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Abstract—Dynamic task allocation for multiple robot 

network is the fundamental criterion for successful completion 

of the conquest. Primarily the target task is partitioned into 

number of sub-tasks thereafter executed by the robots in a 

distributed manner. Multi-robot task allocation is a 

combinatorial optimization problem. Most of the prevailing 

optimization schemes of task allocation considers single 

objective parameter. This paper presents a bi-objective task 

allocation scheme for multi-robot network. It establishes the 

model of task allocation by considering the minimal utilization 

of time and battery energy resources. It proposes a numerical 

problem-solving method to obtain the optimal weight values to 

be used in the objective function. It encompasses the Linear 

Integer Programming optimization (LIP) technique for task 

allocation. Time consumption and energy consumption rates 

are considered as the evaluation parameters for the proposed 

scheme. The dynamic task allocation scheme is simulated in 

Webots virtual simulation environment. The experimental 

results express that the proposed Linear Integer Programming 

(LIP) -based task allocation technique minimizes the resource 

utilization and allocates the task effectively.

Keywords—dynamic task allocation, constraint optimization 

technique, Linear Programming, multiple robot network

I. INTRODUCTION

To the extent of a decade it was considering a miracle where 

the mobile robot can move in an unknown environment at 

optimal speeds. But in recent years the advancements in 

both hardware and software optimization had it more 

capable of using in mobile robots [5]. Autonomous mobile 

robots are deployed in various situations and applications 

such as manufacturing industries, warehouses, search and 

rescue missions, exploration missions and military 

applications etc [8]. There is another topic gained attention 

where study is about the mobile-robot swarm where these 

robots does not have centralized control but instead of that it 

has robots where it operates independently. It does have 

local sensing and operating mechanism. With these this sort 

of approach all the robots will behave in a similar way to 

each other [6]. Therefore, the study of task allocation comes 

in development for swarm of robots. Introducing task

allocation to robot swarms the swarm will start to do the 

task in more smart and intelligent way where each robot will 

be assigned with own task and it will have its own personal 

goal in respect of its priorities and resources and its final 

goal of the swarm [12]. But these all have its limitation 

where it can only be used in singular and idle situations. 

Therefore, the study of dynamic task allocation study is 

being developed in recent years.

Dynamic task allocation has become a major requirement 

for the swarm cooperative robots [12]. With the help of 

dynamic task allocation, the responses and actions of the 

robots can be changed dynamically in the unknown 

environment. Using this approach, the overall performance 

of the system can be enhanced. Where the robots will have 

the ability to observe the environment around it  and 

respond, with this study it can also be developed in such a 

way where robots can establish communication between 

each other dynamically, if the situation does arise where the 

given task can’t be performed with the allocated robot, the 

nearest neighbouring robot can cover its task and finish it.

This study observes how different the robot’s response to 

the environments. It analyses the importance of time and 

battery resource utilization in task allocation. We develop 

the algorithm with multi-objective function and optimizing 

it with a linear minimization algorithm of the derived 

utilities.

This paper is organized as follows, chapter II presents 

literature review on multi-robot task allocation, chapter III 

describes the problem description as well as the utility 

functions in task allocation. Chapter IV details the linear 

programming task allocation strategy and chapter V 

illustrates the simulation result evaluation and discussion.
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i=1 

Q= [ ] (8) 

II. LITERATURE REVIEW

Multi-robot task allocation problem is a combinatorial 

optimization problem [15]. In the literature various 

heuristics-based task allocation strategies for multi-robot 

systems are found. Most of the heuristics strategies in the 
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(1) 

literature considered single objective-function for 

optimization [14]. Minimization of total travel distance is 

[𝑎𝑛𝑛] 

The constraints of task allocation are: 

considered for optimization in [1]. Ant Colony Optimization 

algorithm [7], particle swarm optimization algorithms [2, 

𝑛 
j=1 𝑎ij = 1 where,1 ≤ 𝑗 ≤ 𝑛 (2) 

13], PSO variants [4] and genetic algorithm [1] are used for 

task allocation. Genetic algorithm optimization [3] for 

maximizing task completion rate is presented in [8]. 

Minimization of total tasks completion time using Particle 

Swarm Optimization is presented in [17]. 

