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Abstract—Dynamic task allocation for multiple robot
network is the fundamental criterion for successful completion
of the conquest. Primarily the target task is partitioned into
number of sub-tasks thereafter executed by the robots in a
distributed manner. Multi-robot task allocation is a
combinatorial optimization problem. Most of the prevailing
optimization schemes of task allocation considers single
objective parameter. This paper presents a bi-objective task
allocation scheme for multi-robot network. It establishes the
model of task allocation by considering the minimal utilization
of time and battery energy resources. It proposes a numerical
problem-solving method to obtain the optimal weight values to
be used in the objective function. It encompasses the Linear
Integer Programming optimization (LIP) technique for task
allocation. Time consumption and energy consumption rates
are considered as the evaluation parameters for the proposed
scheme. The dynamic task allocation scheme is simulated in
Webots virtual simulation environment. The experimental
results express that the proposed Linear Integer Programming
(LIP) -based task allocation technique minimizes the resource
utilization and allocates the task effectively.

Keywords—dynamic task allocation, constraint optimization
technique, Linear Programming, multiple robot network

I. INTRODUCTION

To the extent of a decade it was considering a miracle where
the mobile robot can move in an unknown environment at
optimal speeds. But in recent years the advancements in
both hardware and software optimization had it more
capable of using in mobile robots [5]. Autonomous mobile
robots are deployed in various situations and applications
such as manufacturing industries, warehouses, search and
rescue missions, exploration missions and military
applications etc [8]. There is another topic gained attention
where study is about the mobile-robot swarm where these
robots does not have centralized control but instead of that it
has robots where it operates independently. It does have
local sensing and operating mechanism. With these this sort
of approach all the robots will behave in a similar way to
each other [6]. Therefore, the study of task allocation comes
in development for swarm of robots. Introducing task
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allocation to robot swarms the swarm will start to do the
task in more smart and intelligent way where each robot will
be assigned with own task and it will have its own personal
goal in respect of its priorities and resources and its final
goal of the swarm [12]. But these all have its limitation
where it can only be used in singular and idle situations.
Therefore, the study of dynamic task allocation study is
being developed in recent years.

Dynamic task allocation has become a major requirement
for the swarm cooperative robots [12]. With the help of
dynamic task allocation, the responses and actions of the
robots can be changed dynamically in the unknown
environment. Using this approach, the overall performance
of the system can be enhanced. Where the robots will have
the ability to observe the environment around it and
respond, with this study it can also be developed in such a
way where robots can establish communication between
each other dynamically, if the situation does arise where the
given task can’t be performed with the allocated robot, the
nearest neighbouring robot can cover its task and finish it.

This study observes how different the robot’s response to
the environments. It analyses the importance of time and
battery resource utilization in task allocation. We develop
the algorithm with multi-objective function and optimizing
it with a linear minimization algorithm of the derived
utilities.

This paper is organized as follows, chapter Il presents
literature review on multi-robot task allocation, chapter 111
describes the problem description as well as the utility
functions in task allocation. Chapter 1V details the linear
programming task allocation strategy and chapter V
illustrates the simulation result evaluation and discussion.
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Il. LITERATURE REVIEW

Multi-robot task allocation problem is a combinatorial
optimization problem [15]. In the literature various
heuristics-based task allocation strategies for multi-robot
systems are found. Most of the heuristics strategies in the
literature  considered single  objective-function  for
optimization [14]. Minimization of total travel distance is
considered for optimization in [1]. Ant Colony Optimization
algorithm [7], particle swarm optimization algorithms [2,
13], PSO variants [4] and genetic algorithm [1] are used for
task allocation. Genetic algorithm optimization [3] for
maximizing task completion rate is presented in [8].
Minimization of total tasks completion time using Particle
Swarm Optimization is presented in [17].

Many authors presented single objective optimization
function for task allocation. However, the multi-robot task
allocation problem is a multi-objective optimization
problem [18]. Multi-objective optimization task allocation
improves the performance of the multi-robot systems [9].
Multi-objective optimization for task precedence constraint
problems is presented in [11]. Minimization of task
completion time, robot waiting time and idle time are the
optimization factors considered. Another multi-objective
optimization in order to minimize the battery power
consumption and task completion time is presented in [15].

This paper proposes a multi-objective optimization task
allocation strategy. Minimal utilization of robot battery
power and task completing time are considered for task
allocation. It involves Linear Integer optimization technique
for single-task single-robot task allocation problems.

