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“Abstract” 
 

 
Aim of this paper is to investigate the effect of 
Joule heating on steady MHD flow of low Prandtl 
viscous and conducting fluid on a porous stretching 
sheet. In this analysis, the governing equations (viz. 
continuity, momentum and energy equations) are 
transformed into a system of ordinary differential 
equations. The momentum equation is solved 
analytically and energy equation is solved 
numerically using fourth order Runge-Kutta 
method along with shooting method. The fluid 
velocity and temperature characteristics are 
discussed and presented through graphs. The 
effects of skin-friction coefficient (viscous drag) 
and Nusselt number (rate of heat transfer) are 
derived, discussed and presented through tables for 
various physical parameters. 

1. Introduction 
 
The fluid dynamics over a stretching sheet is 
important in many practical applications such as 
extrusion of plastic sheet, paper production, glass 
blowing, metal spinning and drawing plastic films. 
Crane [1] was the first to consider the boundary 
layer flow caused by a stretching sheet, which 
moves with a velocity varying linearly with the 
distance from a fixed point. The heat transfer 
aspect of this problem was investigated by 
Carragher and Crane [2], under the conditions 
when the ambient fluid is proportional to a power 
of the distance from a fixed point. Fluid flows and 
heat transfer characteristics on stretching sheet with 
variable temperature condition have been 
investigated by Grubka and Bobba [3]. 
Elbashbeshy [4] discussed the heat transfer over a 
stretching sheet with variable heat flux. 
Elbashbeshy and Bajid [5] analyzed the stretching 
problem with internal heat generation and suction 
or injection in porous medium.  
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Effect of variable thermal conductivity and heat 
source/sink on MHD flow near a stagnation point 
on a linear stretching sheet was investigated by 
Sharma and Singh [6]. In this similar context 
Tamanna Sultana et al. [7] studied heat transfer in a 
porous medium over a stretching surface with 
internal heat generation and suction or injection in 
the presence of radiation.  

The low Prandtl fluid flows have become important 
due to industrial applications, for instance it is used 
to deal with the problem of cooling of nuclear 
reactor by fluid having very low Prandtl number 
[Michiyoshi et al. (8), Fumizawa (9)]. Liquid 
metals have small Prandtl number of order 
0.001~0.1 [e.g. Pr = 0.01 is for Bismuth, Pr = 
0.023 is for Mercury etc.] and generally used as 
coolant because of very high thermal conductivity. 
They have ability to transport heat even if small 
temperature difference exists between the surface 
and the fluid. Due to this reason, liquid metals are 
used as coolant in nuclear reactors for the disposal 
of waste heat [Sharma and Singh (10)]. Kay (11), 
Arunachalam and Rajappa (12), Chaim (13) etc. 
presented low Prandtl fluid flow taking various 
geometries.  

An analysis of thermal boundary layer in an 
electrically conducting fluid over a linearly 
stretching sheet in the presence of the constant 
transverse magnetic field with suction or blowing 
at the sheet was carried out by Chaim [14].  In this 
paper the viscous and Joule dissipation and internal 
heat generation was taken into account in the 
energy equation. The problem of viscous 
dissipation, Joule heating and heat source/sink on 
non-Darcy natural convection flow over an isoflux 
permeable sphere in a porous medium is 
numerically analyzed by Yih [15].  

In this present study, the effect of Joule heating is 
investigated on steady MHD flow on a porous 
stretching sheet with a fluid of low Prandtl number. 
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2. Formulation of the Problem 

Consider steady two-dimensional laminar viscous 
incompressible fluid over a porous stretching sheet 
in the presence of transverse magnetic field. The 
stretching sheet has a uniform temperature wT  and 

linear velocity xuw . Stretching sheet is placed in 

the plane 0y  and x-axis is taken along the 
sheet. Two equal and opposite forces are applied 
along x- axis hence the sheet is stretched linearly 
keeping the origin fixed as demonstrated in figure 
1.  

The governing equations of continuity, momentum 
and energy of laminar boundary layer are given as 
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where u, v are the velocity components along x- 
and y- axes, respectively,  is the coefficient of 
viscosity,  is the density,  is electrical 
conductivity, B0 is magnetic field intensity, Cp is 
specific heat at constant pressure and  is the 
thermal conductivity.  
The corresponding boundary conditions are given 
by 

,,, www TTvvxuu   at y = 0 

,,0  TTu           at y         (4) 

Positive and negative value of wv  indicates the 
blowing and suction, respectively and obviously 

0wv  is corresponding to non-porous sheet. 
Since, the low Prandtl fluid is taken into account 
the order of viscous dissipation term is considered 
less than the order of Joule heating i.e. 
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3. Method of Solution 
 
The continuity equation (1) is satisfied by 
introducing the stream function 
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The momentum and energy equations can be 
transformed into ordinary differential equations by 
taking the similarity variable and dimensionless 
temperature parameter respectively as 
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Using eq. (6), the equations (2) and (3) along with 
the boundary conditions are reduced to 
 

0)( /22//////  fMffff ,       (7) 
 

0)Pr(Pr 2/2///  fEcMf ,       (8)      
 
where f is non-dimensional stream function. Prime 
denotes the differentiation with respect to  . 
 
Corresponding boundary conditions are reduced to 
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suction velocity at the plate for 0wf  and 

0wf , respectively. 
The governing boundary layer equation (7) along 
with the boundary conditions (9) admits a solution 
[Ahmad and Mubeen (16)] of the form given by 
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Further the energy equation (8) with the boundary 
conditions (9) is solved using Runge-Kutta fourth 
order method along with shooting technique [Conte 
and Boor (17) and Sharma and Singh (6)]. 