Many authors presented single objective optimization 

function for task allocation. However, the multi-robot task 

allocation problem is a multi-objective optimization 

problem [18]. Multi-objective optimization task allocation 

improves the performance of the multi-robot systems [9]. 

Multi-objective optimization for task precedence constraint 

problems is presented in [11]. Minimization of task 

completion time, robot waiting time and idle time are the 

optimization factors considered. Another multi-objective 

optimization in order to minimize the battery power 

consumption and task completion time is presented in [15]. 

This paper proposes a multi-objective optimization task 

allocation strategy. Minimal utilization of robot battery 

power and task completing time are considered for task 

allocation. It involves Linear Integer optimization technique 

for single-task single-robot task allocation problems. 

III. MULTI-ROBOT TASK ALLOCATION

A. Problem description

This paper proposes an optimization based multi- 

robot task allocation  scheme. Consider   𝑅 =  1,R2..𝑅𝑛  be
the set of robots in the network. Let 𝑇 = 𝑇1, 𝑇2..𝑛be the set 

∑  ij = 1 where,1 ≤ 𝑖 ≤ 𝑛 (3) 

𝑎ij ∈ 0,1 where, 1 ≤ i,j ≤ 𝑛  (4) 

The constraint given by Eqn (2) ensures that only one task is 

allocated to a robot. Similarly, the next constraint in Eqn (3) 

represents that a robot is allocated only to a single task. The 

final constraint in Eqn (4) states that the value of task 

allocation is binary either it 0 or it is 1. 

IV. LINEAR PROGRAMMING IN TASK

ALLOCATION 

A multi-robot system completes the whole task in a 

distributive manner. Efficient task allocation plays a vital 

influence in the better performance of the robot’s team [18]. 

The time and energy utilization by the individual robots 

depend on the tasks allocated to them. However, the time 

and energy utility are contrast in nature [3]. Battery power 

utilization is higher for fast task completion and vice versa. 

Thus, these two utility functions form a pareto optimal task 

allocation problem. This paper aims to analyse the time and 

energy utilities relationship. This analysis supports to frame 

objective function in order to derive the global optimal task 

allocation. 

Let′𝑇′and ′𝐸′ be the time and battery energy utility matrices, 

respectively. Where 𝑡ij is the time utility required by the

robot 𝑗 to complete the task 𝑖. Similarly, 𝑒ij is the battery

energy utility required by the robot 𝑗 to complete the task 𝑖 
(Eqn 5 & 6). 

𝑡11 𝑡12 𝑡13... 𝑡1𝑛
 𝑡21 𝑡22 𝑡23... 𝑡2𝑛

 

of tasks to be allocated for the robots. Let 𝐴 be the n x 1 
matrix represents the task allocation set Eqn (1), where n is 

the number of robots and tasks. The multi-robot task 

allocation problem is a combinatorial optimization problem 

[17]. Any task allocation strategy assigns each task with 

each robot, such a way that, the utilization of cost to 

complete the tasks is minimum. At the same time the 

performance of the robots is maximum [19]. 
In this approach the number of robots and number 

T= 𝑡31 𝑡32 𝑡33... 𝑡31 

 ... ... ... ... 

[𝑡𝑛1 𝑡𝑛2 𝑡𝑛3... 𝑡nn ] 

𝑒11 𝑒12 𝑒13... 𝑒1𝑛
 𝑒21 𝑒22 𝑒23... 𝑒2𝑛

 

E=  31 𝑒32 𝑒33... 𝑒31 

 ... ... ... ... 

[𝑒𝑛1 𝑒𝑛2 𝑒𝑛3... 𝑒nn ] 

(5) 

(6) 

of tasks is considered to be equal. The utilization of time and 

battery resources is the two major performance influencing 

parameters [16]. This study proposes a task allocation 

strategy based on Linear Integer Programming optimization 

techniques. It minimizes the utilization of the time and 

The objective is to minimize the consumption of time and 

battery energy together. Therefore, the objective function is 

a minimizing weighted summation of time and energy 

utilities [4, 10](Eqn 7). 

Q= (𝑊 ()+W (𝐸 )) (7) 

battery resources. 1 ij 2 ij 

𝑞11 𝑞12 𝑞13... 𝑞1𝑛

𝑞21 𝑞22 𝑞23... 𝑞2𝑛

... ... ... ... 

