fw = 0.5 Pr = 0.7, M = 0.6, R = 1, Sc = 

0.78, λ = 0.6, A =0.5, S = 0.3, a = 1 and cˈ =0.2. 

To show the variations of thermal convective parameter 

b on the field variables velocity fˈ, temperature θ and 

concentration φ respective we have drawn figure 6. This 

figure shows that velocity fˈ concentration φ and 

temperature θ reduce with increasing value of b. 

The authors also attempted the case study the effect of 

injection parameter. The results were also seen with the 

good agreement as done by Hamad et al. [18]. 
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