4. Skin-friction Coefficient 

The shear stress at the sheet is given by 
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The skin-friction coefficient at the sheet is defined 

as  
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5. Nusselt Number  

The local heat flux is given as 
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Now the Nusselt Number at the sheet is defined as  
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)0(/ xNu . 

6. Particular Case 
In the absence magnetic field (i.e. M = 0), the 
results of present paper are reduced to those 
obtained by Chaim [13]. It is seen from Table 1 
that the numerical results )0(/ of present paper 
are in good agreement. 
 
7. Results and Discussion 
 
The energy equation (8) with the boundary 
conditions (9) is solved using Runge-Kutta fourth 
order method along with shooting technique for 
different values of the parameters M, Pr and fw 
taking step size 0.001.  
The numerical calculations are presented in the 
form of tables and graphs for various values of 
physical parameters. 
Figure 2 shows the velocity profiles for different 
values of suction and injection parameter fw with M 
= 0.5. It can be seen easily that the velocity profiles 
decrease with the increase of fw. The Hartmann 
number (M) shows an importance of magnetic field 
sets in Lorentz force, which results in retarding 
force on the velocity field and therefore as M 
increases the velocity profiles decrease. As 
observed from figures 3 and 4 it is also noted that 
the velocity profiles decrease, while taking 
increment in M for fw = 0.5 (figure 3, in case of 
suction) and for fw =-0.5 (figure 4, in case of 
injection). Figures 5 and 6 show the effect of the 
Hartmann number on temperature profiles at 
Pr=0.01 for fw = 0.5 (figure 5, in case of suction) 
and for fw =-0.5 (figure 6, in case of injection), 
respectively and it is observed that temperature 
profiles increase with the increase in Hartmann 
number. Because the magnetic field retards the 

velocity of fluid and therefore temperature of the 
fluid near the sheet is higher. It is observed from 
figure 7 that with the increase in Prandtl number 
temperature profiles decreases.  
The skin-friction coefficient and Nusselt number 
are presented by equations (13) and (15), which are 
directly proportional to )0(//f  and  0/ , 
respectively. The effect of physical parameters on 
these two are presented in the table 2 and table 3. 
It is observed from table2, for the both cases 
(suction and injection) the value of 

)0(//f decreases as the value of Hartmann number 
increases. It is noted from table 3 the numerical 
values of  0/  decrease as fw increases. Further 

in case of suction, the value of  0/  decreases 
as the value of Prandtl number Pr increases and 
reverse result is found in case of injection. Also 
when Hartmann number increases the values of 

 0/  increase. 
 

 

“Figure 1. Schematic diagram of the problem”. 

 

 
 
 

 
 
 
 
 
 

 

 

 

 
 

“Figure 2. Velocity distribution when M = 0.5” 
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“Figure 3. Velocity distribution when wf = 0.5”. 

“Figure 4. Velocity distribution when wf = -0.5”. 
 
 

 
 

“Figure 5. Temperature distribution when wf = 0.5”.    
 
 
 

“Figure 6. Temperature distribution when wf = -0.5”.    
 

“Figure 7. Temperature distribution when M = 0.5”. 
 
 

Table 1. Numerical values of )0(/  for various 
values of Pr are compared with the 
results obtained by Chaim (1998) 

- )0(/  
Pr 

 

wf  Chaim [13] Present work 
0.023 0.0 0.0224886 0.02302313 
0.023 1.5 0.0457422 0.04576912 

0.1 0.0 0.0912924 0.0913340 
0.1 1.5 0.1955034 0.19554759 
1.0 0.0 0.5819767 0.5836673 
1.0 1.5 1.760407 1.76268901 

 

 
 
 
 

 

0

0.4

0.8

1.2

0 0.5 1

M = 0.5 
M = 1.0 

M = 1.5 

M = 2.5 



f

0

0.4

0.8

1.2

0 0.5 1

f



M = 0.5 

M = 1.0 

M = 1.5 

M = 2.5 

0

0.4

0.8

1.2

0 0.5 1

M = 0.5 

M = 1.0 

M = 1.5 





0

0.4

0.8

1.2

0 0.5 1

Pr = 0.01 

Pr = 0.05 

Pr = 0.07 





International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

4www.ijert.org



 
Table 2.  Numerical values of )0(//f for various 

values of M and fw. 
 

M )0(//f  
0.5 -1.395644 
1.0 -1.686141 
1.5 -2.070027 

fw =0.5 

2.5 -2.954163 
0.5 -1.724745 
1.0 -2.000 
1.5 -2.320829 fw = 1.0 

2.5 -3.238613 
0.5 -2.096291 
1.0 -2.350781 
1.5 -2.702562 fw = 1.5 

2.5 -3.545085 
0.5 -0.895644 
1.0 -1.186141 
1.5 -1.570027 fw = -0.5 

2.5 -2.454163 
0.5 -0.724745 
1.0 -1.000 
1.5 -1.370829 fw = -1 

2.5 -2.238613 
0.5 -0.596291 
1.0 -0.850781 
1.5 -1.202562 fw = -1.5 

2.5 -2.045085 
 

Table 3. Numerical values of )0(/ for various 
values of physical parameters 

 

Pr M  0/  

.01 0.5 0.4050120 

.01 1.0 0.4038703 

fw =0.5 

.01 1.5 0.4024835 

.01 0.5 0.4073560 

.01 1.0 0.4063797 

.01 1.5 0.4051136 fw = 1.0 

.07 0.5 0.4481621 

.01 0.5 0.4003308 

.01 1.0 0.3988151 fw = -0.5 

.01 1.5 0.3971187 

.01 0.5 0.3979683 

.01 1.0 0.3962657 

.01 1.5 0.3944089 fw = -1 

.07 0.5 0.3812571 
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