𝑞𝑛1 𝑞𝑛2 𝑞𝑛3... 𝑞nn 

∑ 
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Where Q is the 2D matrix consists of the consolidated time 
and energy utilities required for every robot to execute every 
task(Eqn 8). The proposed optimization strategy aims to 
minimize the utility requirement Q. Identification of optimal 

Q value relies on the time and energy weight parameters 𝑊1 

and    𝑊2.  The  range  of  the  weight  values  are 

 

considered

 

between  [0,1].   Initial values of  1     and 𝑊2 

 

are  0  and

 

1

 



 

0.496   

 

0.717   

 

0.641   

 

0.650   

 

0.847   

 

0.349   

 

0.852   

 

0.516   

 

0.529   

 

0.416   

 

0.409   

 

0.765   

 

0.825   

 

0.417   

 

0.845   

 

0.976  


0.435   0.218   0.680   0.347   0.374   0.494   0.574   0.408   0.720   0.514   0.719   0.490   

 

0.389   

 

0.978   

 

0.433   

 

0.386


 0.638   0.951   0.489   0.840  0.0.653  0.454   0.721   0.670   0.556   0.522   0.440   0.569   

 

0.601   

 

0.342   

 

0.936   

 

0.795  


0.497     0.710     0.649     0.648    0.847     0.353     0.913    0.516     0.535     0.420     0.415     0.770     0.82     0.425     0.844 

 

0.950 

 

 0.618   0.430   0.712   0.563   0.518   0.607   0.742   0.604   0.865   0.653   0.871   0.991   0.515   0.781   0.644   0.567  
  
 0.574   0.842   0.526   0.767   0.724   0.398   0.757   0.602   0.527   0.467   0.408   0.628   0.670   0.346   0.943   0.866  


 

0.888   

 

0.645   

 

0.394   

 

0.937   

 

0.429   

 

0.685   

 

0.583   

 

0.973   

 

0.672   

 

0.748   

 

0.590   

 

0.393   

 

0.388   

 

0.372   

 

0.735   

 

0.561

 

 


 

 


 

0.425    0.548     0.803    0.523    0.837     0.323    0.897     0.433     0.551    0.384     0.441    0.987     0.846    0.536    0.714     0.801 

 

 


 

0.475   

 

0.523   

 

0.945   

 

0.541   

 

0.756   

 

0.392   

 

0.928   

 

0.478   

 

0.629   

 

0.450   

 

0.522   

 

0.838   

 

0.762   

 

0.614   

 

0.716   

 

0.751

 

 

respectively. Time utility requirement is inversely 
proportional to the energy requirement utility. Therefore, the 

value 𝑊1 is uniformly incremented from 0 to 1 at the same 

time the value of 𝑊2 is decremented from 1 to 0 at the same 

interval. The weight values are updated uniformly by means 
of a regular interval value. Let I be the interval, then the 
initial set if weight values is [0,1]. For the initial set of 
weight, the Q

 

matrix is generated. Next the interval set is 
updated as [0+I, 1-I] for which the Q matrix is generated. 
This process ends when the updated weight set becomes as 
[1,0]. Thus, a number of Q matrices are created within the 
range [0,1]. The total number of Q

 

matrices is based on the 

interval value. The average weight value [𝑊1𝑎𝑣𝑔,2𝑎𝑣𝑔] is

calculated from the set of weight values [𝑊1,𝑊2] within the 

range [0,1] with respect to the interval value. 
Simultaneously the average Q matrix is calculated from the

set of Q matrices with respect to the interval value. The task 

allocation is performed by using the average Q matrix. . 

This method produces task allocation model with the 

minimal time and energy utility

 

values.

 

The proposed bi-objective utility function identifies the task 

allocation scheme with minimal time and battery energy 

utility values. The previous chapter describes the objective 

function as well as the proposed numerical method of 

calculating the best weight values which derives the 

minimal utility values. By using this minimal 𝑄matrix the

proposed single-robot single-task task allocation is 

performed in an optimal manner.

V.