I1l. MULTI-ROBOT TASK ALLOCATION

A. Problem description

This paper proposes an optimization based multi-

robot task allocation scheme. Consider R = 1,R,..R, be
the set of robots in the network. Let T = Tq, T>..,be the set

of tasks to be allocated for the robots. Let A bethe N X 1
matrix represents the task allocation set Eqn (1), where n is
the number of robots and tasks. The multi-robot task
allocation problem is a combinatorial optimization problem
[17]. Any task allocation strategy assigns each task with
each robot, such a way that, the utilization of cost to
complete the tasks is minimum. At the same time the
performance of the robots is maximum %19].

In this approach the number of robots and number
of tasks is considered to be equal. The utilization of time and
battery resources is the two major performance influencing
parameters [16]. This study proposes a task allocation
strategy based on Linear Integer Programming optimization
techniques. It minimizes the utilization of the time and
battery resources.

az
Az
ass
A= - 6
[ann]
The constraints of task allocation are:
maj=1 where,1 <j<n 2
2z =1 where,1 <i<n (3)
a; €0,1 where, 1 <ij<n 4

The constraint given by Eqgn (2) ensures that only one task is
allocated to a robot. Similarly, the next constraint in Egn (3)
represents that a robot is allocated only to a single task. The
final constraint in Eqn (4) states that the value of task
allocation is binary either it O or it is 1.

V. LINEAR PROGRAMMING INTASK
ALLOCATION

A multi-robot system completes the whole task in a
distributive manner. Efficient task allocation plays a vital
influence in the better performance of the robot’s team [18].
The time and energy utilization by the individual robots
depend on the tasks allocated to them. However, the time
and energy utility are contrast in nature [3]. Battery power
utilization is higher for fast task completion and vice versa.
Thus, these two utility functions form a pareto optimal task
allocation problem. This paper aims to analyse the time and
energy utilities relationship. This analysis supports to frame
objective function in order to derive the global optimal task
allocation.

Let'T'and 'E’ be the time and battery energy utility matrices,

respectively. Where tij is the time utility required by the
robot j to complete the task i. Similarly, ejj is the battery
energy utility required by the robot j to complete the task i
(Eqn 5 & 6).

tyy  tp tiz.. tiy

byl tog.. top
T=ta 32 tz3.. ta (5)

[ta1 ta2 w3  tm]

€11 €12 €13.. €1p
€21 €22 €33.. €pp
E= 31 €3 €. €3 (6)

[en1 €n2 €n3.. em]

The objective is to minimize the consumption of time and
battery energy together. Therefore, the objective function is
a minimizing weighted summation of time and energy
utilities [4, 10](Eqgn 7).

Q= (W (O)+W (E )) 0]
1 2 ij

q11 412 413 qin

q21 4922 423 q2n
=l T ®
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Where Q is the 2D matrix consists of the consolidated time
and energy utilities required for every robot to execute every
task(Eqn 8). The proposed optimization strategy aims to
minimize the utility requirement Q. Identification of optimal
Q value relies on the time and energy weight parameters Wy
and W, The range of the weight values are
considered

between [0,1]. Initial values of ; and W5 are 0 and 1
respectively. Time utility requirement is inversely
proportional to the energy requirement utility. Therefore, the
value Wy is uniformly incremented from 0 to 1 at the same
time the value of W5 is decremented from 1 to O at the same
interval. The weight values are updated uniformly by means
of a regular interval value. Let | be the interval, then the
initial set if weight values is [0,1]. For the initial set of
weight, the Q matrix is generated. Next the interval set is
updated as [0+], 1-1] for which the Q matrix is generated.
This process ends when the updated weight set becomes as
[1,0]. Thus, a number of Q matrices are created within the
range [0,1]. The total number of Q matrices is based on the
interval value. The average weight value [Wlavg,Zavg] is
calculated from the set of weight values [W1,W5] within the
range [0,1] with respect to the interval value.
Simultaneously the average Q matrix is calculated from the
set of Q matrices with respect to the interval value. The task
allocation is performed by using the average Q matrix. .
This method produces task allocation model with the
minimal time and energy utility values.

The proposed bi-objective utility function identifies the task
allocation scheme with minimal time and battery energy
utility values. The previous chapter describes the objective
function as well as the proposed numerical method of
calculating the best weight values which derives the

minimal utility values. By using this minimal Qmatrix the
proposed single-robot single-task task allocation is
performed in an optimal manner.

V. SIMULATION RESULTS ANALYSIS

The numerical simulation is performed to evaluate the
proposed linear programming task allocation strategy. The
simulation data is taken from the RoboCup 2D Soccer robot
simulator [9]. The time and energy utility matrices are
generated from the soccer game simulation. It is used for the
analysis of trade-off weights’ influence on the minimum
utility function [9]. In the simulation there are 16 number of
tasks and 16 number of robots are there. The time and
energy utility matrices are given in Fig 1 & 2.