 

SIMULATION RESULTS

 

ANALYSIS

 

The numerical simulation is performed to evaluate the 

proposed linear programming task allocation strategy. The 

simulation data is taken from the RoboCup 2D Soccer robot 

simulator [9]. The time and energy utility matrices are 

generated from the soccer game simulation. It is used for the 

analysis of trade-off weights’ influence on the

 

minimum 

utility function [9]. In the simulation there are 16 number of 

tasks and 16 number of robots are there. The time and 

energy utility matrices are given in Fig 1 &

 

2.

 

The proposed estimation technique of optimal weight

 

values

 

𝑊1   and 𝑊2  is

 

performed for four different interval 

 

values.

 

𝐼1 = 0.002,I2 = 0.001,I3 = 0.02,I4 =

 

0.01.The minimal Q
matrix   is   created   by   applying   the   proposed numerical

calculation on the variant Q matrices generated for the four 

interval values. Linear integer programming-based task 

allocation is applied on the minimal Q matrix. It results the 

task allocation scheme which requires minimal time and 

energy utility values.

 

  


 

0.799    0.499     0.551    0.629     0.415     0770     0.637     0.729    0.989    0.817     0.899     0.455    0.398    0.638    0.629     0.498 

 

 


0.981   

 

0.506   

 

0.385   

 

0.739   

 

0.344   

 

0.828   

 

0.536   

 

0.943   

 

0.752   

 

0.891   

 

0.703   

 

0.339   

 

0.311   

 

0.434   

 

0.630   

 

0.462

 





 

0.819   0.357   0.319   0.590   0.222   0.978   0.430   0.775   0.736   0.945   0.753   0.237   0.195   0.439   0.491   0.329

 

 


0.653   

 

0.420   

 

0.661   

 

0.572   

 

0.477   

 

0.657   

 

0.703   

 

0.631   

 

0.915   

 

0.793   

 

0.926   

 

0.542   

 

0.470   

 

0.739   

 

0.630   

 

0.535

 



 0.690   0.537   0.674   0.669   0.571   0.624   0.794   0.681   0.893   0.682   0.723   0.608   0.597   0.647   0.747   0.646  
  


 

0.214   0.420   0.703   0.335   0.934   0.109   0.683   0.224   0.344   0.170   0.239   0.876   0.891   0.396   0.532   0.680

 

 


 

0.277   

 

0.498   

 

0.701   

 

0.408   

 

0.893   

 

0.161   

 

0.738   

 

0.290   

 

0.385   

 

0.224   

 

0.276   

 

0.957   

 

0.965   

 

0.416   

 

0.604   

 

0.757

 

 

Fig 1 Time utility requirement matrix for 16 tasks and 16 robots

 



 

0.692    0.198   0.537    0.623   0.179    0.393   0.239    0.318    0.548    0.348    0.660    0.269    0.186    0.485    0.168 0.283  


 

0.612    0.931   0.678    0.315    0.643    0.481   0.508    0.564    0.261   0.687    0.181   0.607    0.494    0.132    0.416    0.457

 





 

0.661   0.144    0.504    0.162    0.366    0.587    0.216    0.565    0.338   0.507    0.562    0.691   0.514    0.599    0.204 

 

0.281  


0.356    0.262    0.699    0.429    0.215    0.313    0.251   0.634    0.673   0.356    0.502    0.061   0.168    0.515    0.199 0.210 


 0.326    0.599    0.225    0.450    0.493    0.393    0.238    0.329    0.148    0.348    0.089    0.699    0.421   0.187 0.323   0.517  


 

 
 0.547    0.138    0.530    0.299    0.251   0.324    0.097    0.462    0.659    0.411   0.417    0.690    0.545    0.439    0.211 0.262  


 

0.248    0.390    0.418    0.056    0.631   0.585    0.545    0.058    0.508    0.251   0.304    0.635    0.651   0.433   0.184    0.341

 





 

 


 

0.670    0.326    0.287    0.584    0.294    0.432    0.123   0.416    0.328    0.420    0.685   0.217    0.092    0.365    0.144

 

0.081  


 

0.396  

 

0.535  

 

0.178  

 

0.604  

 

0.156  

 

0.549  

 

0.268  

 

0.593  

 

0.519  

 

0.379  

 

0.307  

 

0.173  

 

0.183  

 

0.533  

 

0.080  

 

0.220

 

 



 

0.202    0.633    0.548    0.692    0.625    0.254    0.373    0.191   0.252    0.286    0.206    0.547    0.476    0.511   0.526

 

0.379  


 

0.271   0.387    0.408    0.133   0.540    0.209    0.364    0.064    0.150    0.080    0.275   0.567    0.678    0.363   0.326    0.669

 





 

0.241   0.419    0.631   0.328    0.840    0.060    0.657    0.210    0.181   0.299    0.102    0.840    0.770    0.496    0.348 

 

0.362  

 

 

Fig 2 Battery energy utility requirement matrix for 16 tasks and 16 robots

 

The distribution of utility values with respect to 𝑊1and 

𝑊2in an interval rate of change is plotted in Fig 3 and 4 for 

the intervals 0.002 and 0.001, respectively.

Fig 3 Weight values distribution in the interval 0.02

Table 1 represents the time utilization of the proposed linear 

programming-based task allocation scheme for the four 

different intervals. The results evidence that this technique 

consumes minimal time to compute the task allocation 

model. Table 2 shows that the calculated optimal weight 

values for the four different intervals.

 



 

0.538

 

0.551

 

0.6113

 

0.507

 

0.582

 

0.305

 

0.123

 

0.479

 

0.109

 

0.365

 

0.148

 

0.672

 

0.303

 

0.268

 

0.334

 

0.392 


 
 0.398

 

 0.559

 

0.696

 

0.612

 

0.399

 

0.374

 

0.264

 

0.401

 

0.138

 

0.626

 

0.293

 

0.540

 

0.341

 

0.402

 

0.191

 

0.609   



 

0.805

 

0.427

 

0.254

 

0.478

 

0.248

 

0.717

 

0.506

 

0.707

 

0.326

 

0.917

 

0.953

 

0.149

 

0.090

 

0.377

 

0.444

 

0.416  


 

0.946

 

0.351

 

0.239

 

0.348

 

0.059

 

0.859

 

0.236

 

0.895

 

0.626

 

0.880

 

0.847

 

0.221

 

0.061

 

0.456

 

0.619

 

0.117  
 
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Fig 4 Weight values distribution in the interval 0.01

Table 1. Run time of proposed task allocation scheme

S.No Weight Interval Run Time(s)

1 0.002 0.0351

2 0.001 0.0628

3 0.02 0.0160

4 0.01 0.0125

Table 2 Resultant Optimal weights and allocation model

VI. DISCUSSION

The experiments results show that the proposed task 

allocation scheme based on linear programming  provides 

the assurance of identifying optimal task allocation within 

minimum run time. The three-dimension plot from fig.1 to 

fig.2 depict the utility values distribution for average matrix 

generated for the uniformly varying weight values. Instead 

of using heuristic approach to find the optimal 𝑄matrix, this

study proposes simple numerical strategy. According to the 

different interval results, minimum utility value is derived 

from almost equally weighted time and energy utilities. The 

proposed linear programming using best provides better task 

allocation with minimum time and energy utilization.

CONCLUSION

A multi-objective task allocation algorithm is proposed in 

this study. The time and battery energy utilization are the 

two important parameters influencing the robots task 

completion. This paper considers minimization of these two 

parameters as the objective function. Since it is a pareto 

optimization problem a weighted summation cost function is 

devised. However, the correct weight values are important 

for optimal task allocation. In order to identify the best 

weight values a numerical solving method is presented. This 

method successfully identifies the best weight values. The 

identified weight values are further used for task allocation. 

This study developed a linear programming-based task 

allocation scheme by using local best first search strategy. 

The proposed task allocation scheme is evaluated by a 

numerical simulation. The results clearly show that the 

proposed technique performs task allocation within minimal 

time and maximum accuracy. In the future the proposed 

concept is experimented with real robots and the 

performance is to be evaluated with the simulation results. 

The other objective parameters such as minimizing travel 

distance, maximizing task completion rate, maximizing the 

self-reconfigurability etc are to be included in the objective 

function for developing a robust task allocation strategy. 

This research can be extended to various parameter-differing 

objectives where the task allocation is dynamic, and the 

robots are heterogenous.
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