The proposed estimation technique of optimal weight values
Wy and W5 is performed for four different interval
values.

I3 = 0.002,1, = 0.001,lI; = 0.02,I, = 0.01.The minimal Q
matrix is created by applying the proposed numerical
calculation on the variant Q matrices generated for the four
interval values. Linear integer programming-based task
allocation is applied on the minimal Q matrix. It results the
task allocation scheme which requires minimal time and
energy utility values.
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Fig 1 Time utility requirement matrix for 16 tasks and 16 robots
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Fig 2 Battery energy utility requirement matrix for 16 tasks and 16 robots

The distribution of utility values with respect to Wiand
W,in an interval rate of change is plotted in Fig 3 and 4 for
the intervals 0.002 and 0.001, respectively.

R

Fig 3 Weight values distribution in the interval 0.02

Table 1 represents the time utilization of the proposed linear
programming-based task allocation scheme for the four
different intervals. The results evidence that this technique
consumes minimal time to compute the task allocation
model. Table 2 shows that the calculated optimal weight
values for the four different intervals.
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Fig 4 Weight values distribution in the interval 0.01

Table 1. Run time of proposed task allocation scheme

S.No | Weight Interval | Run Time(s)
1 0.002 0.0351
2 0.001 0.0628
3 0.02 0.0160
4 0.01 0.0125

Table 2 Resultant Optimal weights and allocation model

Minimum utility
Weight |value Resultant Task
S.No Interval Optimal | Optimal allocation scheme
Wi W2

1 0.002 |0.5340 |0.4660 |T1-R3;T2-R5; T3-R14
;T4-R10; T5-R12; T6-
R7; T7-R9; T8-R16;
T9-R4; T10-R2; T11-
R15; T12-R6; T13-
R11; T14-R13; T15-
R8; T16-R1

2 0.001 |0.5330 |0.4670 |T1-R3;T2-R5;T3-
R14;T4-R10;T5-
R12;T6-R7;T7-R9;T8-
R16;T9-R4;T10-
R2;T11-R15;T12-
R6;T13-R11;T14-
R13;T15-R8;T16-R1

3 0.02 0.5800 |0.4200 |T1-R16;T2-R2;T3-
R14;T4-R10;T5-
R12;T6-R7;T7-R1;T8-
R3;T9-R4;T10-
R13;T11-R15;T12-
R6;T13-R5;T14-
R9;T15-R8;T16-R11

4 0.01 0.5500 |0.4500 |T1-R3; T2-R5;T3-
R14;T4-R10;T5-
R8;T6-R7;T7-R9;T8-
R16;T9-R4;T10-
R2;T11-R15;T12-
R6;T13-R11;T14-
R13;T15-R8;T16-R1

VI. DISCUSSION
The experiments results show that the proposed task
allocation scheme based on linear programming provides
the assurance of identifying optimal task allocation within
minimum run time. The three-dimension plot from fig.1 to
fig.2 depict the utility values distribution for average matrix
generated for the uniformly varying weight values. Instead
of using heuristic approach to find the optimal @matrix, this
study proposes simple numerical strategy. According to the
different interval results, minimum utility value is derived
from almost equally weighted time and energy utilities. The
proposed linear programming using best provides better task
allocation with minimum time and energy utilization.
CONCLUSION

A multi-objective task allocation algorithm is proposed in
this study. The time and battery energy utilization are the
two important parameters influencing the robots task
completion. This paper considers minimization of these two
parameters as the objective function. Since it is a pareto
optimization problem a weighted summation cost function is
devised. However, the correct weight values are important
for optimal task allocation. In order to identify the best
weight values a numerical solving method is presented. This
method successfully identifies the best weight values. The
identified weight values are further used for task allocation.
This study developed a linear programming-based task
allocation scheme by using local best first search strategy.
The proposed task allocation scheme is evaluated by a
numerical simulation. The results clearly show that the
proposed technique performs task allocation within minimal
time and maximum accuracy. In the future the proposed
concept is experimented with real robots and the
performance is to be evaluated with the simulation results.
The other objective parameters such as minimizing travel
distance, maximizing task completion rate, maximizing the
self-reconfigurability etc are to be included in the objective
function for developing a robust task allocation strategy.
This research can be extended to various parameter-differing
objectives where the task allocation is dynamic, and the
robots are heterogenous.
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